Fill in the empty spaces in this table.

			11	$\begin{gathered} \tilde{N} \\ \alpha \\ \alpha \\ 1 \\ \tilde{N} \\ \ldots \\ \vdots \\ \vdots \end{gathered}$	11	
\# II 0 0 0 0 0 0 0 0 0 0						
11	11	11	11	11	11	11
$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						

[^0]
Part 2: Finding a Derivative Using Sum Rule, Constant Multiple Rule, Power Rule

$$
f(x)=\frac{7 \sqrt[3]{x}}{5}+\frac{3}{11 x^{2 / 5}}
$$

(A) Rewrite $f(x)$ in power function form.

That is, rewrite it as a sum of terms of the form constant \times power function. That is, $a x^{p}+b x^{q}$. (Hint: You have already done this part on the previous page!)
(B) Find $f^{\prime}(x)$.

- Use the techniques of Section 2.5. (That is, DO NOT use the Definition of the Derivative.)
- Show all details clearly and use correct notation.
- Simplify your final answer, and rewrite it so that it does not have any negative exponents. (Hint: You have already done the necessary simplifying on the previous page!)

[^0]: Part 2 is on back \rightarrow

