
A Realization Scheme for Quantum Multi-Object Search

Zijian Diao1 Goong Chen2 Peter Shiue3

Abstract

We study the quantum circuit design using 1-bit and 2-bit unitary gates for the
iterations of the multi-object quantum search algorithm. The oracle block is designed
in order to efficiently implement any sign-flipping operations. A chief ingredient in the
design is the permutation operator which maps a set of search targets to another set
on which the sign-flipping operation can be easily done. Such a proposed algorithmic
approach implicates a minimal symmetric group generation problem: how to generate
elements of a symmetric group using the smallest number of concatenations with a set
of given generators. For the general case, this is an open problem. We indicate how
the complexity issues depend on the solution of this problem through simple examples.

1Department of Mathematics, Ohio University-Eastern, St. Clairsville, OH 43950; diao@ohio.edu. Supported
in part by an Ohio University Research Challenge Award.
2Department of Mathematics, Texas A&MUniversity, College Station, TX 77743-3368; gchen@math.tamu.edu.
Supported in part by a DARPA QuIST grant and a TAMU TITF initiative.
3Department of Mathematical Science, University of Nevada-Las Vegas, Las Vegas, NV 89154; shiue@unlv.nevada.edu.

1

1 Introduction

The quantum search algorithm due to L.K. Grover [12] has the advantage of a quadratic
speedup over the classical serial search on an unsorted database. Grover’s algorithm deals
with single-object search. Its quantum circuit design is given in [11]. When there is more
than one search target, as what is prevalent in most search problems, algorithms for multi-
object search have been studied in [2]–[8].

For multi-object search problems, the number of items satisfying the search criterion
(i..e, search targets) is not known a priori in general. This results in a quantum counting
problem for which eigenvalue estimates must be made in order to determine the cardinality
(see k in (1.1) below) of the search target set; see [5, 6]. No quantum circuit design for the
general multi-object search algorithm is yet available, even though some block diagram has
been suggested in [6].

Let D = {wi | i = 1, 2, . . . , N}, where N = 2n, be an unsorted database which is encoded

as basis quantum states D̂ = {|wi⟩ | i = 1, 2, . . . , N}. Without loss of generality, we assume
that the set of search targets is

W = {|w1⟩, |w2⟩, . . . , |wk⟩}. (1.1)

Elements in W are identified through queries with the (block box) oracle function f :

f(wi) =

{
1 if 1 ≤ i ≤ k,
0 if k + 1 ≤ i ≤ N.

(1.2)

Recall from [7] that the unitary operator corresponding to the generalized Grover search
engine is given by

U = −IIIsIIIf , (1.3)

where

IIIs = 111− 2|s⟩⟨s|, |s⟩ ≡ 1√
N

N∑
i=1

|wi⟩, (1.4)

is the “inversion about the average” operator, while

IIIf = 111− 2
k∑

i=1

|wi⟩⟨wi⟩ (1.5)

is the “selective sign-flipping” operator, since

IIIf |wi⟩ =
{

−|wi⟩, if 1 ≤ i ≤ k,
|wi⟩, if k + 1 ≤ i ≤ N.

(1.6)

The iterations
U j|s⟩ (1.7)

are performed and stopped at j ≈ π
4

√
N
k
. A measurement on the quantum system will yield

a state in W with large probability.

2

Note that the oracle function f in (1.2) is in a black box and is not known explicitly.
Without a priori knowledge of the search targets, the realization of (1.5) on the quantum
computer is utterly non-trivial. For complexity theorists, the use of an oracle function f
is a standard practice where f is readily available as a separate computing unit and the
complexity involved for the construction and operation of f is entirely ignored. However,
in the context of quantum computers, in order to have a complete design which does not
depend on any other stand-alone units, and to exploit the entanglement between quantum
subsystems, the quantum oracle has to be integrated with other components of the system.
In theory, the “standard” way to implement IIIf is by the well-known Deutsch’s f-c-n “gate”

Uf : |w⟩|y⟩ −→ |w⟩|y ⊕ f(w)⟩ (1.8)

where |w⟩ ∈ D̂ and |y⟩, the auxiliary register, is chosen to be |y⟩ = 1√
2
(|0⟩ − |1⟩), leading to

Uf

(
|w⟩ ⊗

[
1√
2
(|0⟩ − |1⟩)

