In this video, we will take an analytical approach to Infinite Limits and Vertical Asymptotes.

That is, function f is given by a formula, not graph.

Recall the limit notation that we have discussed in previous videos, and the trends that the
notation represents.
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[Example 1] For the function

() =—
Jx) = x—7
find the function value and limits listed below and explain what they tell us about the graph of

f (x). Use the terminology and notation of infinity, where applicable. (Concepts from Section 2.2)

e

(A) F(7)
(B) lim f(x)
(0) Jim f(x)
(D) lim f(x)

xX—>7"

Solution to (A)
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Solution to (B)

We are being asked to compute lim f(x) = lim >
X—>7~ x-7- x=7

First, recall how we would have done this using Section 2.1 techniques

Observe that the limit of the numerator 1s
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And the limit of the denominator is
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So the limit of numerator 1s not zero, and the limit of the denominator is zero.
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Therefore, we know that
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This tells us that there 1s no limit in the sense of Section 2.1. That 1s, there i1s no real number L that
the y values are getting closer and closer to.




But we are told to use the terminology and notation of infinity, where applicable. (Concepts from
Section 2.2)

How would this limit be done using Section 2.2 techniques?

e S
TTTee———

Remember the difference between Section 2.1 and Section 2.2 limit terminology and notation. In
Section 2.2, we have terminology and notation for abbreviating the descriptions of more kinds of
trends in the x and y values of a function. To use Section 2.2 terminology, we will need to have
information about what the x and y values are doing, in order to see if we can discern a trend.

One way is to make a table of x, y values.
SN———

How should we populate it?



We are being asked to fi

of this symbol @This tells us that

we need to investigate x valu ollowing trend.:

Y14 05-\1-% closec acd cher 1 7, but \th J’W’b

So we build a gefumn of x values that are doing that, and then compute the corresponding y values

column. S

X ™ %=
- j—— = —E": _ED
6. J ™ en-7 ~ol
S — _5;— = —50()
677 J = (ea)-7 -0.01

6%’7 Y- S - 5 --5000

(6.459) -7 -~ 0,00\

Observe that we see a trend in the resulting y values:
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For clarity, lets write a single sentence description that describes both the trend in the x values and
the trend in the y values.

AS xﬂe\s Clm( And c\PScr g 7, ba¥ )“f 71'»\0"\ 7.9
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We recognize that this sentence description has the following abbreviation in limit notation.

fn Yo) = -0

X— 7
Which 1s spoken
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This tells us the following about how the graph behaves:
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Remark new terminology:

Remember what I mentioned in a previous video gbeutthis situation. In the Barnett book, in

Section 2.2, the authors would write the symb

does not exist. The reason they would do that is beCause-tsing Section 2.1 techniques (Theorem 4),
there is no limit in the sense of Section 2.1. That is, there is no real number L that the y values are
getting closer and closer to.

but they would say that the limit

aying that

[ don’t like saying that the limit does not exist when we know that lim f(x) = —oo.

xX->7"

the limit does not exist obscures what we have learned about the
that we have expanded our definition of what a limit can be.

A;,w ng = 0

X -

0€s not convey

So in my videos, if I find that

then I will say that

\Y\\{ \l‘mﬂ) T m(;{;(daclncs C) 07[ ‘S:(_)S) '\S \\t\'g‘}\'.}\j.



Solution to (C)
5

We are being asked to compuge llm flx) = 11r;1+ —

Remark:

We can quickly observe what would happen if we were to use Section 2.1 techniques:

X277 ><“’7"' X =7
Ohservt Prak Hhe it oF Phe numerator 15 S

Mot Paat P bl oF Fl dopnsminedor 1s O

But we are asked to use the terminology and notation of infinity, where applicable. That is, we are
to use techniques of Sectlon,%{
.-

So we will make a table of x, y values.



