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Summary. Quantum computing is at the forefront of the scientific and technolog-
ical research and development of the 21st century. NMR quantum computing is one
the most mature technologies for implementing quantum computation. It utilizes the
motion of spins of nuclei in custom-designed molecules manipulated by RF pulses.
The motion is on a nano- or microscopic scale governed by the Schrödinger equation
in quantum mechanics.

In this article, we explain the basic ideas and principles of NMR quantum com-
puting, including basic atomic physics, NMR quantum gates and operations. New
progress in optically addressed solid state NMR is expounded. Examples of the
Shor’s algorithm for factorization of composite integers and quantum lattice-gas
algorithm for the diffusion partial differential equation are also illustrated.

14.1 Nuclear magnetic resonance

Many articles in this book are concerned with mathematical problems in
mechanics–elasticity, fluid mechanics, materials, etc., which are of the macro-
scale. At the other extreme is the study of problems in atoms and molecules,
photonics, nanotechnology, etc., which are of the micro- or nano-scale gov-
erned chiefly by the Schrödinger equation. This area has undergone rapid
advancements during the past ten years, in large part due to the stimuli from
laser applications, quantum computing and quantum technology, and nano-
electronics. Most of the practitioners in this area are physicists and it appears
that this area has not drawn enough attention from mathematicians. Here,
we wish to describe one of such developments, namely, nuclear magnetic reso-
nance (NMR) quantum computing. There already exist many papers on this
topic, see, e.g., [18, 19, 16, 57, 54, 109], written by physicists and computer
scientists. Our chapter here describes the same interest, but perhaps from a
more mathematical point of view.
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14.1.1 Introduction

As of today, NMR is the most mature technology for the implementa-
tion of quantum computing. Naturally, this area is rife with papers. A
good internet resource for looking up NMR quantum computing references,
both old and new, is the U.S. Los Alamos National Laboratory’s web site
http://xxx.lanl.gov/quant-ph.

At present, several types of elementary quantum computing devices have
been developed, based on AMO (atomic, molecular and optical) or semicon-
ductor physics and technologies. We may roughly classify them into the fol-
lowing:

atomic — ion and atom traps, cavity QED [13];
molecular — NMR;
semiconductor — coupled quantum dots [12], silicon (Kane) [59];
crystal structure — nitrogen-vacancy (NV) diamond;
superconductivity — SQUID.

The above classification is not totally rigorous as new types of devices, such as
quantum dots, or ion traps imbedded in cavity-QED, have emerged which are
of the hybrid nature. Also, laser pulse control, which is of the optical nature,
seems to be omnipresent. In [3], a total of 12 types of quantum computing
proposals have been listed5. Nevertheless, it is clear that NMR quantum com-
puting belongs to the class of molecular computing where we use molecules
as a small computer. The logic bits are the nuclear spins of atoms in cus-
tom designed molecules. Spin flips are achieved through the application of
radio-frequency (RF) fields on resonance at the nuclear spin frequencies. The
system can be initialized by cooling the system down to the ground state or
known low-entropy state, or using a special technology called averaging, espe-
cially for liquid NMR working in room temperature. Measurement or readout
is carried out by measuring the magnetic induction signal generated by the
precessing spin on the receiver coil. Numerous experiments have been suc-
cessfully tried for different algorithms, mostly using liquid NMR technology.
The algorithms tested include Grover’s search algorithm [108, 54, 46, 122],
other generalized search algorithms [75], quantum Fourier transforms [26, 114],
Shor’s algorithm [111], Deutsch-Jozsa algorithm [15, 73, 27, 84, 24], order
finding [107, 100], error correcting code [65], and dense coding [33]. There are
also other implementations reported like cat-code benchmark [64], information
teleportation [87] and quantum system simulation [98].

NMR is an important tool in chemistry which has been in use for the de-
termination of molecular structure and composition of solids, liquid and gases
since the mid 1940s, by research groups in Stanford and MIT independently,
led by F. Bloch and E.M. Purcell, both of whom shared the Nobel prize in
physics in 1952 for the discovery.
5 The additional proposals not listed above but given in [3] are quantum Hall qubits,

electrons in liquid helium, and spin spectroscopies.
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There are many excellent monographs on NMR [31, 91, 81]. There are also
many other nice internet website resources offering concise but highly use-
ful information about NMR; cf., e.g., [28, 51, 115]. Let us briefly explain the
physics of NMR by following Edwards [28]. The NMR phenomenon is based
on the fact that the spin of nuclei of atoms have magnetic properties that can
be utilized to yield chemical, physical, and biological information. Through
the famous Stern-Gerlach experiment in the earlier development of quantum
mechanics, it is known that subatomic particles (protons, neutrons and elec-
trons) have spins. Nuclei with spins behave like a bar magnet in a magnetic
field. In some atoms, e.g., 12C(carbon-12), 16O (oxygen-16), 32S(sulphur-32),
these spins are paired and cancel each other out so that the nucleus of the
atom has no overall spin. However, in many atoms (1H,13C, 31P , 15N , 19F
etc.) the nucleus does possess an overall spin. To determine the spin of a given
nucleus one can use the following rules:

1. If the number of neutrons and the number of protons are both even, the
nucleus has no spin.

2. If the number of neutrons plus the number of protons is odd, then the
nucleus has a half-integer spin (i.e., 1/2, 3/2, 5/2).

3. If the number of neutrons and the number of protons are both odd, then
the nucleus has an integer spin (i.e., 1, 2, 3).

In quantum mechanical terms, the nuclear magnetic moment of a nucleus
can align with an externally applied magnetic field of strength B0 in only
2I +1 ways, either with or against the applied field B0, where I is the nuclear
spin given in (i), (ii) and (iii) above. For example, for a single nucleus with
I = 1/2, only one transition is possible between the two energy levels. The
energetically preferred orientation has the magnetic moment aligned parallel
with the applied field (spin m = +1/2) and is often denoted as α, whereas
the higher energy anti-parallel orientation (spin m = −1/2) is denoted as
β. See Fig. 14.1. In NMR quantum computing, these spin-up and spin-down
quantum states resemble the two binary states 0 and 1 in a classical computer.
Such a nuclear spin can serve as a quantum bit, or qubit . The rotational axis
of the spinning nucleus cannot be orientated exactly parallel (or anti-parallel)
with the direction of the applied field B0 (aligned along the z axis) but must
precess (motion similar to a gyroscope) about this field at an angle, with
an angular velocity, ω0, given by the expression ω0 = γB0. The precession
rate ω0 is called the Larmor frequency, cf. Fig. 14.2. See more discussion of
ω0 below. The constant γ is called the magnetogyric ratio. This precession
process generates an magnetic field with frequency ω0. If we irradiate the
sample with radio waves (MHz), then the proton can absorb the energy and
be promoted to the higher energy state. This absorption is called resonance
because the frequencies of the applied radiation and the precession coincide
at that frequency, leading to resonance.
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magnetic field
is applied

m=1/2 (α: spin up)

m=-1/2 (β: spin down)no magnetic
field is applied

Energy

Fig. 14.1. Splitting of energy levels of a nucleus with spin quantum number 1/2.

