Subject for this video: Derivatives of Exponential Functions

Reading:

e General: Section 3.2 Derivatives of Exponential and Logarithmic Functinos
——

e More Specifically: page 187 — 188 and Example 1, page 191 — 192 and Example 3A

Homework:

H40: Differentiating Exponential Functions (3.2#13,28,49, 57)



Recall the Derivative Rules that we learned about in the previous videos.

The Constant Function Rule
This rule 1s used for finding the derivative of a constant function.
Two equation form: If f(x) = c then f'(x) = 0.
Single equation form: % c=0
The Power Rule
This rule 1s used for finding the derivative of a power function.
Two equation form: If f(x) = x™ then f'(x) = nx™ 1,
n-1

Single equation form: %x" = nx
The Sum and Constant Multiple Rule
If f(x) and g(x) are functions and a, b are constants, then
d d d
a(af(x) +bg(x)) = aaf(x) + bag(x)
Using prime notation, we could write

(af (x) + bg(x)) = af'(x) + bg'(x)




In this video, we will add three more Rules, for finding derivatives of exponential functions. The

first rule is about the derivative of y = e®).

Exponential Function Rule #1

This rule 1s used for finding the derivative of the base e exponential function.
Two equation form: If f(x) = e™ then f'(x) = e™®.

Single equation form: % e®) = o(x)

This wonderfully simple rule is found by using the Definition of the Derivative.

fGt+h) —f@) _ et —e®
= lim
h—-0 h

f'(x) = lim
An early key step in the computation uses an old fact about exponents, that e *+h) = () g(h)

A later key step uses a fact from higher math

lim e(h)——l =1

h-0 h
The details of the calculation, organized by the Four Step Process, are shown clearly in the book on
pages 187 — 188. It is interesting, beautiful math, worth reading. But in MATH 1350, you will not

be asked to do the calculation, and I won’t discuss the details here.



-

But we will gain a better understanding of the rule if we examine thg“eraphs of f(x) and f'(x).

In the video for Homork H37, we saw that it is possible to draw the grapi of y = e by hand,

using the graphs of y = 2 and y = 3™ as guides. Here we will just use a computer graph.
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Exponential Function Rule #2 is very similar to Exponential Function Rule #1.

Exponential Function Rule #2
Two equation form: If f(x) = e*® then f'(x) = ke*®.

Single equation form: % e (k) = e (kx)

Rule #2 1s also found by using the Definition of the Derivative, using a slight variation on the

computation used to find Rule #1.

The book discusses this new derivative result only in exercises 3.2 # 61, 62. The book does not
discuss the result in the reading and never presents it in a list of derivative rules. That is a shame,
because it is one of the most-used derivative rules. That’s why I have given it the name Rule #2 and

put it in a green box. We will be using it a lot in the future.



[Example 1] Use Exponential Function Rule #2 to find the derivative of y = b*.
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Our result from [Example 1] amounts to a new Derivative Rule!

Exponential Function Rule #3

Two equation form: If f(x) = b™® then f'(x) = b™ - In(b).

Single equation form: % b = p™) . In(b)

[Example 2] Derivatives of Basic Functions Involving Exponents

For each function, find f'(x)
(A) f(x) = 5e@™
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[Example 3] Derivatives of More Complicated Functions Involving Exponents ulo |
Q’v\n \'l "
(A) Differentiate 7 — 5x + 13e ™ /MNLJ——%
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(B) Find f' for f(x) = W\‘ ey )
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(C) Find £ for the function y = 3® + x3 + ¢3
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