])
= (−1)f(w)|w⟩ ⊗

[
1√
2
(|0⟩ − |1⟩)

]
. (1.9)

However, Deutsch’s gate (1.8) is not an elementary gate. The action of Uf , a linear operator,
is determined by the implicitly nonlinear oracle function f . This approach still treats the
quantum oracle as a separate module working independently, instead of an integral part of
the whole quantum system. Furthermore, unless the computational structure of f is given
explicitly, it is highly puzzling to us whether and how it will indeed be possible in the future
to realize (1.8) quantum mechanically without the need of using elementary 1-bit and 2-
bit unitary gates. As a matter of fact, all current physical implementations of quantum
algorithms construct the quantum oracles via “hard wiring”, i.e., adapting the layout of the
circuit according to the (known) distribution of the function values of f . The main thrust
of this paper is to propose a “hard wiring” design to realize (1.8) with elementary gates.

In the quantum circuit design for (1.5) (or, equivalently, for (1.8)), it is totally reasonable
to expect that the complexity of the “hard wiring” circuit depends on k in certain way.
Therefore, for a single oracle call, there is a clear distinction between its complexity in
theoretical discussion, where it is considered to be carried out in one step, and that in the
practical implementation, where the hidden complexity associated with its construction via
elementary gates must be accounted for. At present, our approach proposed here is mostly
a viability study. The optimal design and its corresponding complexity analysis merit a
separate paper, which we hope to present in the sequel.

Return to the multi-object search equations (1.3) and (1.7). In comparison with the
quantum circuit design for the single-object search and in view of the commentary in the
preceding two paragraphs, we understand that the main difference is in the oracle block O
(cf. [11, Theorem 8]). In the next few sections, we ready ourselves in the redesign of this
portion.

2 Circuit Design for the Multi-Object Sign-Flipping

Operator

The task of IIIf is to selectively flip the signs of the target states. For the single object

3

H H

Figure 1: Circuit design of IIIf for Example 2.1. H denotes the usual Hadamard transform.
The concatenation of the two Hadamard gates and the CNOT gate on the first two qubits
maps |11⟩ to −|11⟩, hence the signs of all four states in E with leading qubits |11⟩ are flipped
together.

case, we can construct IIIf with polynomial complexity using basic 1-qubit and 2-qubit quan-
tum gates [11]. For multi-object case, we may directly concatenate k selective sign-flipping
operators of each of the k target states. However, the complexity of this construction is
proportional to the number of search targets, which becomes very inefficient when k is large.
A better design is to divide the targets into groups and flip the signs of states in each group
together.

Example 2.1. Let n = 4 and assume the search targets be E = {|1100⟩, |1101⟩ |1110⟩, |1111⟩}.
We can flip the signs of all the states in E together, without resorting to four sign-flipping
operators tailored to the four targets individually. See Fig. 1 for details. �

We summarize the strategy of our design of If first.

1. Partition the set W of search objects into subsets Wi with proper cardinality.

2. Via permutation pi, map each Wi onto a set Ei of states whose signs are easy to flip
together, e.g., E in Example 2.1.

3. Flip the signs of states in Wi through the operations on Ei.

We start by partitioning the setW of target states intom+1 sets ofWi’s, according to the
binary expansion of k, k = (kmkm−1 . . . k2k1k0)2, i.e., k = km2

m+km−12
m−1+. . .+k12

1+k02
0.

Note that m < n, unless all states are search targets. Each set Wi contains ki2
i states, for

i = 0, 1, . . . ,m. Wi might be empty.

Example 2.2. (i) Let k = 7 and W = {|w1⟩, |w2⟩, . . . , |w7⟩}. Then W can be partitioned to
the following:

W = W2∪̇W1∪̇W0

with W2 = {|w1⟩, |w2⟩, |w3⟩, |w4⟩}, W1 = {|w5⟩, |w6⟩}, and W0 = {|w7⟩}, where ∪̇ denotes
disjoint union.
(ii) If k = 10 and W = {|w1⟩, |w2⟩, . . . , |w10⟩}. Then

W = W3∪̇W1,

4

where W3 = {|w1⟩, |w3⟩, |w4⟩, |w5⟩, |w7⟩, |w8⟩, |w9⟩, |w10⟩}, W1 = {|w2⟩, |w6⟩}, and W2 =
W0 = ∅.