Spinning nucleus with
angular momentum µ

B0Z

Fig. 14.2. A magnetic field B0 is applied along the z-axis, causing the spinning
nucleus to precess around the applied magnetic field.

There is another technique related to NMR, called electron spin resonance
(ESR), that deals with the spins of electrons instead of those of the nuclei.
The principles for ESR are nevertheless similar.

Quantum entanglement is accomplished through spin-spin coupling from
the electronic bonds between the nuclei within the molecule and special RF
pulse manipulations.

We now examine some fundamentals of the atomic physics that are essen-
tial in any quantitative study of the manipulation of the quantum behavior
of atoms. A complete description of the Hamiltonian (i.e., energy) of an atom
contains 9 terms as follow [31]:

H = Hel + HCF + HLS + HSS + HZe + HHF + HZn + HII + HQ. (14.1)

The first three terms have the highest order, called the atomic Hamilto-
nian. They are the electronic Hamiltonian term, crystal field term, and the
spin-orbit interaction term, respectively. The electronic Hamiltonian consists
of kinetic energy of all electrons, mv2

i /2 = p2
i /2m, and two Coulomb terms:

the potential energy of electrons relative to the nuclei, −zne2/rni, and the
inter-electronic repulsion energy, e2/rij :

Hel =
∑

i

p2
i

2m
−

∑
i,n

zne2

rni
+

∑
i>j

e2

rij
,
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Sample
Magnet coil

Transmitter
coil

Receiver
coil

Fig. 14.3. Schematic diagram of an NMR apparatus. A sample which has non-zero
spin nuclei is put in a static magnetic field regulated by the current through the
magnet coil. A transmitter coil provides the perpendicular field and a receiver coil
picks up the signal. We can change the current through the magnet coil or change
the frequency of the current in the transmitter coil to reach resonance.

where rni denote the distance between the i-th electron with the n-th nucleus,
while rij denote the inter-electronic distance between the i-th and the j-th
electrons.

The term HCF is called the crystal field term. It comes from the interaction
between the electron and the electronically charged ions forming the crystal,
and is essentially a type of electrical potential energy:

V = −
∑
i,j

Qje

rij
,

where Qj is the ionic charge and rij is the distance from the electron to the
ion. Normally, only those ions nearest to the electron are considered.

The third in the atomic Hamiltonian is the interaction between spin and
orbit:

HLS = λL · S,

where L and S are the angular momenta of the orbit and spin, respectively,
and λ is the coupling constant. In this section, we use S for the electron spin
and I for the nuclear spin.

The remaining six terms are called spin Hamiltonians. Terms HZe and
HZn are two resulted from the application of an external magnetic field:

HZe = βB · (L + S),

HZn = −
∑

i

gniβnB · Ii,
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where B is the magnetic field strength. These two terms are called Zeeman
terms, and they play major roles in NMR and ESR.

The nuclear spin-spin interaction term HII is also important in quantum
computation:

HII =
∑
i>j

Ii · Jij · Ij ,

because it provides a mechanism for the interaction between qubits. Hyperfine
interaction arises from the interaction between the nuclear magnetic moments
and the electron:

HHF = S ·
∑

i

Ai · Ii.

In (14.1), by letting the z-axis be the privileged direction of spin measurement,
the spin-spin interaction term HSS is expressed as

HSS = D[S2
z − 1

3
S(S + 1)] + E(S2

x − S2
y).

The very last term in (14.1) is called the quadrupolar energy:

HQ =
e2Q

4I(2I − 1)

(
∂2V

∂Z2

)
(3I2

z − I(I + 1) + η(I2
x − I2

y )).

For a specific system, only the Hamiltonian playing major roles is needed
in the final model. For example, in the study of ESR, only three terms are
retained and the Hamiltonian is written as

H = HZe + HHF + HSS ,

while in the NMR case,
H = HZn + HII .

14.1.2 More about the Hamiltonian of NMR

A classical way to explain NMR is to regard it as a rotating charged particle
that acts like a current circulating in a loop ([31, 10]), which creates a magnet
with magnetic moment µ, µ = qvr/2, where q is the electronic charge. The
particle is rotating at v/2πr revolutions per second.

Converting µ to electromagnetic units by dividing it by the velocity of
light, and using angular momentum of the particle rather than the velocity of
the particle, we obtain

µ = (q/2Mc)p,

where p is the angular momentum oriented along the rotating axis. The ratio
µ/p is called the magnetogyric ratio, denoted by γ. A static magnetic field
with strength B will apply a torque, which is equal to µ×B, on this particle.
Newton’s law states that the angular momentum will change according to a
differential equation
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dp
dt

= µ × B =
q

2Mc
p × B.

Computation shows that p will rotate around the direction of B with
frequency ω0 defined by

ω0 =
q

2Mc
B.

The above is called the Larmor equation, and the frequency ω0 is called the
Larmor frequency, the precession frequency, or the resonance frequency as
mentioned previously in Fig. 14.2.

The above classical considerations are now modified by quantization to
incorporate the quantum-mechanical behaviors of the nuclear spin. The vector
variable p is quantized with quantum number (I(I +1))1/2, and its projection
to z axis (the direction of the magnetic field) is m�. In total, there are 2I + 1
valid values of m evenly distributed from −I to I, i.e., m = −I,−I+1, · · · , I−
1, I. A factor g is introduced to include both the spin and orbital motion in the
total angular momentum, called the Landé or spectroscopic splitting factor.
For a free electron and proton, the magnetic momenta can be given as

µe =
ge

2

(
he

4πMec

)
=

geβ

2
,

µn = gnI

(
he

4πMNc

)
= gn I βN ,

where ge = 2.0023, gn = 5.58490. Numbers β and βN are called, respectively,
the Bohr and the nucleus magneton where β = 9.27 × 10−21erg gauss−1 and
βN = 5.09 × 10−24erg gauss−1. These values vary for different particles. In
NMR, it is convenient to use the resonance frequency ω0:

�ω0 = geβB0,

�ω0 = gNI βNB0.

Now we can write the Hamiltonian of a free nucleus as

H = −µ · B = −�γI · B, (14.2)

where γ is the magnetogyric ratio defined by γ = µ
I�

just as in the classical
case. It is a characteristic constant for every type of nuclei; different nuclei
have different magnetogyric ratios. Vector I after quantization, becomes the
operator of angular momentum. The eigenvalues of this system, or the energy
levels are

E = γ�mB, m = −I,−I + 1, · · · , I − 1, I. (14.3)

The difference between two neighboring energy levels is γ�B, which defines
the resonance frequency depending on the magnetic field B and the particle.

