End Behavior of Rational Functions
In this video, we will study the end behavior of rational functions.

Remember that a rational function is a ratio of polynomials, where the polynomial in the

denominator is not the zero polynomial.

We will study three examples of rational functions in this video
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[Example 1] Find the end behavior of the function
Flx) = 7x —42x + 35
T = Tex + 30
Solution:

Remember that the phrase end behavior refers to the behavior of the left end and the right end of
the graph. That is, as x = —oo, what is the trend in the y values? And what is the trend in the y

values as x — 00?

We investigate by ﬁndln lim f(x)
X— 00

We will start by finding”lim f (x)\n order to determine the rzght end behavior.
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Observe that the function f(x) can be factored:
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Remember that when we found limits of the form l]g f (x) where the symbo@was a real number

constant, we always use the factored form of f(x), because it makes the calculations simpler.

But when finding ﬁndin (x), it is the standard form of f (x) that is useful. The reason is that

when finding lim f(x), we are to imagine x getting more and more positive without bound. When

e

x is huge, the leading terms in the numerator and denominator, 7x* and 2x* are gigantic. The
behavior of f(x) is determined by the ratio of these leading terms. So when finding im_f (x , We
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should not even bother to factor the function, and just stick with the standard form.
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So the limit proceeds as follows:
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In this limit, we are supposed to imagine x getting more and more positive, without bound, and
consider what happens to the values U@

that the limit is the number %
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Now we find lim f(x) in order to determine the left end behavior.
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In this limit, we are supposed to imagine x getting more and more negative, without bound, and

: 7 : 7. :
consider what happens to the values of p But since the value of S 18 always the same, we realize

that the limit is the number %
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We can confirm our results with a computer graph.
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[Example 2] For the function
7x% — 42x + 35
x3 —16x2 + 30x

g(x) = >

find lim g(x) and lim g(x) and explain what the results tell us about the graph of g(x).
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Solution:
We start by finding lim g(x)
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In this limif, We are supposed to imagine x getting more and more positive, without bound, and
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What does this result tell us about the behavior of the graph?
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Now we find lim g(x)
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In this limit, we are supposed to imagine x getting more and more negative, without bound, and
consider what happens to the values o; Notice that numerator of the fraction is fixed at 7, while

the denominator 1s getting huge and negative. So the fraction will be getting closer and closer to
zero. That is,
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What does this result tell us about the behavior of graph?
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We can confirm our results with a computer graph.
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[Example 3] Consider the function —_—
7x3 — 42x?% + 35«x
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@raph have any horizontal as@o, give their line equations.

Solution:

Remember that to say that a graph has a horizontal asymptote is actually an abbreviation for a
. . . ~= g et \_
more detailed description of its end behavior.
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So in other words, in order to find out if the graph of h(x) has any horizontal asymptotes, we
should find lim h(x) and hm h(x)
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We start by finding lim h(x) in order to determine the rlght end behavior
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In this limit, we are supposed to 1maginevﬁge1tm§’more and mor 1ti ] ound, and

consider what happens to the values O@But if x is huge and positive, then %x will also be huge
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What does this result tell us about the behavior of the graph?
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Next, we ﬁndxl_i)moo h(x) in order to determine the left end behavior
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In this limit, we are supposed to imagine x gettm&more and more negative, Wlthout bound, and

consider what happens to the values of But if x 1s huge and negative, then Z ~ \ﬂll also be huge
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What doesthis result tell us about the behavior of the graph?
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We can confirm our results with a computer graph.
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We can generalize the results of these three examples

Generalization of [Example 1]
If £(x) is a rational function with the degree of the numeratoy’= Jlegree of the denominator, and
with leading coefficients a and b in the numerator and denominator, then
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Generalization of [Example 2]

If g(x) is a rational function with the degree of the numerato@egree of the denominator, then
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Generalization of [ExampleX]
If h(x) is a rational function with the degree of the numerato@iegree of the denominator, then
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end behavior:
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End of Video



