Handout: Graphing Strategy

General Idea: Start with simplest, least sophisticated analysis, and proceed to more sophisticated. If a step is not easy, then skip that step.

Step 1. Analyze $\boldsymbol{f}(\boldsymbol{x})$.

- Find the y-intercept
- Find the x-intercepts.
- Does the graph of $f(x)$ have any symmetry or any periodicity?
- What is the domain of $f(x)$? Where is $f(x)$ continuous?
- Determine location of any vertical asymptotes.
- Make a sign chart for f and use it to determine where f is positive, negative, or zero.
- Determine the end-behavior (Are there horizontal asymptotes? Or do the ends of the graph go up or down?) by finding $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. (May require L'Hospital's Rule!)

Step 2. Analyze $f^{\prime}(x)$.

- Find $f^{\prime}(x)$, factor it, and then find the partition numbers for $f^{\prime}(x)$.
- Construct a sign chart for $f^{\prime}(x)$ and use it to determine the x coordinates where graph of f has a horizontal tangent line, the intervals on which f is increasing and decreasing, and the x coordinates of all relative maxima and minima.
- Find the y coordinates of all relative maxima and minima.

Step 3. Analyze $f^{\prime \prime}(x)$.

- Find $f^{\prime \prime}(x)$, factor it, and then find the partition numbers for $f^{\prime \prime}(x)$.
- Construct a sign chart for $f^{\prime \prime}(x)$ and use it to determine the intervals on which f is concave up and concave down, and to find the x coordinates of all inflection points.
- Find the y coordinates of all inflection points.

Step 4: Sketch the graph of \boldsymbol{f}.

- Draw any asymptotes as dotted lines, and label them with their line equations.
- Plot the axis intercepts, relative maxima and minima, and inflection points, and label them with their (x, y) coordinates.
- Using the other information from steps 1, 2, and 3, draw the graph.

