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Abstract Counting is one of the most basic procedures in mathematics and statistics. In
statistics literature it is usually done via the proportion estimation method. In this article we
manifest a radically different counting procedure first proposed in the late 1990’s based on
the techniques of quantum computation. It combines two major tools in quantum computa-
tion, quantum Fourier transform and quantum amplitude amplification, and shares similar
structure to the quantum part of the celebrated Shor’s factoring algorithm. We present com-
plete details of this quantum counting algorithm and the analysis of its error distribution.
Comparing it with the conventional proportion estimation method, we demonstrate that this
quantum approach achieves much faster convergence rate than the classical approach.
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1 Introduction

Counting is one of the most basic procedures in mathematics and statistics. It answers the
following question: given a population with N items, how many are there satisfying cer-
tain criteria? The counting problem can be formulated mathematically as: given an oracle
function

f : {1,2,3, . . . ,N} → {0,1}, (1)

where N ∈ N, find t , the number of x ∈ {1,2,3, . . . ,N} such that f (x) = 1. N is known,
thus, finding t is equivalent to finding p = t

N
, the probability of getting an x with f (x) = 1

when x is picked randomly. The obvious classical approach is to use a sample of size M ,
then check them one by one by evaluations of f (oracle calls) and count how many of them
satisfy f (x) = 1. Call this number s. The estimation p̂ for p is simply s

M
. This approach is

usually termed proportion estimation in statistics literature. The property of such estimation
can be described through binomial/hypergeometric distribution [3] and approximated via
the Central Limit Theorem (CLT) when M is large. In this article, we examine the error
distribution of a different estimator p̃, which is obtained from a quantum counting procedure
developed in [2] and [8]. We demonstrate that this quantum counting approach achieves
much faster convergence rate than the classical one.

2 A Primer to Quantum Computation

To facilitate the understanding of the quantum method in this article, we first give a brief
primer on the general principles of quantum computation. Please see [4] and [9] for more
detailed introduction to quantum computation. There are fundamental differences between
classical computation, which can be modeled by classical Turing machines, and quantum
computation, which also incorporates the principles of quantum mechanics. We summarize
them here at two levels: computation model and hardware.

At the computation model level, quantum computation is very close to the classical prob-
abilistic computation at first glance. Starting from the input, i.e., a complete specification of
the initial state of the computer and data, both models for quantum computation and classi-
cal probabilistic computation allow more than one possible computation paths, which might
lead to more than one possible outputs. Each output happens with certain probability. The
difference in these two models lies in how the probabilities of different computation paths
are specified. In the classical version, we specify directly the transition probability from one
state to another, while in the quantum version, we specify the probability amplitude instead,
which is a complex number. In quantum computation, it is the square of the modulus of the
probability amplitude that gives rise to the transition probability. This seemingly insignifi-
cant difference actually results in surprising outcomes, as shown in Example 1.

Example 1 Suppose that from the same input, there are two paths that lead to the same out-
put (cf. Fig. 1) via two different intermediate states, where Pi ’s and Ai ’s are respectively the
transition probabilities and probability amplitudes with |Ai |2 = Pi , i = 1,2,3,4. In the clas-
sical probabilistic computation model, the probability of this output is P1P2 + P3P4. In the
quantum computation model, the probability amplitude for this output is A1A2 + A3A4,
which gives rise to probability P1P2 + P3P4 + 2Re(A1A2A

∗
3A

∗
4). The additional term

2Re(A1A2A
∗
3A

∗
4) results in different behavior from the classical probabilistic computation.
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Fig. 1 Classical probabilistic computation vs. quantum computation

Fig. 2 Quantum parallelism

We can design a constructive inference such that 2Re(A1A2A
∗
3A

∗
4) > 0 to enhance the cor-

rect outputs. We can also design a destructive inference such that 2Re(A1A2A
∗
3A

∗
4) < 0 to

suppress the wrong outputs.

