Class Activity: Find the Derivative of a Function Given by a Graph

Goal: Given the graph of f on the top axes on the next page, make a graph of f' on the bottom axes.

On the graph of f', the input will be x and the output will be f'(x).

This means that when a *particular real number* x = a is used as *input* to the function f'(x), the *resulting output* will be the **real number** f'(a).

Remember the graphical interpretation of f'(a), where a is a particular **real number**:

Definition of the *Derivative of f at a*

- symbol: f'(a)
- **graphical interpretation:** f'(a) is the number that is the slope of the line tangent to the graph of f at the point on the graph where x = a.

We build a graph of f'(x) by making a table with particular real number values of x in the left column, to use as inputs. (These can be thought of as a bunch of different x = a values) We then find the resulting real number values of f'(x). (That is, the corresponding values of f'(a).)

Part 1: Prepare the data for your graph of f' by filling out the following table.

x	what to do on the graph of f	f'(x)
-2	Draw the line tangent to the graph of f at the point where $x = -2$	
	and find its slope m . This slope m will be the value of $f'(-2)$.	
-1	Draw the line tangent to the graph of f at the point where $x = -1$	
	and find its slope m . This slope m will be the value of $f'(-1)$.	
0	Draw the line tangent to the graph of f at the point where $x = 0$	
	and find its slope m . This slope m will be the value of $f'(0)$.	
1	Draw the line tangent to the graph of f at the point where $x = 1$	
	and find its slope m . This slope m will be the value of $f'(1)$.	
2	Draw the line tangent to the graph of f at the point where $x = 2$	
	and find its slope m . This slope m will be the value of $f'(2)$.	
3	Draw the line tangent to the graph of f at the point where $x = 3$	
	and find its slope m . This slope m will be the value of $f'(3)$.	
4	Draw the line tangent to the graph of f at the point where $x = 4$	
	and find its slope m . This slope m will be the value of $f'(4)$.	

Part 2 is on back →

Part 2: Using the (x, f'(x)) data from your table, make a graph of f'.

