MATH 2301 Handout for Wednesday March 20
 Two Theorems from Section 4.2

Rolles Theorem: If function $f(x)$ satisfies these criteria (the hypotheses)

- $f(x)$ continuous on $[\mathrm{a}, \mathrm{b}]$
- $f(x)$ differentiable on (a,b)
- $f(a)=f(b)$

Then the following statement is true (the conclusion)
There is a number c with $a<c<b$ such that $f^{\prime}(c)=0$.
In other words,
There is an $x=c$ with $a<c<b$ where the tangent line is horizontal.
Remark: Theorem does not give you the value of c. If a c exists, you have to figure out its value.

The Mean Value Theorem: If a function $f(x)$ satisfies the following two requirements (the hypotheses)

- f is continuous on the closed interval $[a, b]$
- f is differentiable on the open interval (a, b)
then the following statement (the conclusion) is true:
There is a number $x=c$ (at least one) with $a<c<b$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ In other words,

The slope of the tangent line at c equals the slope of the secant line from a to b.
Remark: Theorem does not give you the value of c. If a c exists, you have to figure out its value.

Class Drill (exercise 4.2\#13)

Consider the function $f(x)=\sqrt{x}$ on interval $[0,4]$
(a) Show that it satisfies the hypotheses of the Mean Value Theorem.

Is $f(x)$ continuous on the closed interval $[0,4]$? (Explain how you know.)

Is $f(x)$ differentiable on the open interval $(0,4)$? That is, does $f^{\prime}(x)$ exist on the interval $(0,4)$? (To answer this question, you'll have to find $f^{\prime}(x)$.)
(b) Find the value of c that works. Show the process.

Compute the value of $\frac{f(b)-f(a)}{b-a}$. This will be a number.

Use your formula for $f^{\prime}(x)$ from part (a) to build the expression $f^{\prime}(c)$. This will be an expression involving the variable c.

Set $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ and solve for c.
(c) Illustrate the result on a graph of $f(x)$

Graph $f(x)=\sqrt{x}$ on interval $[0,4]$
Draw the secant line that touches the graph at $x=0$ and $x=4$
Draw the tangent line at $x=1$
The two lines should look parallel. Label the lines with their slope m.

