## Class Drill: Limits Involving Infinity for a Function Given by a Formula

(The instructor will only hand out a copy of this drill to groups of 2 or 3 students.)
The goal is to find limits for $f(x)=\frac{-5}{x+3}$ and interpret the results.
You will use the expanded definition of limit, in which the concept of infinity is used.
(a) The first job is to find $\lim _{x \rightarrow-3^{-}} f(x)$. Notice that part of this symbol is $x \rightarrow-3^{-}$. This tells us that we need to investigate $x$ values that have the following trend:
$x$ is getting closer and closer to -3 , but less than -3 .
So we build a column of $x$ values that are doing that, and then compute the corresponding $y$ values. Fill out the following table. (Simplify your answers.)

| $x$ | $y=\frac{-5}{x+3}$ |
| :---: | :--- |
| -3.1 | $y=$ |
| -3.01 | $y=$ |
| -3.001 | $y=$ |

Based on your table, write the result for this limit: $\lim _{x \rightarrow-3^{-}} f(x)=$
(b) Your job now is to find $\lim _{x \rightarrow-3^{+}} f(x)$. Make a table with the appropriate $x$ values, and compute the corresponding $y$ values. Use the back of this sheet of paper for your table.

Based on your table, write the result for this limit: $\lim _{x \rightarrow-3^{+}} f(x)=$
(c) Based on (a) and (b), write the result for this limit: $\lim _{x \rightarrow-3} f(x)=$
(d) Explain what (a) and (b) tell you about the graph of $f(x)$.