At the hardware level, quantum computers also share many features of classical comput-
ers. A classical computer stores data in bits and manipulate data with logical gates. A quan-
tum computer stores data in quantum bits (qubits) and manipulate data with quantum logical
gates. A qubit is a microscopic system such as a spin- 1

2 particle, a photon with polarization,
or an atom with multiple energy levels. Similar to a classical bit, a qubit can encode 0 and
1 in two distinct states (written as |0〉 and |1〉 in the bra-ket notation). For example, an
atom in the ground state and the excited state can represent 0 and 1, respectively. But the
similarity ends here. A qubit can also be in a superposition of the basis states |0〉 and |1〉,
i.e., a|0〉 + b|1〉, where a, b ∈ C are probability amplitudes with |a|2 + |b|2 = 1. A mea-
surement of the qubit yields either |0〉 or |1〉, with probability |a|2 and |b|2, respectively.
A register with n qubits can be in the superposition of 2n basis states ranging from |00 . . .0〉
to |11 . . .1〉. So the amount of numbers a quantum register can store simultaneously grows
exponentially relative to its size, which is impossible for a classical register. A quantum
logical gate is an elementary quantum device which preforms a unitary operation on qubits.
The unitary restriction is rooted in Schrodinger’s equation, which governs the evolution of
quantum systems. A simple example of one-bit quantum gate is NOT gate, also a rudimen-
tary classical logic gate, which maps |0〉 to |1〉 and |1〉 to |0〉. Other examples includes
Walsh-Hadamard gate H : |0〉 → 1√

2
(|0〉 + |1〉), |1〉 → 1√

2
(|0〉 − |1〉), and Controlled-NOT

gate: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, and |11〉 → |10〉. One can show that the set of
one-qubit quantum gates and Controlled-NOT gate suffices to implement quantum circuits
of any size.

Finally, let’s highlight one important source of the unorthodox power of quantum compu-
tation, quantum parallelism. Suppose we have a function evaluation operator Uf : |x〉|0〉 →
|x〉|f (x)〉, which reads the input value x from the first register and computes the correspond-
ing function value f (x) in the second register (cf. Fig. 2). If the first register has n qubits
in it and |x〉 = 1

2
n
2

∑11...1
i=00...0 |i〉, the uniform superposition of all 2n basis state ranging from
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|00 . . .0〉 to |11 . . .1〉, after one application of Uf , we obtain 1

2
n
2

∑11...1
i=00...0 |i〉|f (i)〉, where

the second register holds the function values of all 2n input values. In other words, we have
completed exponentially many function evaluations in one shot via quantum parallelism.
The quantum algorithm that we present later utilizes similar construction.

3 Quantum Fourier Transform

The first major ingredient we need for the quantum counting algorithm is quantum Fourier
transform. It is the quantum version of the standard discrete Fourier transform. For x ∈
{0,1,2, . . . ,M − 1}, define quantum Fourier transform and inverse quantum Fourier trans-
form by

QFT : |x〉 → 1√
M

M−1∑

y=0

e2πi x
M

y |y〉, (2)

QFT−1 : |x〉 → 1√
M

M−1∑

y=0

e−2πi x
M

y |y〉. (3)

Clearly,

QFT−1

(
1√
M

M−1∑

y=0

e2πi x
M

y |y〉
)

= QFT−1(QFT|x〉) = |x〉. (4)

Suppose that instead of x
M

, we have ω, a real number between 0 and 1, in (4). What

is the result of applying QFT−1 on |Ω〉 � 1√
M

∑M−1
y=0 e2πiωy |y〉? Let |x̃〉 = QFT−1|Ω〉 =

∑M−1
x=0 αx |x〉. There are two scenarios.

1. For some k ∈ {0,1,2, . . . ,M − 1}, ω = k
M

. This case is reduced back to (4). We have
|x̃〉 = |k〉. In other words, αx = δxk . If we make a measurement on |x̃〉, we will get |k〉 for
sure, which tells us what ω is, namely, k

M
.

