Topic for this video: Given formula for *f*, where is *f* continuous?

Reading:

- General: Section 2.3 Continuity
- More specifically: middle of p. 121 middle of p. 123, Examples 2, 3

Homework:

H19: Given formula for f, where is f continuous? (2.3#35,37,69)

Background

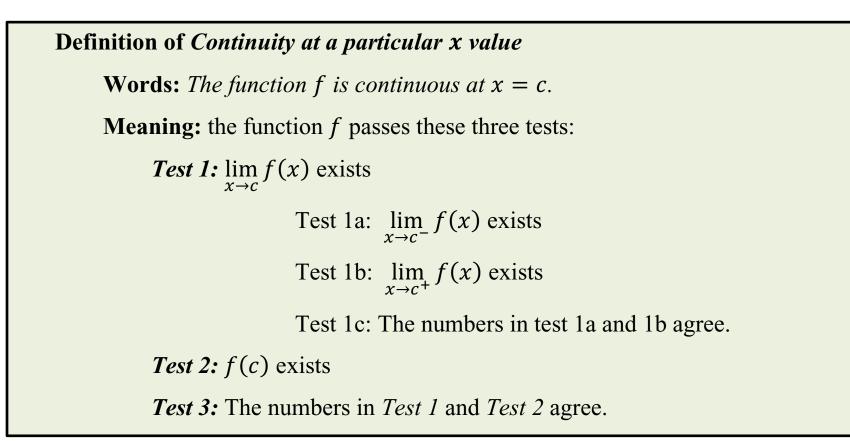
Recall discussion from Video for H16:

Holes, jumps, and points in the wrong places are easy to spot on a graph. A reasonable question, though, is the following:

Is there some way of analyzing the formula for a function to determine if its graph would have any holes & jumps?

The answer is, *yes*. The concept of *continuity* allows one to analyze the *formula* for a function and determine if (and where) its *graph* would have holes & jumps.

In that video, we saw the introduction of the *definition of continuity*:



But so far, in Homework H16 and H17 and their videos, we only discussed the continuity of functions by looking at their *graphs*. In this video, we will determine the continuity of functions that are given by *formulas*, not by *graphs*.

For a given function f, we will want to identify the x values where f is *not* continuous, and we will want to then describe the set of all x values where f is continuous. There is some terminology that we use that is fairly self-explanatory, but still it is worth presenting in definitions.

Definition of addition terminology involving *continuity*

Words: The function f is discontinuous at x = c.

Meaning: The function f is not continuous at x = c. That is, it fails the continuity test.

Words: *The function f is continuous on some set S of x values.*

Meaning: The function f is continuous at each x = c, where the number c is in set S.

Old tools that we will use: In the examples in this video, and in the associated Homework H19, we will use the terminology and notation of *intervals*, and *unions of intervals*, to describe sets of real numbers. That terminology and notation was the subject of Homework H18. (That material is prerequisite material for this course, and so there was no accompanying video.)

New tools that we will use: Continuity Properties from the book Section 2.3

PROPERTIES General Continuity properties

If two functions are continuous on the same interval, then their sum, difference, product, and quotient are continuous on the same interval except for values of x that make a denominator 0.

THEOREM 1 Continuity Properties of Some Specific Functions

- (A) A constant function f(x) = k, where k is a constant, is continuous for all x. f(x) = 7 is continuous for all x.
- (B) For *n* a positive integer, $f(x) = x^n$ is continuous for all *x*. $f(x) = x^5$ is continuous for all *x*.
- (C) A polynomial function is continuous for all x. $2x^3 - 3x^2 + x - 5$ is continuous for all x.
- (D) A rational function is continuous for all *x* except those values that make a denominator 0.

 $\frac{x^2+1}{x-1}$ is continuous for all x except x = 1, a value that makes the denominator 0.

(E) For *n* an odd positive integer greater than 1, $\sqrt[n]{f(x)}$ is continuous wherever f(x) is continuous.

 $\sqrt[3]{x^2}$ is continuous for all *x*.

(F) For *n* an even positive integer, $\sqrt[n]{f(x)}$ is continuous wherever f(x) is continuous and nonnegative.

 $\sqrt[4]{x}$ is continuous on the interval $[0, \infty)$.

Observations:

It is useful to note that the continuity properties just presented are related to something that we have encountered before. To see the connection, notice that to say that a function f is *continuous at a particular* x = c means that

$$\lim_{x \to c} f(x) = f(c)$$

This single equation embodies the three-part test. That is, in order for the equation to be true,

- 1) The number $\lim_{x \to c} f(x)$ must exist.
- 2) The number f(c) must exist.
- 3) The two numbers must match. That is, $\lim_{x \to c} f(x) = f(c)$.

