Section 4.1 Class Drill: First Derivatives and Graphs (Four Parts)

Section 4.1 Class Drill Part 1: Identifying Two Kinds of Graph Behavior based on exercise 4.1\#9, which is problem \#1 on MyLab Homework Homework H53

The graph of a function f is shown below.

(1) At which x-values is f zero?
(2) On what intervals is f positive?
(3) On what intervals is f negative?
(4) At which x-values is the line tangent to the graph of f horizontal?
(5) On what intervals is f increasing?
(6) On what intervals is f decreasing?

Section 4.1 Class Drill Part 2: Match the Graph of f to the Sign Chart for f^{\prime}

based on exercise 4.1\#19,21,23, which are problems \#3,4,5 on MyLab Homework Homework H53

(a) $f^{\prime}(x) \xrightarrow[x=3]{-------0+++++} x$

Sign chart (a) matches graph_ \qquad .
(b) $f^{\prime}(x) \xrightarrow[x=3]{--------\mathrm{ND}+++++} x$

Sign chart (b) matches graph \qquad .
(c) $f^{\prime}(x) \xrightarrow{++++++0++++++} x$

Sign chart (c) matches graph \qquad ـ.
(d) $f^{\prime}(x) \xrightarrow{+++++\mathrm{ND}++++++} x$

Sign chart (d) matches graph \qquad _.
$(e) f^{\prime}(x) \xrightarrow{++++++0 \cdots} x$ Sign chart (e) matches graph \qquad .
$(f) f^{\prime}(x) \xrightarrow[x=3]{+++++ \text { ND }------} x$
Sign chart (f) matches graph \qquad .
$(g) f^{\prime}(x)$

Sign chart (g) matches graph \qquad .
(h) $f^{\prime}(x) \xrightarrow{-\cdots=-\cdots--- \text { ND }-\cdots---\cdots} x$

Sign chart (h) matches graph \qquad .

Section 4.1 Class Drill Part 3: Using the $1^{\text {st }}$ Derivative Test with Given Info about \boldsymbol{f} and \boldsymbol{f}^{\prime}
based on exercise 4.1\#17, which is problem \#1 on MyLab Homework Homework H56

The First Derivative Test for Local Extrema

For some function f, a sign chart for f^{\prime} is given, along with important y values for f. Assume that f is continuous everywhere on its domain. That is, f is continuous at all x values where $f(x)$ exists.

(A) Fill in this table:	$c=7$	$c=14$	$c=21$	$c=28$	$c=35$
Test 1: Is it true that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined?					
Test 2: Is $f(c)$ defined?					
Test 3: Is f continuous at $x=c$?					
Test 4: Does f^{\prime} change sign at $x=c$?					

(B) Based on your table, what are the x-coordinates where local extrema occur? For each one, say whether it is a local max or a local min.
(C) What are the corresponding y-coordinates? That is, what are the values of the local extrema?
(D) Sketch a possible graph of $f(x)$.

Section 4.1 Drill Part 4: Using the First Derivative Test on a Function Given by a Formula

 based on various exercises from Section 4.1, which are on MyLab Homeworks H54, H55The goal is to use the $1^{\text {st }}$ Derivative Test to find all local extrema of $f(x)=2 x^{3}-3 x^{2}-12 x+13$
(A) Find the Critical Numbers for $f(x)$.
(B) Make a Sign Chart for $f^{\prime}(x)$. Be sure to label the chart clearly and show how the signs are created.
(C) Using the information from your sign chart, find the intervals on which $f(x)$ is increasing and the intervals on which $f(x)$ is decreasing. State your conclusions clearly in a sentence.
(D) Also using the information from your sign chart, find the x-values where $f(x)$ has a local max or a local min. (This is where you use the First Derivative Test) (Be sure to say which type, max or min.)
(E) Find the corresponding y-values.