Note that the partition is non-unique. The only thing that matters for now is the cardi-
nality of each set Wi, i = 0, 1, . . . ,m. �

We flip the signs of basis states in W by flipping the signs of the states in Wi for i =
0, 1, 2, . . . ,m. For each Wi, we construct a circuit block Bi. If Wi is empty, no action is
needed. We now delineate the circuit design for a generic block Bi in three steps.

Step 1. Let us denote the basis states in Wi as Wi = {|wi,1⟩, |wi,2⟩, . . . , |wi,2i⟩}. Each wi,j

is an n-bit string of 0 and 1’s. Define Ei to be the set consisting of all the states whose
first n − i bits are all 1’s. Clearly, |Ei| = 2i = |Wi|. We construct the quantum circuit Pi

which implements the permutation pi mapping Wi onto Ei. One feasible, albeit inefficient,
implementation is to pair up each wi,j with a state in Ei and do 2i transpositions, as described
in Table 1.

wi,1 ↔
(n−i) bits︷ ︸︸ ︷
11 · · · 1

i bits︷ ︸︸ ︷
00 · · · 00; (wi,1 11 · · · 100 · · · 00)

wi,2 ↔ 11 · · · 1 00 · · · 01; (wi,2 11 · · · 100 · · · 01)
wi,3 ↔ 11 · · · 1 00 · · · 10; (wi,3 11 · · · 100 · · · 10)
...

...
wi,2i−1 ↔ 11 · · · 1 11 · · · 10; (wi,2i−111 · · · 111 · · · 10)
wi,2i ↔ 11 · · · 1 11 · · · 11; (wi,2i 11 · · · 111 · · · 11).

Table 1: The transpositions of the states in Wi with those in Ei. The left column of the table
signifies that the two sides of the double arrow “↔” are mutually transposed. We use the
2-cycles on the right column to denote the corresponding transpositions on the left column.

Example 2.3. Assume that n = 7 and i = 4. For j = 4, say we have

wi,j = w4,4 = 0001111.

We want to perform the permutation

0001111 ↔ 1110011. (2.1)

For ease of discussion, we make the following list:

s1: 0001111; s2: 0011111; s3: 0111111;
s4: 1111111; s5: 1110111; s6: 1110011.

Note that each successive pair of symbols si and si+1 differs by only one bit.
Then the transposition (2.1) can be achieved through the following sequence of transpo-

sitions (cf. the notation used in Table 1):

(s1 s2)(s2 s3)(s3 s4)(s4 s5)(s5 s6)(s4 s5)(s3 s4)(s2 s3)(s1 s2). (2.2)

5

Note that through the above permutations, s1 becomes s6 and s6 becomes s1, achieving
(2.1), while s2, s3, . . . , s5 remain unchanged. Several permutations in (2.2) are duplicated.
Thus we only need to construct (s1 s2), (s2 s3), (s3 s4), (s4 s5) and (s5 s6) in order
to achieve (2.1).

The circuit design in Fig. 2 realizes the permutation (s1 s2) = (0001111 0011111). The
circuit diagrams for any other (si si+1) in (2.2) are similar. �

1

7

6

5

3

4

2

Figure 2: Circuit diagram for the permutation (s1 s2) = (0001111 0011111). Note that
the third bit is flipped when and only when the remaining bits are, respectively, 0,0,1,1,1,1,
in sequential order.

Step 2. Construct Oi, which flips the signs of any states whose first n − i leading bits are
all 1’s, i.e., states in Ei. The circuit block is given in Fig. 3.

Kn−i

Oi

i

n− i

Figure 3: The Oi block, which flips the signs of any states whose first n− i bits are all 1’s.
Kn−i is the key transformation for the first n− i bits.

Recall from [11] that Kn−i is the key transformation on (the first) n− i bits, defined by

Kn−i = 111n−i − 2|
n−i︷ ︸︸ ︷

11 · · · 1 ⟩⟨11 · · · 1|,

where 111n−i is the identity operator on the first n − i bits. Its construction in terms of
elementary gates is given in [11, Fig. 9]. The Oi block in Fig. 3 thus represents the unitary
transformation

Kn−i ⊗ 111i, where 111i is the identity operator on the last i bits.

6

Step 3. Piece together Oi, Pi, and P−1
i (the circuit implementing p−1

i , the inverse of pi), to
obtain Bi, for i = 0, 1, . . . ,m. See Fig. 4.

