Class Drill: Finding Unsigned and Signed Areas Using Geometry (Section 5.4)

The graph of $f(x) = \frac{1}{2}x - 3$ is shown above.

- (A) Shade the region between the graph of f(x) and the x axis from x = 4 to x = 10.
- (B) Find the $\emph{unsigned area}$ of the region. (Hint: Use formulas from geometry.)

(C) Find the **signed area** of the region.

Class Drill: Estimating the Area Under a Graph Using Riemann Sums (Section 5.4, H76)

The goal is to estimate the area between the graph of f(x) and the x axis on the interval [1,5]. The region is shaded in the middle figure. You will do this by finding the values of the Riemann sums L_4 and R_4 . This will give you lower and upper bounds for the unknown shaded area.

- (A) On the left graph, draw and shade the four "left rectangles" for the left sum L_4 . (They should be sitting on the interval [1,5].)
- (B) Find the value of L_4 .
- (C) On the right graph, draw and shade the four "right rectangles" for the right sum R_4 . (They should be sitting on the interval [1,5].)
- (D) Find the value of R_4 .
- (E) Use the values from questions (B) and (D) to build a true inequality below:

_____ < unknown shaded area < _____

Class Drill: Using Properties of the Definite Integral (Section 5.4, Homework H77)

The graph of f(x) is shown at right.

The areas of the six shaded regions are:

The area of region A is 4.

The area of region B is 2.

The area of region C is 3.

The area of region D is 7.

The area of region E is 5.

The area of region F is 6.

Find the value of the definite integrals.

$$\int_{x=-2}^{x=5} f(x)dx =$$

$$\int_{x=-6}^{x=3} f(x)dx =$$

Class Drill: Definite Integrals for a Simple Graph (Section 5.4)

Recall that the the definite integral

$$SA = \int_{x=a}^{x=b} f(x)dx$$

is also called the *signed area* between the graph of f(x) and the x-axis, from x = a to x = b. For the given graph of f(x), find value of these definite integrals:

$$(A)\int_{x=-6}^{x=1}f(x)dx$$

$$(B)\int_{x=-5}^{x=1}f(x)dx$$

$$(C)\int_{x=-4}^{x=1}f(x)dx$$

$$(D)\int_{x=-5}^{x=5} f(x)dx$$

$$(E)\int_{x=5}^{x=5}f(x)dx$$

$$(F)\int_{x=5}^{x=1}f(x)dx$$