There are other factors to be considered. The resonance frequency changes
with the chemical environment of the nucleus. An example is the fluorine res-
onance spectrum of perfluorioisopropyl iodide. Two resonance lines of fluorine
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are observed in the spectrum, and the intensities ratio 6:1 agrees with the
population ratio of the two groups of fluorine atoms. This phenomenon, called
the chemical shift, is proportional to the strength of the magnetic field ap-
plied. This effect comes up because electrons close to the nucleus change the
magnetic field around it; in other words, they create a diamagnetic shielding
surrounding the nucleus. If the static field applied is B0, then the electrons
precessing around the magnetic field direction produce an induced magnetic
field opposing B0. The total effective magnetic field around the nucleus is then

B = B0 − B′ = (1 − σ)B0,

where the parameter σ is called shielding coefficient. In some cases σ is de-
pendent on the temperature.

High resolution NMR spectroscopy has found that the chemical shifted
peaks are also composed of several lines, a result of the spin-spin coupling,
which is the second term in the NMR Hamiltonian:

HII =
∑
i>j

Ii · Jij · Ij.

14.1.3 Organization of the paper

Section 14.1 so far has introduced some basic facts of nuclear spins and atomic
physics.

In Section 14.2, we will give a motivation of what quantum computing is
about, and introduce universal quantum gates based on liquid NMR.

Section 14.3 describes the most recent progress in solid state NMR quan-
tum gate controls and designs.

Section 14.4 and 14.5 explains applications of the NMR quantum computer
to the Shor’s algorithm and a lattice gas algorithm.

14.2 Basic technology used in quantum computation
with NMR

14.2.1 Introduction to quantum computation

Quantum mechanics is one of the revolutionary scientific discoveries of the
20th century. The field of quantum computation, our emphasis in this arti-
cle, was born when the principles of quantum mechanics were introduced to
modern computer science. Quantum computation mainly studies the analysis
and construction of quantum algorithms with an eye toward surpassing the
classical counterparts. Another tightly connected field is quantum informa-
tion, which deals more with the storage, compression, encryption, and com-
munication of information by quantum mechanical means [40, 7]. Quantum
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teleportation [6, 11] and quantum cryptography [5, 29] are two of the most
known subjects of this field.

Modern computer science emerged when the eminent British mathemati-
cian Alan Turing invented the concept of Turing machine (TM) in 1936 [103].
Though very simple and primitive, TM captures the essence of computation.
It serves as the universal model for all known physical computation devices.
For many years, quantum effects had never been considered in the theory
of computation, until the early 1980’s. Benioff [4] first coined the term of
quantum Turing machine (QTM). Motivated by the problem that classical
computers can not simulate quantum systems efficiently, Feynman [35] posed
the quantum computer as a solution. Now we know that, in terms of com-
putability, quantum computers and classical computers possess exactly the
same computational power. But in terms of computational complexity, which
measures the efficiency of computation, there are many exciting examples
confirming that quantum computers do solve certain problems faster. The
two most significant ones are Shor’s factorization algorithm [96] and Grover’s
search algorithm [46], among other examples such as the Deutsch-Jozsa prob-
lem [24], the Bernstein-Vazirani problem [9], and Simon’s problem [97].

Current physical realization of quantum computers follows the quantum
circuit model [23], instead of the QTM model. Quantum circuit model is an-
other fundamental model of computation, which is equivalent to the QTM
model [118], but easier to implement. This model shares many common fea-
tures of the classical computers. In a classical computer, information is en-
coded in multi-bits binary states (0 or 1), transferred from one register to
another, and processed by logic gates in concatenation. In a quantum com-
puter, information is represented by the quantum states of the qubits, and
manipulated by various quantum control mechanisms. Those control mecha-
nisms trigger quantum operation to process information in a way resembling
the gates in a classical computer. Such quantum operations are called quantum
gates and a series of quantum gates in concatenation constitute a quantum
circuit [112]. However, because of the special effects of quantum mechanics,
major distinctions exist.

In contrast to a classical system, a quantum system can exist in different
states at the same time, an interesting phenomenon called superposition. Su-
perposition enables quantum computers to process data in parallel. That is
why a quantum computer can solve certain problems faster than a classical
computer. From now on, we will use the Dirac bra-ket notation. In this nota-
tion a pure one-qubit quantum state can be written as |φ〉 = a|0〉+ b|1〉. Here
|0〉 and |1〉 are the two basis states of the qubit, e.g., in NMR, the spin-up
and spin-down states, and a, b ∈ C with |a|2 + |b|2 = 1. When we make a
measurement of a qubit, the result might be either |0〉 or |1〉, with probabili-
ties |a|2 and |b|2 respectively. More generally, a string of n qubits can exist in
any state of the form |ψ〉 =

∑11...1
x=00...0 ψx|x〉, where ψx ∈ C and

∑ |ψx|2 = 1.
When we make a measurement on |ψ〉, it collapses to |x〉, one of the 2n basis
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states, with probability |ψx|2. This indeterministic nature makes the design
of efficient quantum algorithms highly non-trivial.

Another distinctive feature of the quantum circuit is that the operations
performed by quantum gates must be unitary (U†U = I). It is the natural
consequence of the unobserved quantum systems evolving according to the
Schrödinger equation. A quantum gate may operate on any number of qubits.
Here are some examples (cf. Fig. 14.4 for the circuit diagrams):

phase gate

CNOT gate

NOT gate Hadamard gate

controlled-phase gate

H Rθ

Rθ

Fig. 14.4. Circuit diagrams of the NOT/Hadamard/phase/CNOT/controlled-phase
gate.

1. NOT gate Λ0: Λ0|0〉 = |1〉, Λ0|1〉 = |0〉, or Λ0 =
[

0 1
1 0

]
.

2. The Hadamard gate H: H|0〉 = 1√
2
(|0〉 + |1〉), H|1〉 = 1√

2
(|0〉 − |1〉), or

H =
1√
2

[
1 1
1 −1

]
.

3. One-qubit phase gate Rθ: Rθ|0〉 = |0〉, Rθ|1〉 = eiθ|1〉, or

Rθ =
[

1 0
0 eiθ

]
.

4. Two-qubit controlled-NOT (CNOT) gate Λ1: Λ1|00〉 = |00〉, Λ1|01〉 =
|01〉, Λ1|10〉 = |11〉, Λ1|11〉 = |10〉, or,
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Λ1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

5. Two-bit controlled-phase gate Λ1(Rθ), where Rθ is the one-bit phase gate:
Λ1(Rθ)|00〉 = |00〉, Λ1(Rθ)|01〉 = |01〉, Λ1(Rθ)|10〉 = |10〉, Λ1(Rθ)|11〉 =
eiθ|11〉, or,

Λ1(Rθ) =

⎡
⎢⎢⎣

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 eiθ

⎤
⎥⎥⎦ .