OiBi Pi P−1
i

Figure 4: The block Bi, i = 0, 1, . . . ,m.

Further, concatenate all the Bi blocks for i = 0, 1, . . . ,m to form the O (oracle) block.
See Fig. 5.

O BmB1 B2

Figure 5: The oracle block O, formed by concatenating B0, B1, . . . , Bm.

Example 2.4. Let n = 2 and assume the search targets be W = {|00⟩, |01⟩}. Then k = 2 and
only one block B1 for W1 = {|00⟩, |01⟩} is needed. See Fig. 6 for the circuit design of B1.

If, as in [11], what we have available are the following elementary gates:

• 1-bit unitary gates

Uθ,ϕ =

[
cos θ −ie−iϕ sin θ

−ie−iϕ sin θ cos θ

]
, 0 ≤ θ, ϕ ≤ 2π. (2.3)

• 2-bit quantum phase gates

Qη =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiη

 , 0 ≤ η ≤ 2π. (2.4)

The circuit design for B1 and, consequently, O, is given in Fig. 7.
Note that P1 here performs the permutations (00 11)(01 10).

7

K1

O1 P−1
1P1

Figure 6: The circuit design of B1 for Example 2.4.

Uπ
2 ,0

P−1
1O1

Uπ
2 ,π

Uπ
2 ,π

Uπ
2 ,π

Qπ

Uπ
2 ,0

Qπ

Uπ
2 ,0

P1

Figure 7: The circuit design of B1 and O for Example 2.4, using Uθ,ϕ and Qη as elementary
gates.

Theorem 2.1. Let UO denote the unitary operator corresponding to the operation performed
by O. Then

UO|wj⟩ =
{

(−1)|wj⟩, if |wj⟩ ∈ W,
|wj⟩, if |wj⟩ /∈ W.

Proof. If |wj⟩ ∈ W , then |wj⟩ ∈ Wi0 for some unique i0, i0 ∈ {0, 1, . . . ,m}. Therefore

Bi|wj⟩ =
{

−|wj⟩, if i = i0,
|wj⟩, if i ̸= i0.

Thus UO|wj⟩ = BmBm−1 · · ·B1B0|wj⟩ = −|wj⟩.
If |wj⟩ /∈ W , thenBi|wj⟩ = |wj⟩ for all i ∈ {0, 1, . . . ,m}. Therefore UO|wj⟩ = BmBm−1 · · ·

B1B0|wj⟩ = |wj⟩.

Hence UO indeed corresponds to the sign-flipping operator IIIf in (1.8).
Finally, the overall circuit blocks are given in Fig. 8.

3 Additional Discussion

Any universal set of quantum gates [1] can be used to construct the component circuitries
required in Section 2. In particular, the 1-bit and 2-bit gates Uθ,ϕ and Qη in (2.3) and (2.4)

8

I

H

H

H

|0⟩

|0⟩

|0⟩

O

Figure 8: The block diagram for the multi-object search iteration (1.7). The block I performs
the inversion about average operation IIIs, whose circuit design is the same as in [11].

are universal. Therefore, they can be used for the purpose of this paper. See some relevant
results in [11].

But there is a special case we need to address. That is, when n − i = 1. We need to
construct K1, which is simply the transformation |0⟩ → |0⟩ and |1⟩ → −|1⟩. However, this is
not directly constructible with the 1-bit gates Uθ,ϕ, as they are special unitary, i.e., all Uθ,ϕ

have determinant equal to 1.
Two solutions are possible:
1. Use an auxiliary qubit which is set to |1⟩. Bind this auxiliary qubit with the first

work qubit with a phase shift gate Qπ. If the leading work qubit is |1⟩, then Qπ maps |11⟩
to −|11⟩. Otherwise, Qπ leaves |10⟩ unchanged. Ignore the auxiliary qubit, the sign of the
leading work qubit is flipped. In other words, we have the equivalent network as shown in
Fig. 9.

Qπ

|1⟩

K1

|1⟩

Figure 9: Construction of K1 using Qπ and an auxiliary qubit.

2. This one is slightly more complicated than the previous one, but no auxiliary qubit is
needed. The idea is to use the first qubit to flip the sign of the second qubit, no matter what
it is, so that the sign of the overall state is flipped. See the captions and circuits in Fig. 10.