2. For all k ∈ {0,1,2, . . . ,M − 1}, ω �= k
M

. We do not have a closed form expression for αx

as clean as the one in the previous case any more. Nevertheless, we still expect the αx ’s
for those x’s such that x

M
is close to ω to be dominant. The following calculation verifies

this claim.

|x̃〉 = QFT−1|Ω〉

= 1√
M

M−1∑

y=0

e2πiωyQFT−1|y〉

= 1√
M

M−1∑

y=0

e2πiωy 1√
M

M−1∑

x=0

e−2πi
y
M

x |x〉

=
M−1∑

x=0

1

M

M−1∑

y=0

e2πi(ω− x
M

)y |x〉. (5)
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Thus,

αx = 1

M

M−1∑

y=0

e2πi(ω− x
M

)y = 1 − e2πiM(ω− x
M

)

M(1 − e2πi(ω− x
M

))
, (6)

|αx | =
∣
∣
∣
∣

sinMπ(ω − x
M

)

M sinπ(ω − x
M

)

∣
∣
∣
∣. (7)

It is easy to see that �Mω	 and 
Mω� are the two integer values of x such that x
M

is the
closest to ω. Let Δ = Mω−�Mω	

M
= ω − �Mω	

M
and 1

M
− Δ = 
Mω�−Mω

M
= 
Mω�

M
− ω. The

probability of getting an x after measurement that can best indicate ω is,

P

(∣
∣
∣
∣
x

M
− ω

∣
∣
∣
∣ ≤ 1

M

)

= P (|x − Mω| ≤ 1)

= P
(
x = �Mω	) + P

(
x = 
Mω�)

= |α�Mω	|2 + |α
Mω�|2

= sin2 MΔπ

M2 sin2 Δπ
+ sin2 M( 1

M
− Δ)π

M2 sin2( 1
M

− Δ)π
, (8)

which attains minimum at Δ = 1
2M

. Thus,

P

(∣
∣
∣
∣
x

M
− ω

∣
∣
∣
∣ ≤ 1

M

)

≥ 1

M2

(
1

sin2( π
2M

)
+ 1

sin2( π
2M

)

)

= 2

M2 sin2( π
2M

)

>
2

M2( π
2M

)2

= 8

π2
. (9)

If we make a measurement on |x̃〉, the probability of getting either �Mω	 or 
Mω�,
providing an estimation for ω within the error 1

M
, is at least 8

π2 .

In both cases, a measurement after applying QFT−1 on |Ω〉 yields an integer very close or
equal to Mω with high probability, allowing us to estimate ω.

4 Amplitude Amplification

Let H be a Hilbert space with an orthonormal basis {|x〉 | x = 1,2, . . . ,N}. The oracle func-
tion f defined in (1) partitions H into two orthogonal subspaces by dividing {1,2, . . . ,N}
into f −1(0) and f −1(1). Define

|s〉 = 1√
N

N∑

x=1

|x〉, (10)
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|m〉 = 1√
t

∑

x∈f −1(1)

|x〉, (11)

|w〉 = 1√
N − t

∑

x∈f −1(0)

|x〉. (12)

In other words, |s〉 is the uniform superposition of all basis states, |m〉 the uniform super-
position of all basis states satisfying the counting criteria, and |w〉 the counterpart of |m〉.
Clearly |m〉 ⊥ |w〉. Choose θ ∈ (0, π

2 ) such that sin2 θ = p = t
N

. We have sin θ =
√

t
N

,

cos θ =
√

N−t
N

, and |s〉 = cos θ |w〉 + sin θ |m〉.
We now define the other major ingredient of the quantum counting algorithm, the ampli-

tude amplification operator G:

G = Is If . (13)

The operator If is defined by

If |x〉 =
{

−|x〉, if f (x) = 1

|x〉, if f (x) = 0
. (14)

If is sometimes referenced as the selective sign-flipping operator, because it flips the sign
of the states satisfying the counting criteria. It can be implemented via a technique called
eigenvalue kickback [1]. Each application of this operator invokes one oracle call. There is
an alternative but equivalent form to define If by

If = I − 2|m〉〈m|, (15)

where I is the identity operator. The operator Is is defined by

Is = 2|s〉〈s| − I. (16)

Is is sometimes referenced as the inversion-around-average operator, because it inverts state
vectors around the “average” state |s〉. The operator G is in fact exactly the iteration operator
in the original Grover’s algorithm for quantum search [7]. Now let’s analyze the effect of
this operator.

Lemma 1 In the plane spanned by basis {|w〉, |m〉}, G implements a rotation of angle 2θ .

