Rates of Change and Secant and Tangent Lines (Concepts from Section 2.1)

Definition of Average Rate of Change

Words: Average Rate of Change of f from a to b
Usage: a, b are real numbers, $a<b$, and f is a function that is continuous on the interval $[a, b]$.
Meaning: the number $m=\frac{f(b)-f(a)}{b-1}$
Graphical Significance: the number m is the slope of secant line that passes through points $(a, f(a))$ and $(b, f(b))$
Additional terminology: When the variable is t, representing time and the function $f(t)$ is a position function, representing the position of an object at time t, then the average rate of change is called the average velocity from time a to time b.

Alternate presentation of average rate of change:

Words: Average Rate of Change of f from a to $a+h$
Usage: a, h are real numbers, $h \neq 0$, and f is a function that is continuous on an interval near a Meaning: the number $m=\frac{f(a+h)-f(a)}{h}$
Graphical Significance: the number m is the slope of secant line that passes through points $(a, f(a))$ and $(a+h, f(a+h))$

Definition of Instantaneous of Change

Words: Instantaneous Rate of Change of f at a
Symbol: $f^{\prime}(a)$
Spoken: The derivative of f at a
Usage: a is a real number and f is a function that is continuous near $x=a$
Meaning: the number $m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Additional terminology: When the variable is t, representing time and the function $f(t)$ is a position function, representing the position of an object at time t, then the Instantaneous rate of change is called the instantaneous velocity at time a

Definition of line tangent to graph of \boldsymbol{f} at $\boldsymbol{x}=a$

The line that has these two properties

- contains the point $(a, f(a))$ (This point is called the point of tangency.)
- has slope $m=f^{\prime}(a)$ (This number is called the slope of the tangent line at $x=a$, but it is also called the slope of the graph of $f(x)$ at $x=a$.)

General Point Slope Form of the Equation of the Tangent Line

The line tangent to the graph of $f(x)$ at $x=a$ has equation

$$
(y-f(a))=f^{\prime}(a)(x-a)
$$