The second solution, in particular, points out one possible realization of the 1-bit phase
shift operator [

eiϕ 0
0 eiϕ

]
, (3.1)

which was not possible using the Uθ,ϕ gates alone. The circuit is given in Fig. 11.

9

Uπ
2 ,π

σzσz
K1

(b)

(a)

QπQπ

Uπ
2 ,0

Figure 10: (a) Construction of K1 without auxiliary qubits, where σz is the standard Pauli

matrix

[
1 0
0 −1

]
. If the first qubit is |0⟩, then the NOT gate will be applied on the second

qubit twice. Hence nothing is changed. If the first qubit is |1⟩, then no matter what the
second qubit is, its sign is going to be flipped exactly once. So the function of this circuit is
exactly what we expected. (b) The components circuits in (a) are rewritten in terms of U
and Q gates.

|1⟩

Uπ
2 ,π

Uπ
2 ,0

[
eiϕ 0
0 eiϕ

]
|1⟩

Qϕ Qϕ

Figure 11: The 1-bit phase gate in equation (3.1) can be realized using the elementary gates
Uθ,ϕ and Qη. The first auxiliary qubit is always set to |1⟩. The net operation done on the
second qubit is exactly (3.1) by ignoring the auxiliary qubit.

4 Complexity Issues

Following the analysis of the quantum circuit design for the single-object search ([11]), we
know that we have linear circuit complexity to construct the I block using elementary 1-bit
and 2-bit gates. To be exact, using Uθ,ϕ and Qη gates, the total number of gates needed is
24n − 74, where n is the number of qubits involved. However, the construction of the O
block for the multi-object case is more complicated than that of the single-object case. Since
we have broken up the O block into m+ 1 blocks B0, B1, . . ., Bm, where m can be as large
as n− 1, and each Bi utilizes a Kn−i block, which requires linear complexity itself, we would
not expect our design to have linear complexity as in the single object case. Even so, it is
still highly desirable if we can achieve the design with as much simplicity as possible. As
suggested by the summary of our design in Section 2, there are several flexibilities that we
can exploit in order to achieve optimal complexity.

10

1. The partition of W into Wi’s is not unique. We only enforce the cardinality require-
ment.

2. The choice of permutation pi : Wi → Ei is not unique. In fact, there are 2i! of them.

3. The implementation of each permutation pi or p−1
i in terms of elementary 1-bit and

2-bit gates is not unique.

Taking all these factors into account, we can formulate the optimal design of the block
O as a minimization problem:

min
P

∑
i

min
pi:Wi→Ei

{c(pi) + c(p−1
i)}, (4.1)

where P denotes all possible partitions of W into Wi’s; c(pi) and c(p−1
i) denote the complex-

ities of pi and p−1
i , respectively. We have omitted the complexity of Oi, since it stays the

same in our design. Because the complexity of the permutations pi and p−1
i constitutes the

basic elements of our complexity analysis, we elaborate on this issue in the following.
The block Pi implements the permutation which maps the 2i states in Wi onto those in

Ei. A “brute-force” way of constructing Pi is to pair up the states inWi and Ei, implement 2i

transpositions separately following the approach given in Example 2.2, and then concatenate
them together. In total, the number of transposition blocks to construct for the overall search
circuit will be linear in k, the number of target states. When k is much smaller than N , the
total number of items in the database, as in the cases when quantum search algorithm is
most powerful, the complexity of the circuit is still quite satisfactory, since each transposition
requires only O(log2N) elementary gates ([11]). Nevertheless, unfortunately, when k is large,
the complexity of this kind of construction becomes unacceptable.

We should note that, in general, the “brute-force” approach is far from being optimal
and there is much room for improvement. For example, in Example 2.4, we did not use this
approach to implement the permutation (00 11)(01 10). Instead, we use two NOT gates
to realize the product of those two transpositions in one step. The resultant circuit is much
simpler than the one by concatenation of the two transpositions constructed separately. Let
us look at another example.