Recognize that this equation

$$\lim_{x \to c} f(x) = f(c)$$

tells us that when we want to find $\lim_{x\to c} f(x)$ for some function f(x), if we know that f(x) is continuous at x = c, then we can find the limit $\lim_{x\to c} f(x)$ by simply computing the y value f(c). This idea, of knowing that we could find certain limits by more simply just computing y values, was the subject of Theorem 2 and Theorem 3 from Section 2.1 of the book, theorems that we used extensively in Homeworks H04, H05, H06, H07. For reference, here is Theorem 3 from Section 2.1

THEOREM 3 Limits of Polynomial and Rational Functions

- 1. $\lim_{x \to c} f(x) = f(c)$ for f any polynomial function.
- 2. $\lim_{x \to c} r(x) = r(c)$ for r any rational function with a nonzero denominator at x = c.

We will do three examples involving determining the continuity of functions given by formulas.

[Example 1] Determine where the function $f(x) = \frac{3x^2 - 3x - 36}{2x^2 - 6x - 8}$ is continuous.

Solution: for is a rational function. Theorem 1d tells us that it is continuous everywhere except at the x values that cause the denominator to be zero. So Sadar SW) $S[x] = \frac{3x^{2} - 3x - 36}{3x^{2} - 6x - 8} = \frac{3(x^{2} - x - 12)}{2(x^{2} - 3x - 4)} = \frac{3(x + 3)(x - 4)}{2(x + 1)(x - 4)}$ for is discontinuous at x=-1 and x=4, because the duraminator is zero there. S(X) is continuous at all x values except X=-1 and X=4. Using interval notation $(-0, -1) \cup (-1, 4) \cup (4, \infty)$ $(-0, -1) \cup (-1, 4) \cup (4, \infty)$ intervals unjon

[Example 2] Determine where the function
$$f(x) = \frac{5x}{3x^2 + 12}$$
 is continuous.
Theorem 1d tells us that this cational function is continuous
everywhere exact at the x values that cause the denominator to be 200.
So Sactor the denominator.
but the denominator is $3x^2 + 12$, which cannot be
Sactored into linear factors. Since there are no linear factors,
prove are no x values that will cause the denominator to be zero.
This makes sense, because x^2 is always ≥ 0
Since the denominator is new zero, we conclude that there are
no bad x values, so Sch is continuous at all ceal numbers.
Second in interval about in , we would write $(-\infty, \infty)$

[Example 3] Let
$$f(x) = \begin{cases} -2x + 10, x \le 3 \\ x^2, x > 3 \end{cases}$$

(A) Graph $f(x)$.
(B) Locate all points of discontinuity.
(C) Find $f(x)$ at all points of discontinuity.
(D) Find $\lim_{x \to c} f(x)$ at every x value c where $f(x)$ is discontinuous.
Solution:
(a) have (20) this precleving - defined function before.
(when $X \le 3$, $5(x)$ is completed using the formula $f(x) = -2x + 10$
(when $X \le 3$, $5(x)$ is completed using the formula $f(x) = -2x + 10$
(when $X \le 3$, $5(x)$ is completed using the formula $f(x) = -2x + 10$
(when $X \ge 3$, $5(x)$ is completed using the formula $f(x) = x^2$
(b) $y = -2t + 10$
(b) $y = -2t + 10$
(b) $y = -2t + 10$
(c) $x \ge 3$, $f(x) \ge 5$
(c) $x \ge 3$, $f(x) \ge -2(x) + 10 = 4$
(c) $x \ge 3$, $f(x) \ge -2(x) + 10 = 4$
(c) $x \ge 5$, $f(x) \ge -2(x) + 10 = 4$
(c) $x \ge 5$, $f(x) \ge -2(x) + 10 = 4$
(c) $y = y \ge 10$
(c) $y = y \ge 10$

(c)Find lim 5(x) x-33 (i) left limit : lim J(x) = 4 Decause graph is heading Sor the location (XM) = (3,4) from the left. (ji) right limit: lim f(x) = 9 because graph is heading X-37 for the location (3,9) from the right. (iii) Left & right limits drint match, so the lim F(x) dies not exist. This makes sence: the function is not continuous at X=3 because it flucks (nationity test 10) Endos Example End of Yideo