Handout: Linearizations, Linear Approximations, and Differentials

Definition of the Linearization

Words: The *linearization* of f(x)

Meaning: The function L(x) defined by the equation

$$L(x) = f(a) + f'(a)(x - a)$$

Graphical Significance: L(x) describes the line that is tangent to the graph of f(x) at x = a.

Method for Finding a Linear Approximation

Given: a function f(x) and a hard x value called \hat{x} . (That is, it is not easy, or maybe even not possible, to compute $f(\hat{x})$ exactly by hand.)

Goal: Find an *approximation* for $f(\hat{x})$.

Steps:

• Identify the function f(x)

• Identify the hard x value, called \hat{x} .

• Identify an easy nearby x value, called a. That is, such that f(a) is easy to compute.

• Build the *linearization* of f(x) at a. That is, build the function

$$L(x) = f(a) + f'(a)(x - a)$$

• Use the *linearization* to compute the number $L(\hat{x})$. That is, compute

$$L(\hat{x}) = f(a) + f'(a)(\hat{x} - a)$$

(This should be an easy calculation.) This number $L(\hat{x})$ is the desired *approximation* for $f(\hat{x})$. It is called the *linear approximation* for $f(\hat{x})$.

Differentials

Consider function f and two known x values x_1 and x_2 . How does the value of y = f(x) change when x changes from x_1 to x_2 ?

- change in x: $\Delta x = x_2 x_1 = \text{change in } x$
- exact change in y: $\Delta y = f(x_2) f(x_1)$ (conceptually simple but may be hard to comptue!)
- approximate change in y: $dy = f'(x_1) \cdot \Delta x$ (the differential of f at x_1)(easier to compute)