Example 4.1. Let n = 4 and assume the search targets beW = {|0000⟩, |0001⟩, |0010⟩, |0011⟩,
|0100⟩, |0101⟩, |0110⟩, |0111⟩}, i.e., all states with leading qubit being 0. Clearly, W0 = W1 =
W2 = ∅ and W3 = W . If we had followed the approach as given above, we would have to
construct 8 transpositions, namely, (0000 1000), (0001 1001), (0010 1010), 0011 1011),
(0100 1100), (0101 1101), (0110 1110), and (0111 1111). However, there exists a much
more elegant way to implement P3. All we need to do here is to negate the first qubit and
the correctness of this approach is trivial to verify. This cuts down the circuit complexity to
a constant for this example. �

We can rephrase our discussion of implementing permutation pi via elementary gates
under the framework of group theory. Now this task is reduced to a special case of the
optimal generation of finite symmetric groups using a set of generators, e.g., but not limited
to, the set of transpositions:

11

Problem: Let S2n be the symmetric group on 2n elements, and let G = {g1, g2, . . . , gL}
be a set of generators for S2n . Define c(p), the complexity of a permutation p ∈ S2n , by

c(p) = min
p=gi1gi2 ...gil

l. (4.2)

Given p, what is c(p), the minimum number of gi’s (repetition counted) needed to generate
p, and what is the best (shortest) generation? �

With our problem in mind, we can encode the 2n elements by their binary representation,
and formulate the operations of the elementary gates by permutations on these elements.
We may take the generating set G to be the permutations resulted from any sets of universal
gates, in particular, the following fundamental gates:

NOT-gate: it flips the value of one qubit from 0 to 1, and 1 to 0.

Controlled-NOT-gate: it flips the value of a designated qubit depending on other
control qubits.

It is well-known that these gates form a universal generating set of S2n . However, it is not
clear what is the most efficient way to generate any given permutation P ∈ S2n using the
permutations induced by them.

Example 4.2. Let n = 2. Consider the minimum generation of S4 via the following 4 permu-
tations

NOT-gate on bit 1: N(1) = (00 01)(10 11),
NOT-gate on bit 2: N(2) = (00 10)(01 11),

Controlled-NOT-gate, bit 1 controlling bit2:
Λ1(2) = (01 11),
Controlled-NOT-gate, bit 2 controlling bit1:
Λ2(1) = (10 11).

We may generate all the 4! = 24 permutations with these four permutations. Fig. 12
gives a minimum generation using breadth first search [9, p. 469].

We can see that the depth of this tree is 4. That is, we need at most 4 permutations
(elementary gates) to implement any permutation in S22 . And we can read out the optimal
generation by following the branches of the tree.

The analogous group generation problem has been studied in [15]. It is well known that
the set B = {(1 i) | 2 ≤ i ≤ n} generates Sn. Given α ∈ Sn, let lB(α) be the complexity
of α using generators from B. Let lB be the largest lB(α) of all elements in Sn. One can
show that lB = 4 in S4. See Table 2, where the left-hand-side is written in terms of the list
notation of a permutation, e.g., (3, 1, 4, 2) stands for the permutation 1 → 3, 2 → 1, 3 → 4,
and 4 → 2. [15] has shown that lB is 3m in S2m+1. It seems that a formula of lB in S2m is
an interesting open question. �

12

N(1)

(00 10 01)(00 01 10) (01 10)(00 11 01)(00 10 11)

(00 11 10 01)(00 10)

(10 01)

(00 11)(00 10 01 11) (00 01 10 11)(01 10 11)(00 11 01 10)(00 01) (01 11 10)

(00 11) (00 10 11 01) (00 01 11 10)

Λ2(1)

Λ1(2)

(00 11 10)

Λ2(1)Λ2(1)

Λ1(2) Λ1(2)Λ1(2) Λ2(1)Λ2(1)

(00 01 11)

I

(01 11)

Λ2(1)Λ1(2)N(1)N(1)N(2) Λ1(2)Λ1(2) Λ2(1) N(1)

(10 11)
(00 01) (01 11)(10 11)

Λ1(2)Λ2(1) N(2) N(1)

(00 10)

Figure 12: Generation tree of the symmetric group S4.

Since any computable function can be embedded into a reversible function, which can
be viewed as a permutation, we can reformulate the computation of functions by generating
permutations. For the complexity issues, we also consider the basic bit operations as in
arithmetic complexity theory [13]. The difference is, we have translated all the basic bit
operations into permutations in a certain symmetric group, and the complexity is considered
in the context of group generation. This kind of symmetric group framework has also been
used in the enumeration problems in combinatorics [10, 14]. The difficulty of our problem
lies in the fact that symmetric groups are non-abelian. More research is needed in order to
understand better ways to do multi-object quantum search.

