Handout: The Closed Interval Method (Concepts from Section 4.1)

Definition of Critical Number

Words: critical number of a function *f*

Meaning: an x = c such that

- f'(c) = 0 or f'(c) DNE
- f(c) exists (that is, x = c is in the domain of f)

Critical numbers are *x* values where a local max or min, or an absolute max or min might occur.

The Closed Interval Method

For finding the abs max value and abs min value for a continuous function on a closed interval.

Step 1: Confirm that the interval is closed and that the function is continuous.

Step 2: Find the critical numbers of the function

Step 3: Make a 2-column table.

In the left column, put a list of important *x* values in increasing order:

- left endpoint
- critical numbers in the interval
- right endpoint.

In the right column, put the corresponding *y* values.

So the table will look like this:

important x values	corresponding y values
x = a (endpoint)	f(a)
$x = c_1$ (critical)	$f(c_1)$
÷	:
$x = c_k$ (critical)	$f(c_k)$
x = b (endpoint)	f(b)

Step 4: Identify the greatest and least *y* values in the list. These are the absolute max value and the absolute min value. Write a clear conclusion.