

The graph of $f(x)=\frac{1}{2} x-3$ is shown above.
(A) Shade the region between the graph of $f(x)$ and the x axis from $x=4$ to $x=10$.
(B) Find the unsigned area of the region. (Hint: Use formulas from geometry.)
(C) Find the signed area of the region.

Class Drill: Estimating the Area Under a Graph Using Riemann Sums (Section 5.4, H76)
The goal is to estimate the area between the graph of $f(x)$ and the x axis on the interval $[1,5]$. The region is shaded in the middle figure. You will do this by finding the values of the Riemann sums L_{4} and R_{4}. This will give you lower and upper bounds for the unknown shaded area.

(A) On the left graph, draw and shade the four "left rectangles" for the left sum L_{4}. (They should be sitting on the interval $[1,5]$.)
(B) Find the value of L_{4}.
(C) On the right graph, draw and shade the four "right rectangles" for the right sum R_{4}. (They should be sitting on the interval [1,5].)
(D) Find the value of R_{4}.
(E) Use the values from questions (B) and (D) to build a true inequality below:
\qquad
\qquad

The graph of $f(x)$ is shown at right.

The areas of the six shaded regions are:

The area of region A is 4.
The area of region B is 2 .
The area of region C is 3 .
The area of region D is 7 .
The area of region E is 5 .
The area of region F is 6 .

Find the value of the definite integrals.
$\int_{x=-2}^{x=5} f(x) d x=$
$\int_{x=-6}^{x=3} f(x) d x=$

Class Drill: Definite Integrals for a Simple Graph (Section 5.4)

Recall that the the definite integral

$$
S A=\int_{x=a}^{x=b} f(x) d x
$$

is also called the signed area between the graph of $f(x)$ and the x-axis, from $x=a$ to $x=b$. For the given graph of $f(x)$, find value of these definite integrals:
(A) $\int_{x=-6}^{x=1} f(x) d x$
(B) $\int_{x=-5}^{x=1} f(x) d x$
(C) $\int_{x=-4}^{x=1} f(x) d x$
(D) $\int_{x=-5}^{x=5} f(x) d x$
(E) $\int_{x=5}^{x=5} f(x) d x$
(F) $\int_{x=5}^{x=1} f(x) d x$