References

[1] A. Barenco, C.H. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator
and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A52, 3457
(1995).

[2] E. Biham, O. Biham, D. Biron, M. Grassl and D.A. Lidar, Grover’s quantum search
algorithm for an arbitrary initial amplitude distribution, Phys. Rev. A60 (1999), 2742–
2745.

[3] O. Biham, E. Biham, D. Biron, M. Grassl and D.A. Lidar, Generalized Grover search al-
gorithm for arbitrary initial amplitude distribution, in Quantum Computing and Quan-
tum Communications, Lecture Notes in Comp. Sci., vol. 1509, Springer–Verlag, New
York, 1998, pp. 140–147.

[4] M. Boyer, G. Brassard, P. Høyer and A. Tapp, Tight bounds on quantum searching,
Fortsch, Phys. 46 (1998), 493–506.

[5] G. Brassard, P. Høyer and A. Tapp, Quantum counting, quant-ph/9805082, May 1998.

13

(2, 1, 3, 4) = (1 2)
(3, 2, 1, 4) = (1 3)
(4, 2, 3, 1) = (1 4)
(1, 2, 3, 4) = (1 2)(1 2)
(3, 1, 2, 4) = (1 3)(1 2)
(4, 1, 3, 2) = (1 4)(1 2)
(2, 3, 1, 4) = (1 2)(1 3)
(4, 2, 1, 3) = (1 4)(1 3)
(2, 4, 3, 1) = (1 2)(1 4)
(3, 2, 4, 1) = (1 3)(1 4)
(1, 3, 2, 4) = (1 2)(1 3)(1 2)
(4, 1, 2, 3) = (1 4)(1 3)(1 2)
(1, 4, 3, 2) = (1 2)(1 4)(1 2)
(3, 1, 4, 2) = (1 3)(1 4)(1 2)
(4, 3, 1, 2) = (1 4)(1 2)(1 3)
(2, 4, 1, 3) = (1 2)(1 4)(1 3)
(1, 2, 4, 3) = (1 3)(1 4)(1 3)
(3, 4, 2, 1) = (1 3)(1 2)(1 4)
(2, 3, 4, 1) = (1 2)(1 3)(1 4)
(4, 3, 2, 1) = (1 4)(1 2)(1 3)(1 2)
(1, 4, 2, 3) = (1 2)(1 4)(1 3)(1 2)
(2, 1, 4, 3) = (1 3)(1 4)(1 3)(1 2)
(3, 4, 1, 2) = (1 3)(1 2)(1 4)(1 2)
(1, 3, 4, 2) = (1 2)(1 3)(1 4)(1 2)

Table 2: Generation table of S4 with 2-cycles (1 2), (1 3), and (1 4).

[6] G. Chen and Z. Diao, Quantum multi-object search algorithm with the availability of
partial information, Z. Naturforsch. A56a (2001), 879–888.

[7] G. Chen, S.A. Fulling and J. Chen, Generalization of Grover’s algorithm to multi-object
search in quantum computing, Part I: continuous time and discrete time, in Chap. 6 of
“Mathematics of Quantum Computation”, edited by R.K. Brylinski and G. Chen, CRC
Press, Boca Raton, Florida, 2002, 135–160.

[8] G. Chen and S. Sun, ibid, Part II: general unitary transformations, in Chap. 7 of the
same book, 161–168.

[9] T. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms, MIT Press, 1989.

[10] N.B. De Bruijn, Polya’s theory of counting, in Applied Combinatorial Mathematics, E.F.
Beckenbach ed., John Wiley and Sons, 1964.

[11] Z. Diao, M.S. Zubairy and G. Chen, A quantum circuit design for Grover’s algorithm,
Z. Naturforsch. A57a (2002), 701–708.

14

[12] L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys.
Rev. Lett 78 (1997), 325–328.

[13] D. Knuth, The art of computer programming, v.2, Addison-Wesley, 1997.

[14] J.H. Kwak and J. Lee, Enumeration of graph covering, surface branched coverings and
related group theory, Combinatorial and Computational Mathematics, present and fu-
ture, World Scientific, 2001, 97–161.

[15] I. Pak, Reduced decompositions of permutations in term of star transposition, general-
ized Catalan numbers, and k-ary trees, Discrete Math. 204 (1999), 329–335.

15