The one-qubit and two-qubit quantum gates are of particular importance
to the construction of a quantum computer, because of the following univer-
sality result.

Theorem 14.2.1 (D. DiVincenzo [2, 25]) The collection of all the one-qubit
gates and the two-qubit CNOT gate suffice to generate any unitary operations
on any number of qubits. �

Fig. 14.5 illustrates, as an example, how to generate the two-qubit controlled-
phase gate using 2 CNOT gates and 3 one-qubit phase gates. The controlled-
phase gate is an important building block for the quantum Fourier transform;
cf. Fig. 14.14 and Fig. 14.15.

R θ
2

Rθ R θ
2

R− θ
2

Fig. 14.5. Construction of the controlled-phase gate with CNOT gates and phase
gates.

The standard procedure of executing a quantum algorithm on a quantum
circuit usually follows these steps:

1. Initialize the qubits.
2. Apply a proper sequence of quantum gates on the qubits.
3. Measure the qubits.

We will address the details of these steps in the scenario of NMR technology.

14.2.2 Realization of a qubit

As mentioned in Section 1, NMR quantum computing is accomplished by using
the spin-up and spin-down states of a spin-1

2 nucleus. A molecule with several
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nuclear spins may work as a quantum computer where each spin constitutes
a qubit . In fact, NMR has a long history in information science. Back in the
1950s, nuclear spins were already used for information storage in computers.

Liquid NMR receives more interest due to its mature technology and readi-
ness for application. For now, spin-1

2 nuclei such as proton and 13C are pre-
ferred because they naturally represent a qubit, but multi-level qubits formed
by spin-n nuclei, n = 1, 2, · · · , may provide more freedom in the future.
Through careful design, the potential qubits or nuclei are configured with
different resonance frequencies and can be distinguished from each other. In a
low viscosity liquid, dipolar coupling between nuclei is averaged away by the
random motion of the molecules. The J-coupling (scalar coupling) dominates
the spin-spin interaction, which is an indirect through-bond electronic inter-
action. Previously, a very difficult part of the system operation was to set the
quantum system to a special state (or to initialize it). Now a very complicated
technology has been developed to solve this problem.

Cl Cl Cl

ClH

13C 13C Cl Cl
13C

H

Fig. 14.6. The molecule structure of a candidate 3-qubit quantum system,
trichloroethylene (left), and a candidate 2-qubit quantum system, chloroform. The
trichloroethylene molecule has two labelled 13C and a proton, all having one-half-
spin nuclei. By considering the static magnetic field and spin-spin interaction, its
Hamiltonian can be written as H = −∑3

i=1 gniβniIi ·B +
∑2

i=1

∑3
j=i+1 Ii · Ji,j · Ij.

The chloroform has one labelled 13C and one proton.

Fig. 14.6 shows the structure of a trichloroethylene (TCE) molecule and a
chloroform molecule used in NMR quantum computers. The hydrogen nucleus
(proton) and two 13C nuclei in a TCE molecule form three qubits which
can be manipulated, while the chloroform molecule provides two qubits. The
sample used by an NMR quantum computer has a large number (∼ 1023) of
such molecules. This is also called a bulk quantum computer. Although most
molecules are in a totally random state at room temperature, there are still
a small amount of spins standing out and serving our purpose. Theoretically,
we use a statistical spin state called a pseudo-pure state, which has the same
transformation property as that of a pure quantum state.



14 Zhang, Chen, Diao, & Hemmer: NMR Quantum Computing 463

Let |φ〉 = a|0〉 + b|1〉 be the state of a single qubit, |0〉 for spin-up and |1〉
for spin-down. We also assume that a is real since only the relative phase is
important. Thus this state can be represented using two angles θ and ψ:

|φ〉 = cos
θ

2
|0〉 + eiψ sin

θ

2
|1〉, (14.4)

where θ ∈ [0, π] and ψ ∈ [0, 2π). If we think |0〉 and |1〉 as the standard basis
in C2, the quantum state corresponds to a unit vector in C2.

For the study of NMR spectroscopy with many nuclei, density matrices
are preferred and are often written as the linear combination of product oper-
ators [83]:

ρ = |φ〉〈φ|

=
[

cos2 θ
2 e−iψ sin θ

2

eiψ sin θ
2 sin2 θ

2

]

= I0 + sin θ cos ψIx + sin θ sin ψIy + cos θIz, (14.5)

where the product operators are defined as

I0 =
1
2

[
1 0
0 1

]
, Ix =

1
2

[
0 1
1 0

]
, Iy =

1
2

[
0 −i
i 0

]
, Iz =

1
2

[
1 0
0 −1

]
. (14.6)

They are different from the Pauli matrices only by a constant factor and share
the similar commutative law. Upon collecting all the coefficients of Ix, Iy, and
Iz together, we obtain a vector

v = [sin θ cos ψ sin θ sinψ cos θ]T ,

which is called a Bloch vector . In essence, we have defined a mapping from
the set of unit vectors |φ〉 ∈ C2 to the set of unit vectors v ∈ R3. We
have good reasons to ignore the coefficient of I0, since it has no effect on the
spectroscopy and remains unchanged under any unitary transformation. Each
Bloch vector determines a point on the unit sphere, called the Bloch sphere,
which is displayed in Fig. 14.7 [82, 83]. Bloch vectors have proven to be a very
good tool for NMR quantum operations.

The mapping defined above is surjective, because every point on the Bloch
sphere gives rise to a unit vector v = [sin θ cos ψ sin θ sin ψ cos θ]T for some
pair of (θ, ψ). Conversely, if v(θ′, ψ′) = v(θ, ψ), we get⎧⎨

⎩
cos θ = cos θ′,

sin θ cos ψ = sin θ′ cos ψ′,
sin θ sinψ = sin θ′ cos ψ′,

(14.7)

which can be used to show that the mapping is also injective if we identify
all pairs of (0, ψ) with one point and all pairs of (π, ψ) with another point. In
fact, these two sets correspond to two states |0〉 and |1〉, respectively.
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1

ψ

θ

Z
0

X
Y

Fig. 14.7. The Bloch sphere representation of a quantum state.

14.2.3 Transformation of quantum states: SU(2) and SO(3)

When a quantum operation is applied to a quantum system, it may change
the quantum state of the system from one to another. The representation of
the operation depends on how the quantum state is represented. For example,
(14.4) leads to an operator or matrix U which connects the new and old states
of a single spin quantum system:

|φ′〉 = U |φ〉,
where |φ′〉 and |φ〉 are the quantum state after and before the operation,
respectively. The fact that both states are unit vectors implies that U is a
2 × 2 unimodular complex matrix. More than that, U is also unitary, i.e.,
U ∈ SU(2)6, a Lie group endowed with a certain topology.

