Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists a number r somewhere in I such that $f(r)=0$.
Goal: Find an approximate value for the root r, accurate to d decimal places.
Step 1: Choose a value x_{1} as an initial approximation of the root. (This is often done by looking at a graph.)
Step 2: Create successive approximations iteratively, as follows:
Given an approximation x_{n}, compute the next approximation x_{n+1} by using the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Step 3: Stop the iterations when successive approximations do not differ in the first d places after the decimal point. The last x value computed is the approximation of r.

Let $f(x)=x^{3}-x^{2}-1$. Observe that the graph of $f(x)$ shows an x intercept somewhere between $x=1$ and $x=2$. Using the terminology of roots, we would say that there is a root of f, that is, a number r such that $f(r)=0$, and that r is somewhere between 1 and 2 .

The goal is to use Newton's method to find an approximation for the root r. You will do the first
 two iterations only, using the initial approximation $x_{1}=1$. That is, you will find x_{2} and x_{3}.

For the function $f(x)=x^{3}-x^{2}-1$,
(a) Compute $f^{\prime}(x)$
(b) Fill out the following table. (Do the details on scrap paper.)

n	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
1	$x_{1}=1$			$x_{2}=$
2	$x_{2}=$			$x_{3}=$
3	$x_{3}=$			

The Class Drill continues on the next page \rightarrow
(C) A zoomed-in graph of $f(x)$ is shown below. You'll illustrate some of your results on this graph.

- Put a point at $\left(x_{1}, 0\right)$
- Put a point at $\left(x_{1}, f\left(x_{1}\right)\right)$
- Draw the segment that connects $\left(x_{1}, 0\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$. This segment should be vertical.
- Put a point at $\left(x_{2}, 0\right)$.
- Draw the segment that passes through $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, 0\right)$. This segment should appear to be tangent to the graph of $f(x)$ at the point $\left(x_{1}, f\left(x_{1}\right)\right)$.
- Put a point at $\left(x_{2}, f\left(x_{2}\right)\right)$
- Draw the segment that connects $\left(x_{2}, 0\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$. This segment should be vertical.
- Put a point at $\left(x_{3}, 0\right)$.
- Draw the segment that passes through $\left(x_{2}, f\left(x_{2}\right)\right)$ and $\left(x_{3}, 0\right)$. This segment should appear to be tangent to the graph of $f(x)$ at the point $\left(x_{2}, f\left(x_{2}\right)\right)$.