Proof It is straightforward to derive G|w〉 and G|m〉 under basis {|w〉, |m〉}.
G|w〉 = Is If |w〉 = Is |w〉 = (

2|s〉〈s| − I
)|w〉 = 2|s〉〈s|w〉 − |w〉

= 2 cos θ |s〉 − |w〉 = 2 cos θ(cos θ |w〉 + sin θ |m〉) − |w〉
= (

2 cos2 θ − 1
)|w〉 + 2 sin θ cos θ |m〉

= cos 2θ |w〉 + sin 2θ |m〉.
G|m〉 = Is If |m〉 = Is(−|m〉) = (

2|s〉〈s| − I
)
(−|m〉) = −2|s〉〈s|m〉 + |m〉

= −2 sin θ |s〉 + |m〉 = −2 sin θ(cos θ |w〉 + sin θ |m〉) + |m〉
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= −2 sin θ cos θ |w〉 + (
1 − 2 sin2 θ

)|m〉
= − sin 2θ |w〉 + cos 2θ |m〉.

So G takes on matrix representation

G =
[

cos 2θ − sin 2θ

sin 2θ cos 2θ

]

. (17)

Obviously it is a rotation of angle 2θ oriented from |w〉 to |m〉. �

If we start from |s〉, each application of G rotates it toward |m〉 by 2θ , amplifying the
amplitude of the component |m〉. Next let’s define a pair of states,1 which play a crucial role
in establishing the credibility of the quantum counting algorithm.

|ψ+〉 = 1√
2

(|w〉 − i|m〉), (18)

|ψ−〉 = 1√
2

(|w〉 + i|m〉). (19)

Lemma 2 |ψ+〉 and |ψ−〉 are eigenvectors of G with eigenvalues e2iθ and e−2iθ , respec-
tively.

Proof Via (17),

G|ψ+〉 = 1√
2

(
G|w〉 − iG|m〉) = 1√

2

(
cos 2θ |w〉 + sin 2θ |m〉 + i sin 2θ |w〉 − i cos 2θ |m〉)

= e2iθ

√
2

(|w〉 − i|m〉) = e2iθ |ψ+〉,

G|ψ−〉 = 1√
2

(
G|w〉 + iG|m〉) = 1√

2

(
cos 2θ |w〉 + sin 2θ |m〉 − i sin 2θ |w〉 + i cos 2θ |m〉)

= e−2iθ

√
2

(|w〉 + i|m〉) = e−2iθ |ψ−〉. �

Let θ = πω, |s〉 = cosπω|w〉 + sinπω|m〉 = eiπω√
2

|ψ+〉 + e−iπω√
2

|ψ−〉. If we apply G on
|s〉 for y times,

Gy |s〉 = eiπ(2y+1)ω

√
2

|ψ+〉 + e−iπ(2y+1)ω

√
2

|ψ−〉, (20)

which is reminiscent of the state |Ω〉 in Sect. 3.

5 Quantum Counting Algorithm

Now we have both major ingredients ready for the construction of a quantum counting
algorithm which estimates p = t

N
. Since p = sin2 θ = sin2 πω, we can estimate p via ω.

1In [8], they are misdefined to be the other way around.
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The key is to create a state in the form of |Ω〉 using G, which supplies an estimation of ω

through QFT−1. The algorithm below follows the path given in [8].

1. Prepare two registers in the initial state |ψ0〉 = 1√
M

∑M−1
y=0 |y〉 ⊗ |s〉.

2. Apply CF on |ψ0〉, which implements |y〉 ⊗ |s〉 → |y〉 ⊗ Gy |s〉. Call the resultant state
|ψ1〉.

3. Apply QFT−1 on the first register of |ψ1〉. Call the resultant state |ψ2〉.
4. Measure the first register of |ψ2〉 to obtain |x〉 and output p̃ = sin2( x

M
π), the quantum

estimator of p.

We can show the following result, which is slightly tighter than [2, Theorem 6].

Theorem 1 ∀M ∈ N, the above algorithm outputs p̃ such that

|p − p̃| ≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p| (21)

with probability at least 8
π2 .

