Subject for this video: Derivatives of Logarithmic Functions

Reading:
e General: Section 3.2 Derivatives of Exponential and Logarithmic Functions
e More Specifically: Bottom of p. 188 — middle of p. 192, Examples 2 & 3.
Homework:

H43: Derivatives of Logarithmic Functions (3.2#15,21,43,44,51,55)

Prerequisite Skills: Recall these Properties of Logarithms:

Logarithm of a Product: In(a - b) = In(a) + In(b)

Logarithm of an Exponential Expression: In(a?) = bIn(a)

1
Logarithm of a Reciprocal: In (—) = —In(a)
a

a
Logarithm of a Quotient: In (B) = In(a) — In(b)




Prerequisite Skills: Recall the shape of the graph of y = In(x).

The graph of y = In(x) is obtained from the graph of y = e® by interchanging all the x, y values.
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More generally, the graph of y = log, (x) is obtained from the graph of y = b by interchanging

all the x, y values. () 6( x) (X)
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Recall from the video for H32 these observations about properties of exponential functions.

Properties of Exponential Functions b® with b > 1
e Domain and Range
o The domain is the set of all real numbers x. In interval notation, (—oo, o)
o The range is all y > 0. In interval notation, (0, o)
e The graph has three distinctive points:
o The graph goes through the point (x,y) = (0,1) because b(® = 1
o The graph goes through the point (x,y) = (1, b) because b® = b

o The graph goes through the point (x,y) = (—1, %) because b = %

e End Behavior

o The graph goes up without bound on the right. That is, lim b = oo

X — 00

o Graph has a horizontal asymptote on left with equation y = 0. Thatis, lim b® =0

X——00

e The graph is increasing from left to right. That is, if x; < x,, then b*1) < p(*x2)




We can make corresponding observations about properties of exponential functions.

Properties of Logarithmic Functions log,(x) with b > 1
e Domain and Range
o The domain is the set of all positive real numbers x. In interval notation, (0, )
o The range is all real numbers y. In interval notation, (—oo, c0)
e The graph has three distinctive points:
o The graph goes through the point (x, y) = (1,0), which tells us log; (1) = 0

o The graph goes through the point (x,y) = (b, 1), which tells us log, (b) = 1

o The graph goes through the point (x,y) = (%, —1), which tells us log,, (%) = -1
e End Behavior

o The graph goes up without bound on the right. That is, ;}an}o log,(x) =

o Graph has a vertical asymptote with line equation x = 0, and the graph goes down along

the right side of that asymptote. That is, lir51+ log,(x) = —
X—

e The graph is increasing from left to right. That is, if x; < x5, then log, (x;) < log,(x,)




New Derivative Rules

Logarithmic Function Rule #1

This rule is used for finding the derivative of the natural logarithm function.

Two equation form: If f(x) = In(x) then f'(x) = S

X

. . d _1
Single equation form: —In(x) = ~
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This rule 1s found by using the Definition of the Derivative.

oo Je+h)—f(x) . In(x+h)—In(x)
==~

The details of the calculation, organized by the Four Step Process, are shown clearly in the book on
pages 189 — 190. It is interesting, beautiful math, worth reading. But in MATH 1350, you will not

be asked to do the calculation, and I won’t discuss the details here.



But we will gain a better understanding of the rule if we examine the graphs of f(x) and f'(x).
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There is a second Logarithmic Function Rule

Logarithmic Function Rule #2

This rule is used for finding the derivative of base b logarithm functions.

1
xIn(b)’

Two equation form: If f(x) = log, (x) then f'(x) =

1
xIn(b)

Single equation form: % logp(x) =

Observe that Logarithmic Function Rule #1 1s a special case of Logarthmic Function Rule #2
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[Examples] Find the derivatives of the following functions:
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