If the quantum state is represented by a three-dimensional Bloch vector,
the effect of a unitary operation can be viewed as that of a rotation which
rotates the Bloch sphere, and the operator is represented by a 3×3 real matrix
S. If the quantum system has states v and v′ in Bloch vector form before and
after the operation, respectively, then

v′ = Sv.

The matrix S is a proper rotation matrix, i.e., S ∈ SO(3)7. It is isometric
and preserves the three-fold product.
6 SU(n) is the special unitary group of n×n matrices. An n×n matrix A ∈ SU(n)

if and only if A is unitary, i.e., A · A† = In, where A† is the Hermitian adjoint of
A, and det A = 1.

7 SO(3) denotes the special orthogonal group of 3 × 3 matrices. An n × n matrix
A ∈ SO(n) if and only if A is real, AAT = In and det A = 1.



14 Zhang, Chen, Diao, & Hemmer: NMR Quantum Computing 465

If both S and U represent the same physical operation, such as a trans-
formation induced by a series of pulses in NMR, there must be a connection
between them. One can show that there is a mapping R from SU(2) to SO(3)
such that S = R(U), for any U ∈ SU(2) and its corresponding Bloch-sphere
representation S [88]. Simple computation shows that the entry of matrix
S = R(U) at the kth row and ith column is given as

Ski = Tr(σk U Ii U†), (14.8)

where σk are the Pauli matrices8, and Tr is the trace operator. It can also be
shown that R is a two-to-one homomorphism between SU(2) and SO(3) with
kernel ker(R) = {I,−I}. It coincides with the fact that U and −U in SU(2)
represent the same operation because only the relative phase matters. This
mapping is also surjective, so it defines an isomorphism from the quotient
group SU(2)/ker(R) to SO(3). We provide a more detailed discussion about
this isomorphism in the Appendix.

It is known that any U ∈ SU(2) can be written into an exponential form
parameterized by a angle θ ∈ [0, 2π) and a unit vector n such that

U(θ,n) = e−i θ
2n·σ

=
[

cos θ
2 − in3 sin θ

2 − sin θ
2 (n2 + in1)

sin θ
2 (n2 − in1) cos θ

2 + in3 sin θ
2

]

= cos θ
2I − i sin θ

2n · σ,

(14.9)

where σ = [σx, σy, σz]. With this parameterization of SU(2), entries of S =
R(U) can be computed using (14.8) as

Sij = R(U)ij = cos θ δij + (1 − cos θ)ninj +
3∑

k=1

sin θ εikjnk. (14.10)

It should be noted now that S coincides with a rotation about the axis along
n with an angle θ in the three dimensional Euclidean space after comparing
Sij with the standard formula of a rotation matrix. This interpretation is
important in understanding the terminologies used in NMR. For example, the
rotations around x, y, and z axes (x/y/z-rotations) with an arbitrary angle θ
define the following three unitary operators in SU(2), respectively:

Xθ = e−iθσx/2 =
[

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

]
, (14.11)

Yθ = e−iθσy/2 =
[

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

]
, (14.12)

Zθ = e−iθσz/2 =
[

e−iθ/2 0
0 eiθ/2

]
. (14.13)

8 The Pauli matrices are σx = [ 0 1
1 0 ], σy =

[
0 −i
i 0

]
, and σz =

[
1 0
0 −1

]
.
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14.2.4 Construction of quantum gates

From Theorem 14.2.1, we know that the collection of all the one-qubit gates
and the two-qubit CNOT gate are universal. In addition, the following fact [85,
p. 175] holds for one-qubit quantum gates:

Theorem 14.2.2 Suppose U is a unitary operation on a single qubit. Then
there exist real numbers α, β, γ, and δ such that

U = eiαZβYγZδ.

�
For example, the Hadamard gate H can be decomposed as H = ei π

2 Yπ/2Zπ.
Clearly, the x/y/z rotation gates provide building blocks sufficient to construct
any one qubit unitary gate. In this subsection, we will show how to realize
these one-qubit rotation gates and the two-qubit CNOT gate using NMR. We
will also show how to decouple the interaction between two spins, a process
called refocusing [85].

One-qubit gates

A single spin system has Hamiltonian H = −µ · B, where µ is the magnetic
moment, and

B = B0ez + B1(ex cos(ωt) + ey sin(ωt)) (14.14)

is the magnetic field applied. B0, a large constant, is the amplitude of the
static magnetic field, and B1 is the amplitude of the oscillating magnetic field
in the x-y plane. When B1 = 0, the Hamiltonian and Schrödinger equation
can be obtained as ([85])

H =
ω0

2
σz (14.15)

and
i∂t|ψ(t)〉 = H|ψ(t)〉, (14.16)

respectively, where � has been divided from both sides in the second equation
and we take � away from H in the first one just for simplicity. The Larmor
frequency ω0 = −B0γ is defined by the nuclei and the magnetic field, see
(14.3). Assume that the initial state is |ψ0〉 = a0|0〉+b0|1〉. Then the evolution
of the quantum state of the spin and the density matrix can be solved directly
and given as

|ψ(t)〉 = e−iω0σzt/2|ψ0〉

=
[

e−iω0t/2 0
0 eiω0t/2

] [
a0

b0

]

= e−iω0t/2

[
1 0
0 eiω0t

]
|ψ0〉,

ρ(t) = e−itHρ(0)eitH .
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This evolution is also called a chemical shift evolution, resembling the
precessing of a magnet in a static field. Recall the Bloch vector on the Bloch
sphere. It is exactly Zθ, the rotation operator around the z axis with θ = ω0t.

To achieve an x-rotation operator, we need a small magnetic field trans-
verse to the z direction to control the evolution of the quantum state. The
Hamiltonian is given as in (14.14) by choosing B1 different from zero:

H = −µ · B =
ω0

2
σz +

ω1

2
(σx cos(ωt) + σy sin(ωt)) ,

where ω1 depends on the x-y plane component B1 of the magnetic field,
ω1 = −B1γ. To solve the Schrödinger equation, we put |ψ(t)〉 in a “frame”
rotating with the magnetic field around the z axis at frequency ω, |φ(t)〉 =
eiωtσz/2|ψ(t)〉. With this substitution, the Schrödinger equation (14.16) be-
comes

i∂t|φ(t)〉 = (eiωσzt/2He−iωσzt/2 − ω

2
σz)|φ(t)〉. (14.17)

Using properties

eiωσzt/2σze
−iωσzt/2 = σz,

eiωσzt/2σxe−iωσzt/2 = σx cos(ωt) − σy sin(ωt),
eiωσzt/2σye−iωσzt/2 = σx sin(ωt) + σy cos(ωt),