In the current question (C), we haV This tells us that we need to investigate x values that
have the following trend:

X i 9&‘“»0& closgr and O\vfer h 7, b 3@(‘/\'\:\_&

So we build a mn of x values that are doing that, and then compute the corresponding y values

for th d column. _ 3
or the seedtnd column X \ 3_3_(__7
S - 5
71', \ (74))"7 - a\ \-50
S - 5 . O
740\ (72.00)-7 0.0\ T >0
1,00\ 2 . S =5000
(7.000) -7 001

Observe that we see a trend in the resulting y values. Here is the sentence summary
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The corresponding abbreviation in limit notation is

ﬂn;vw g(_y\ = Zf;vw =3 = O

X — 7“' >( — 71‘ X - )
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The corresponding graph behavior is. w
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Solution to (D) k

We are asked to find the two-sided limit. That is easy:
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Remark on Invalid Solutions:

In problems about limits involving infinity, there are some common invalid solution methods. Most
of the time, these solution methods give the incorrect answer. Sometimes they happen to give the
correct answer. But regardless of whether or not they happen to give ive the correct answer, the

solutions are invalid. I will present two of the common invalid solutions to questions (B),(C),(D)
that we did above. Note that we did not solve (B),(C),(D) this way when we solved [Example 1].

We did not do this:
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And we also did not do this:
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For our second example, we will revisit a function that we studied in an earlier video about limit of
rational functions.

[Example 2] For the function

x*?—6x+5 (x—1)(x—-05)

f(x) =— =
x?—8x+15 ((x—-3)(x—05)

W

~— SN
S+¢'\“-0ll'0{ {”"‘ ‘Qq.a'forci gf‘m
find the function value and limits listed below and explain what they tell us about the graph of

f(x). Use the terminology and notation of infinity, where applicable. (Concepts from Section 2.2)

(4) £(3)
(B) lim f(x)

xX—>3"
(©) lim f(x)
(D) lim £ (x)
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Solution to (B)

-_—

_ (x—1)(x-5)
We are being asked fo ;cllrsr’l-f (x) = 11m (x—3)(x—5)

First, recall how we did this limit in an earlier video, using Section 2.1 techniques

We observed that the limit of the numerator is

Do Oumiradir = Aoam (X-D)(X-5) = () -N((3)-5)= (@)-2)--
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And the limit of the denominator is
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So the limit of numerator 1s not zero, and the limit of the denominator is zero.
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Therefore, we know that
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This tolds us that there was no limit in the sense of Section 2.1. That is, there is no real number L
that the y values are getting closer and closer to.




But in the current example, we are told to use the terminology and notation of infinity, where
applicable. (Concepts from Section 2.2) —

We can start by simplifying the limit by doing some cancelling. But we must do it carefully and
explain why we can do it.
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So our job has been simplified to finding lirgl_ gz_;; Part of this symbol This tells us
X— -

that we need to investigate x values that have the following trend:
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So we build a column of x values that are doing that, and then compute the corresponding y values
for the second column. X ( y= —

X-3
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Observe that we see in the resulting y values. Here is the sentence summary
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We recognize that this sentence description has the following abbreviation in limit notation.
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This tells us the following about how the graph behaves:
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Solution to (C)
We again start by simplifying the limit by doing some cancelling and explaining why we can do it.
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We have x - 3%. This tells us that we need to investigate x values that have the following frend:
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So we build a column of x values that are doing that, and then compute the corresponding y values
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Observe that we seﬁtxgnd in the resulting y values. Here is the sentence summary
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The corresponding abbreviation in limit notation is ZV’W‘ %Cy) =~ C@
X— 3T |
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Solution to (D)

In question (D), we are asked to find the two-sided limit. That is easy:
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|[End of Example 2]



Remark:
x?-6x+5 _ (x—1)(x-5)
x2-8x+15  (x—3)(x—=5)
the results when using Section 2.2 techmiques:

Let’s compare the limits of f(x) = hen using Section 2.1 techniques the

Using Section 2.1 Techniques
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Using Section 2.2 Techniques (the current example)
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