MATH 2301 Handout for Wednesday March 20 Two Theorems from Section 4.2

Rolles Theorem: If function f(x) satisfies these criteria (the *hypotheses*)

- *f*(*x*) continuous on [a,b]
- *f*(*x*) differentiable on (a,b)
- f(a) = f(b)

Then the following statement is true (the **conclusion**)

There is a number *c* with a < c < b such that f'(c) = 0.

In other words,

There is an x = c with a < c < b where the *tangent line is horizontal*.

Remark: Theorem does not give you the value of *c*. If a *c* exists, you have to figure out its value.

The Mean Value Theorem: If a function f(x) satisfies the following two requirements (the *hypotheses*)

- *f* is *continuous* on the *closed interval* [*a*, *b*]
- *f* is *differentiable* on the *open interval* (*a*, *b*)

then the following statement (the *conclusion*) is true:

There is a number x = c (at least one) with a < c < b such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

In other words,

The slope of the *tangent line* at *c* equals the slope of the *secant line* from *a* to *b*. **Remark:** Theorem does not give you the value of *c*. If a *c* exists, you have to figure out its value.

Class Drill (exercise 4.2#13)

Consider the function $f(x) = \sqrt{x}$ on interval [0,4] (a) Show that it satisfies the hypotheses of the Mean Value Theorem. Is f(x) continuous on the closed interval [0,4]? (Explain how you know.)

Is f(x) differentiable on the open interval (0,4)? That is, does f'(x) exist on the interval (0,4)? (To answer this question, you'll have to find f'(x).)

(b) Find the value of *c* that works. Show the process. Compute the value of $\frac{f(b)-f(a)}{b-a}$. This will be a number.

Use your formula for f'(x) from part **(a)** to build the expression f'(c). This will be an expression involving the variable *c*.

Set
$$f'(c) = \frac{f(b)-f(a)}{b-a}$$
 and solve for *c*.

(c) Illustrate the result on a graph of f(x)Graph $f(x) = \sqrt{x}$ on interval [0,4] Draw the secant line that touches the graph at x = 0 and x = 4Draw the tangent line at x = 1The two lines should look parallel. Label the lines with their slope m.