(14.18)

we obtain

i∂t|φ(t)〉 =
(

ω0 − ω

2
σz +

ω1

2
σx

)
|φ(t)〉,

|φ(t)〉 = e−i((ω0−ω)σz/2+ω1σx/2)t|φ(0)〉. (14.19)

We know from (14.9) that this is a rotation around the axis

n =
1√

1 + ( ω1
ω0−ω )2

(
z +

ω1

ω0 − ω
x
)

. (14.20)

An important case is ω0 = ω, also called the resonance case where its
name came from the zero denomination in (14.20). By (14.19), we see that a
relatively weak transverse magnetic field causes a rotation around the x axis:

|ψ(t)〉 = e−iω0σzt/2|φ(t)〉 = e−iω0tσz/2e−iω1tσx/2|φ(0)〉 = ZθXβ |ψ(0)〉,
(14.21)

where Xβ = e−iω1tσx/2, β = ω1t. By applying another Z−θ, we obtain a rota-
tion Xβ as desired. Since the frequency of the precession is in radio frequency
band, the field applied is called an RF pulse.

When |ω0 −ω| � ω1, the rotation axis direction is almost along z and the
RF pulse has no effect on it:

|ψ(t)〉 = e−iωσzt/2|φ(t)〉 ≈ e−iω0tσz/2|ψ(0)〉 = Zω0t|ψ(0)〉,
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thus we can tell one qubit from another because their resonance frequencies are
designed to be different. There are still cases where the difference of resonance
frequencies between spins is not large enough. The RF pulse may cause similar
rotations on all those spins. To avoid or at least minimize it, a soft pulse is
applied instead of the so called hard pulse. It is a pulse with longer time span
and weaker magnetic field, in other word, a smaller ω1. This strategy makes
these “close” qubits fall into the |ω0 − ω| � ω1 case.

If we change the magnetic field to

B = B0ez + B1(ex cos(ω0t + α) + ey sin(ω0t + α)), (14.22)

the Hamiltonian will become

H =
ω0

2
σz +

ω1

2
(σx cos(ω0t + α) + σy sin(ω0 + α)) (14.23)

where ω1 is defined as before. The RF field is almost the same as (14.14) in
the resonance case except a phase shift. Using the same rotation frame as
before with ω = ω0, we obtain

i∂t|φ(t)〉 =
ω1

2
(σx cos(α) + σy sin(α))|φ(t)〉, (14.24)

after simplification. After time duration t, the new system state is given as

|φ(t)〉 = e−i
ω1
2 (σx cos(α)+σy sin(α))t|φ(0)〉, (14.25)

and the evolution operator can be computed using (14.9) as

Uθ/2,α = e−i
ω1
2 (σx cos(α)+σy sin(α))t

=
[

cos( θ
2 ) −i sin( θ

2 )e−iα

−i sin( θ
2 )eiα cos( θ

2 )

]
,

(14.26)

where θ = ω1t. This is a one-qubit rotation operator, and sometimes is called
a Rabi rotation gate. When α = π/2,

Uθ/2,π/2 =
[

cos( θ
2 ) − sin( θ

2 )
sin( θ

2 ) cos( θ
2 )

]

= Yθ.
(14.27)

We have achieved a y-rotation operator just by adding a phase shift to the
RF field.

Two-qubit gates

The construction of a two-qubit gate requires the coupling of two spins. In a
liquid sample of NMR, J-coupling is the dominating coupling between spins.
Under the assumption that the resonance frequency difference between the
coupled spins is much larger than the strength of the coupling (a so-called



14 Zhang, Chen, Diao, & Hemmer: NMR Quantum Computing 469

weak coupling regime), the total Hamiltonian of a two spin system without
transverse field may be given as

H =
1
2
ω1σ

1
z +

1
2
ω2σ

2
z +

1
2
Jσ1

zσ2
z , (14.28)

where ωi is the frequency corresponding to spin i, σi
z is the z projection

operator of spin i, for i = 1, 2, and J is the coupling coefficient. Take the
chloroform in Fig. 14.6 for example [16, 82]. In a 11.7T magnetic field, the
precession frequency of 13C is about 2π×500MHz and the precession frequency
of proton is about 2π×125MHz. The coupling constant J is about 2π×100Hz.
Here we set B1 = 0, which means no transverse magnetic field is applied
and those terms such as σx, σy do not appear. The remaining terms in the
Hamiltonian only contains operators σ1

z or σ2
z , which are commutative. Thus,

we can obtain the eigenstates and eigenvalues of this two-spin system and we
map the set of eigenstates to the standard basis of C4, as follows:

|00〉 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , |01〉 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ , |10〉 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , |00〉 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ; (14.29)

H|00〉 = k00|00〉, k00 = 1
2ω1 + 1

2ω2 + 1
2J ;

H|01〉 = k01|01〉, k01 = 1
2ω1 − 1

2ω2 − 1
2J ;

H|10〉 = k10|10〉, k10 = − 1
2ω1 + 1

2ω2 − 1
2J ;

H|11〉 = k11|11〉, k11 = − 1
2ω1 − 1

2ω2 + 1
2J.

(14.30)

Since the matrix is diagonal, the evolution of this two-spin system can be
easily derived as

|ψ(t)〉 = e−iHt|ψ(0)〉 =

⎡
⎢⎢⎣

e−ik00t

e−ik01t

e−ik10t

e−ik11t

⎤
⎥⎥⎦ |ψ(0)〉. (14.31)

We can also rewrite the one qubit rotation operators for this two 1
2 -spin

system in matrix form with respect to the same basis:

Z1
π/2 =

⎡
⎢⎢⎣

e−iπ/4

e−iπ/4

eiπ/4

eiπ/4

⎤
⎥⎥⎦ , (14.32)
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Z2
−π/2 =

⎡
⎢⎢⎣

eiπ/4

e−iπ/4

eiπ/4

e−iπ/4

⎤
⎥⎥⎦ , (14.33)

Y 2
π/2 =

√
2

2

⎡
⎢⎢⎣

1 −1
1 1

1 −1
1 1

⎤
⎥⎥⎦ , (14.34)

Y 2
−π/2 =

√
2

2

⎡
⎢⎢⎣

1 1
−1 1

1 1
−1 1

⎤
⎥⎥⎦ , (14.35)

where Zi
θ is the rotation operator for spin i with angle θ around the z axis

while keeping another spin unchanged, and all Y i
θ are similarly defined oper-

ators about the y axis; see (14.12). A careful reader may raise issues about
the one-qubit gate we have obtained in subsection 14.2.4 because the coupling
between two qubits always exists and has not been considered. We need to
turn off the coupling when we only want to operate one spin but the coupling
is non-negligible. This is in fact one of the major characteristic difficulties
associated with the NMR quantum computing technology. A special technol-
ogy called refocusing is useful. It works as follows. We apply a soft π pulse
on the spare spin that we don’t want to change at the middle point of the
operation time duration while we are working on the target spin. The effect
is that the coupling before the pulse cancels the one after the pulse, so the
result of no-coupling is achieved. Another π pulse will be needed to turn the
spin back. All pulses are soft.