Proof After Step 2,

|ψ1〉 = 1√
2M

M−1∑

y=0

|y〉(eπi(2y+1)ω|ψ+〉 + e−πi(2y+1)ω|ψ−〉) (cf. (20))

= eπiω

√
2M

M−1∑

y=0

e2πiωy |y〉|ψ+〉 + e−πiω

√
2M

M−1∑

y=0

e−2πiωy |y〉|ψ−〉

= eπiω

√
2M

M−1∑

y=0

e2πiωy |y〉|ψ+〉 + e−πiω

√
2M

M−1∑

y=0

e2πi(1−ω)y |y〉|ψ−〉 (22)

After Step 3, we have

|ψ2〉 = eπiω

√
2

|x̃+〉|ψ+〉 + e−πiω

√
2

|x̃−〉|ψ−〉, (23)

where

|x̃+〉 = QFT−1

(
1√
M

M−1∑

y=0

e2πiωy |y〉
)

, (24)

|x̃−〉 = QFT−1

(
1√
M

M−1∑

y=0

e2πi(1−ω)y |y〉
)

. (25)

In Step 4, the measurement on the first register gives us an estimation of either ω or
1 − ω, with probability 1

2 each. In the first case, we obtain |x〉 such that Δ = | x
M

− ω| ≤ 1
M

with probability at least 8
π2 , while
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|p̃ − p| =
∣
∣
∣
∣sin2

(

π
x

M

)

− sin2(πω)

∣
∣
∣
∣

= ∣
∣ sin2(πω ± πΔ) − sin2(πω)

∣
∣

= ∣
∣
(
sin(πω) cos(πΔ) ± sin(πΔ) cos(πω)

)2 − sin2(πω)
∣
∣

= ∣
∣ sin2(πΔ) cos(2πω) ± sin(πω) cos(πω) sin(2πΔ)

∣
∣

≤ ∣
∣ sin(2πΔ) sin(πω) cos(πω)| + sin2(πΔ)|1 − 2 sin2(πω)

∣
∣

≤ 2πΔ
√

p(1 − p) + (πΔ)2|1 − 2p|

≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p|. (26)

In the second case, we obtain |x〉 such that Δ = | x
M

− (1 −ω)| ≤ 1
M

with probability at least
8

π2 , while

|p̃ − p| =
∣
∣
∣
∣ sin2

(

π
x

M

)

− sin2(πω)

∣
∣
∣
∣

= ∣
∣ sin2

(
π(1 − ω) ± πΔ

) − sin2(πω)
∣
∣

= ∣
∣ sin2(πω ± πΔ) − sin2(πω)

∣
∣

≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p|. (27)

Either way, we obtain an estimation of p with the same error behavior. �

With p̃, the estimation of p at hand, we can estimate t , the number of counting targets
via t̃ = Np̃. It is straightforward to derive the following result.

Corollary 1 ∀M ∈ N,

|t − t̃ | ≤ 2π

M

√
t (N − t) + π2

M2
|N − 2t | (28)

with probability at least 8
π2 .

6 Comparison with the Classical Sampling Method

In this section, we compare the classical estimator p̂ (see Sect. 1) and the quantum estima-
tor p̃.

In proportion estimation, p̂ = s
M

, where s is the number of x’s satisfying f (x) = 1 in
the sample. Sampling can be done either with or without replacement. When sampling with
replacement, s follows binomial distribution, with

P (s = x) =
(

M

x

)

px(1 − p)M−x, x = 0,1,2, . . . ,M. (29)
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Fig. 3 The distributions of the classical estimator p̂ (binomial) and the quantum estimator p̃, where
N = 100, t = 40, and M = 32. The true value of p is marked with �

When sampling without replacement, s follows hypergeometric distribution, with

P (s = x) =
(

t

x

)(
N−t

M−x

)

(
N

M

) , max(0,M + t − N) ≤ x ≤ min(M, t). (30)

In the typical setup for the proportion estimation problem, where the population size is far
greater than the sample size, i.e., N � M , these two distributions behave very similarly.
However, the quantum estimator p̃ takes on a drastically different distribution, where p̃ =
sin2( x

M
π), and x follows distribution

P (x) = sin2 Mπ(ω − x
M

)

M2 sin2 π(ω − x
M

)
, x = 0,1,2, . . . ,M − 1. (31)

In the case of estimating 1 − ω (cf. Step 4 in the proof of Theorem 1), the distribution of
x is mirror symmetric to (31). But the distribution of p̃ is identical, because sin2( x

M
π) =

sin2(π − x
M

π). Figure 3 shows the contrast between the distributions of p̂ and p̃ (binomial)
where N = 100, t = 40, and M = 32.

