Part 1: Equations - vs - Functions

[Example 1]

- $x^{3}+y^{3}=7$ equation involving x and y describes y implicitly
- $y=\left(7-x^{3}\right)^{1 / 3}$ equation involving x and y, solved for y in terms of x. Gives y as a function of x. Describes y explicitly.
Observe that the two equations above express the same relationship between x and y.

[Example 2]

- $\quad x^{2}+y^{2}=7$ equation involving x and y describes y implicitly. Expresses a relationship between x and y. Cannot be solved for y as a function of x. We know this because the graph is a circle. Fails the vertical line test. Can't be the graph of a function.

Part 2: Implicit Differentiation

Suppose we have equation involving x and y and we want to find $\frac{d y}{d x}$.

If the equation can be solved for y in terms of x. We should do that first

$$
y=\text { some expression involving } x
$$

then take the ordinary derivative

$$
\frac{d y}{d x}=\frac{d}{d x} \text { (some expression involving } \mathrm{x} \text {) }
$$

If the equation cannot be solved for y in terms of x, we can still find $\frac{d y}{d x}$ using a method called Implicit Differentiation.

The Method of Implicit Differentiation

(Used for finding y^{\prime} when x, y are related by an equation that is not solved for y.)
Starting with: An equation involving x and y.
Step 1: Take derivative of left and right sides of this new equation with respect to x. Keep in mind the difference between taking the derivative of x and taking the derivative of y.

$$
\begin{aligned}
& \frac{d}{d x} x \begin{array}{c}
\text { power } \\
\text { rule } \\
\text { with } n=1
\end{array} \\
& \frac{d}{d x} y=y^{\prime} \text { This is unknown! We cannot go any farther. }
\end{aligned}
$$

The result will be a new equation involving x and y and y^{\prime}.
Step 2: Solve for y^{\prime}. The result will be a new equation of the form

$$
y^{\prime}=\text { expression involving } x \text { and } y
$$