This technology is so important that we now state it here as a theorem.

Theorem 14.2.3 Let H = ω1
2 σ1

z + J
2 σ1

zσ2
z +A be a given Hamiltonian, where

A is a Hamiltonian that does not act on spin 1 and commutes with σ2
z . Then

the evolution operators of A and H satisfy

e−iAt = −X1
πe−iHt/2X1

πe−iHt/2, (14.36)

i.e., the collective evolution of the quantum system with Hamiltonian H and
additional two X1

π-pulses at the middle and the end of the time duration,
equals that of a system with Hamiltonian A (up to a global phase shift π, or
a factor −1). �

Proof. Assume that the time duration is t and denote U for

U = X1
πe−iHt/2X1

πe−iHt/2. (14.37)

Note that X1
π = e−i π

2 σ1
x and it commutes with A which contains no operators

acting on spin 1, thus
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U = X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 e−iAt. (14.38)

It suffices to prove that the part before e−iAt satisfies

B = X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 = −I. (14.39)

We first check the effect of B on the four basis vector. We have

B|11〉 = X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 |11〉
= e−i

−ω1+J
4 t(−i)X1

πe−i(
ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 |01〉
= (−i)e−i

−ω1+J
4 tX1

πe−i
ω1−J

4 t|01〉
= (−i)2|11〉
= −|11〉,

(14.40)

B|01〉 = X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 X1
πe−i(

ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 |01〉
= e−i

ω1−J
4 t(−i)X1

πe−i(
ω1
2 σ1

z+ J
2 σ1

zσ2
z) t

2 |11〉
= (−i)e−i

−ω1+J
4 tX1

πe−i
−ω1+J

4 t|11〉
= (−i)2|01〉
= −|01〉,

(14.41)

and similarly,
B|10〉 = −|10〉,
B|00〉 = −|00〉. (14.42)

In the computation above, we have used the fact that X1
π has no effect

on the second spin and the four basis vectors |00〉, |01〉, |10〉 and |11〉 are the
eigenstates of the operator ω1

2 σ1
z + J

2 σ2
zσ1

z . The result shows that B = −I, and
we are done. �

When the Hamiltonian is given in the form as (14.28), the above theorem
tells us that both the chemical shift evolution (precession) and the J-coupling
effect on spin 1 are removed and only the term ω2

2 σ2
z remains. We obtain a

z-rotation of spin 2 while freezing spin 1. By combining it with several hard
pulses, we can also achieve any arbitrary rotation on spin 2 with the motion
of spin 1 frozen [72]. Similar computation shows that a hard π pulse applied
at the middle point of the time duration cancels the chemical shift evolution
of both spins. This can be seen by checking the identity

e−iHt/2X1
πX2

πe−iHt/2 =

⎡
⎢⎢⎣

e−iJt/2

eiJt/2

eiJt/2

e−iJt/2

⎤
⎥⎥⎦ . (14.43)

Another hard π pulse can rotate two spins back, so we have achieved an
evolution which has only the J-coupling effect, denoted by Zθ:
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Zθ =

⎡
⎢⎢⎣

e−iθ/2

eiθ/2

eiθ/2

e−iθ/2

⎤
⎥⎥⎦ ,

and when θ = π/2,

Zπ/2 =

⎡
⎢⎢⎣

e−iπ/4

eiπ/4

eiπ/4

e−iπ/4

⎤
⎥⎥⎦ . (14.44)

Although we give only an example of the 2-qubit system in the above, the
reader should note that a general method is available to reserve only the
couplings wanted while keeping all the others cancelled for multi-qubit sys-
tems [58, 70, 72]. Combining operators in (14.32) through (14.35) and (14.44),
we can now construct a CNOT gate as in Fig. 14.8 which includes four one-
qubit π/2 rotations around y or z axes and one two-qubit π/2 rotation. The
total operator, denoted by CN , can be computed as

CN = Z1
π/2Y

2
−π/2Z

2
−π/2Zπ/2Y

2
π/2 = e−

π
4 i

⎡
⎢⎢⎣

1
1

0 1
1 0

⎤
⎥⎥⎦ , (14.45)

which is a CNOT gate up to a phase of −π/4 [82].

Yπ/2

Zπ/2

Zπ/2

Z−π/2 Y−π/2

Fig. 14.8. The quantum circuit used to realize a quantum controlled-not gate.

We have shown how to construct one-qubit gates and the two-qubit CNOT
gate using the NMR technology. The simple pulse design works fine in ideal
situations. In practice, errors arise from various factors. Decoherence causes
the lost of quantum information with time. Thus, all operations should be
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completed within a short time, roughly constrained by the energy relaxation
time T1 and the phase randomization time T2. Again, take the chloroform for
an example. For protons, T1 ≈ 7sec and T2 ≈ 2sec; for carbons, T1 ≈ 16sec
and T2 ≈ 0.2sec [16, 82]. The pulses have to be short enough so that all the
pulses can be jammed in the time window. Ideally, a pulse can be completed
quite fast, but this may incur undesirable rotations in other qubits because
the frequency band width is inversely proportional to the time length of the
pulse. A shorter and stronger pulse will have a wider frequency band that may
cover the resonance frequency of another spin, called cross-talking . It should
also be noted that both T1 and T2 are defined and measured in simplified
situation, and they can only be used as an approximation of the decoherence
rate for the quantum computation. Coupling is also a problem which makes
the pulse design much more complicated. Finally, any experimental facility is
not perfect, which may introduce more errors. Typical error resources include
inhomogeneities in the static and RF field, pulse length calibration errors,
frequency offsets, and pulse timing/phase imperfections.

If the quantum circuit can be simplified and the number of gates needed is
reduced, the requirements on the pulses can be alleviated. Mathematicians are
looking for methods to find time-optimal pulse sequences [43, 60, 61, 99], with
the goal of finding the shortest path between the identity and a point in the
space of SU(n) allowed by the system and the control Hamiltonians. Besides
that, NMR spectroscopists have already developed advanced pulse techniques
to deal with system errors such as cross-talking and coupling. They turn out
to work well and are now widely used in NMR quantum computation. Such
techniques include composite pulses [21, 36, 71, 55, 56, 108] and pulse shaping.
The latter consists mainly of two methods: phase profiles [89] and amplitude
profiles [39, 66].