We can observe that, when M is large, the distribution of p̃ concentrates more heavily
around the true value of p than that of p̂. This feature can be justified theoretically via the
Central Limit Theorem (CLT) [6, p. 112]. In proportion estimation, by CLT, as M → ∞,

p̂ − p√
p(1 − p)/M

→d N(0,1), (32)
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where →d denotes the convergence in distribution, and N(0,1) is the standard normal dis-
tribution. To compare p̂ with p̃, subject p̂ to the same bound in Theorem 1. For any fixed p

bounded away from 0 and 1, as M → ∞,

P

(

|p − p̂| ≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p|

)

= P

(∣
∣
∣
∣

p̂ − p√
p(1 − p)/M

∣
∣
∣
∣ ≤ 2π√

M
+ π2

M3/2

|1 − 2p|√
p(1 − p)

)

→ 2Φ

(
2π√
M

+ π2

M3/2

|1 − 2p|√
p(1 − p)

)

− 1, (33)

where Φ is the standard normal cumulative distribution function. It is clear that for any fixed
p ∈ (0,1), when the sample size M increases, this probability shrinks to 0. In contrast, the
quantum estimator p̃ subjected to the same bound happens with probability at least 8

π2 no
matter what M is by Theorem 1. That is, when M is large,

P

(

|p − p̃| ≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p|

)

� P

(

|p − p̂| ≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p|

)

.

In addition, there is another angle which shows better error behavior of p̃ than that of p̂

when M is large. Suppose that we enforce the probability of getting a close estimate of p

within error ε to be at least 8
π2 . In the case of p̃, ε goes down in the order of O( 1

M
). In the

case of p̂, because of (32) and P (|X| < 1.32) ≈ 8
π2 when X is standard normal,

P

(

|p − p̂| ≤ 1.32√
M

√
p(1 − p)

)

≈ 8

π2
, (34)

which indicates that ε goes down at most in the order of O( 1√
M

).
Finally, for any fixed p ∈ (0,1), we may numerically compare the probability of p̃ and

p̂ (following either binomial or hypergeometric distribution) under the same bound in The-
orem 1. The former is at least 8

π2 , while the latter is

P

(

|p − p̂| ≤ 2π

M

√
p(1 − p) + π2

M2
|1 − 2p|

)

= P

(

|Mp − Mp̂| ≤ 2π
√

p(1 − p) + π2

M
|1 − 2p|

)

=
�Mp+2π

√
p(1−p)+ π2

M
|1−2p|	∑

x=
Mp−2π
√

p(1−p)− π2
M

|1−2p|�
P (s = x), (35)

where P (s = x) is given by either (29) or (30). These probabilities are shown in Fig. 4 for
various values of p (with binomial distribution). We again observe that the probabilities
related to p̂ shrink to 0 as M increases. Table 1 summarizes the values of M where p̃ starts
to outperforms p̂.



158 Z. Diao et al.

Fig. 4 The probabilities for the classical estimator p̂ under the bound in Theorem 1 as the sample size M

increases, where p = 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, and 0.5. The horizontal line indicates the position
of 8

π2

Table 1 The values of M where the quantum estimator p̃ starts to outperform the classical estimator p̂ under
the bound in Theorem 1

p 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5

M 37 45 34 41 29 31 26 29

7 Conclusion

In this article, we have presented the details of the quantum counting algorithm and its
advantage over the classical proportional estimation method in terms of their error distri-
butions. However, we need to point out one peculiar fact unique to the quantum counting
algorithm. With classical proportional estimation and sampling without replacement, when
the sample size M equals the population size N , the estimator p̂ = p, the true proportion.
In contrast, we can not guarantee that the quantum estimator p̃ = p when M = N . This

is caused by the mismatch between ω = θ
π

= 1
π

sin−1
√

t
N

, which is rarely rational [5], and
x
M

, which is always rational. Further research is needed to come up with an exact quantum
counting algorithm.
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