14.2.5 Initialization

An NMR sample eventually will go into its equilibrium state when no RF
pulse is applied for a long time. Then the density matrix is proportional to
e−H/kT , according to the Boltzmann distribution, where k = 1.381×10−23J/K
and T is the absolute temperature. Normally, the environment temperature
is far larger than the energy difference between the up and down states of the
spin, and H/kT is very small, about 10−4. We also make the assumption that
the coupling terms are small enough compared with the resonant frequency,
thus we can make a reasonable approximation of the equilibrium state density
matrix of a system with n spins:

ρeq =
e−H/kT

tr(e−H/kT )
≈ I − 1

kT
(ε1σ1

z + ε2σ
2
z + · · · + εnσn

z ). (14.46)

In the four operators appearing in the density matrix (14.5), only those
with zero traces can be observed in NMR. The operator I0 is invisible, and
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moreover, it remains invariant under any unitary similarity transformation.
Therefor, we only need to take care of the zero-trace part of the initial den-
sity matrix, noting that only that part (called deviation) is effective. Most
algorithms prefer an initial state such as

ρ0 =
1 − ε

2n
I + ε|00 · · · 0〉〈0 · · · 00|,

which is an example of the so called pseudo-pure states, corresponding to the
pure state |00 · · · 0〉.

To initialize the system to a pseudo-pure state as above, we may use a
scheme called averaging. Let us explain this for a 2-spin system. Suppose we
have three 2-spin subsystems with density matrices

ρ1 =

⎡
⎢⎢⎣

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎤
⎥⎥⎦ , ρ2 =

⎡
⎢⎢⎣

a 0 0 0
0 c 0 0
0 0 d 0
0 0 0 b

⎤
⎥⎥⎦ , ρ3 =

⎡
⎢⎢⎣

a 0 0 0
0 d 0 0
0 0 b 0
0 0 0 c

⎤
⎥⎥⎦ , (14.47)

respectively, where a, b, c, and d are nonnegative, and a+ b+ c+d = 1. These
are three diagonal matrices with three of their diagonal elements in cyclic
permutation.

Now, we mix these three subsystems together (for n-qubit system, we may
have 2n −1 subsystems) and assume that the three subsystems have the same
signal scale. Because the readout is linear with respect to the initial state, we
are in fact working on a system with an effective initial density matrix

1
3

3∑
i=1

ρi =
1
3

⎡
⎢⎢⎣

3a
b + c + d

b + c + d
b + c + d

⎤
⎥⎥⎦

=
b + c + d

3
I +

1
3

⎡
⎢⎢⎣

4a − 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (14.48)

which is a pseudo-pure state corresponding to |00 · · · 0〉.
Various methods have been developed to achieve this effect of averaging.

Because ρ1, ρ2, and ρ3 differ only by a permutation of the diagonal elements,
a sequence of CNOT pulses can be used to transform one to another. In
most cases, we only have one sample, the same algorithm can be repeated
on the very sample three times but with different initial states ρ1, ρ2, and
ρ3, respectively. At last, after all the three outputs are obtained and added
together (average), we achieve the same result as what we will get when the
algorithm is employed on a system with the expected initial state |00 · · · 0〉.
This is called “temporal averaging” [63]. Gradient fields can also be used
to divide the sample into different slices in space which are prepared into
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different initial states, and the averaging is realized spatially, called “spatial
averaging” [19]. The number of the experiments and pulses needed grows very
large when the number of qubits increases. For example, 9 experiments are
combined in order to prepare one pseudo-pure state for a 5-qubit system and
48 pulses are used to form one pseudo-pure state in a 7-qubit system [41] after
modifications such as logical labeling [42, 106] and selective saturation [62].

14.2.6 Measurement

An NMR computer differs from other quantum computers in that it works on
an ensemble of spins instead of just a single one. It produces an observable
macroscopic signal which can be picked up by a set of coils positioned on
the x-y plane, as shown in Fig. 14.3. The signal measures the change rate of
the magnetic field created by a large number of spins in the sample rotating
around the z-axis, called free induction decay (FID). Due to relaxation, peaks
of the Fourier transform of the signal, or spectra, have width. However, we do
not need to worry about that since it will not make any substantial difference
in our discussion here. One disadvantage is that the readout from NMR is
an average of all the possible states, in contrast to most existing quantum
algorithms that ask for the occurrence of only a single state. But it is possible
for one to modify ordinary quantum algorithms to make NMR results usable.

The magnetization detected by the coil in Fig. 14.3 is proportional to the
trace of the product of the density matrix with σ+ = σx + iσy:

Mx + iMy = nV 〈µx + iµy〉 = nV γ�Tr(ρ(σx + iσy)), (14.49)

where γ is the magnetogyric ratio as in (14.3) and ρ is the density matrix.
When the external RF magnetic field is removed, the density matrix will
change according to the system’s Hamiltonian as we discussed earlier. If we
decompose the density matrix into a sum of product operators as in (14.5),
only Ix and Iy contribute to the readout. We can not “see” the coefficients
of I0 and Iz. Recall (14.18): if a one-spin system begins from density matrix
ρ0 = I0 + sin θ cos ψIx + sin θ sin ψIy + cos θIz, the magnetization will rotate
with the resonant frequency as

Mz + iMy = C Tr(e−iHtρ0e
iHtσ+)

= C Tr(e−iHt(I0 + sin(θ) cos(ψ)Ix+
sin(θ) sin(ψ)Iy + cos(θ)Iz)eiHtσ+)

= C Tr((sin θ cos ψ(cos(ωt)Ix + sin(ωt)Iy)+
sinθ sinψ(cos(ωt)Iy − sin(ωt)Ix))σ+)

= C sin θ ei(ωt+ψ),

(14.50)

where C = nV γ�. This rotating magnetization will introduce an oscillating
electric potential in the receiver coils, which will be processed by a computer
to generate the spectra. Note that the signal is proportional to sin θ. If an x
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rotation with angle π/2 is applied on the spin before the measurement, the
magnetization will become

Mz + iMy =
√

2
2

C(sin θ − i cos θ)eiωt.

For simplicity, we have chosen ψ = 0. The imaginary part is proportional to
the population difference:

cos θ = cos2
θ

2
− sin2 θ

2
.

Computation of a two-spin system is complicated, so we will only give some
partial results here. The purpose is to point out what methodology is used.
We will still use the basis given by (14.29) and the Hamiltonian in (14.28).
The system begins from a density matrix as

ρ0 =

⎡
⎢⎢⎣

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎤
⎥⎥⎦ . (14.51)

The operator σ+ is a summation of operators from the two subsystems:

σ+ = σ1
+ + σ2

+

=

⎡
⎢⎢⎣

0 2 2 0
0 0 0 2
0 0 0 2
0 0 0 0

⎤
⎥⎥⎦ .

(14.52)

The magnetization in the x-y plane is composed of four frequencies:

Mx + iMy = C Tr(e−iHtρ0e
iHtσ+)

= C (ρ31e
i(ω1+J)t + ρ42e

i(ω1−J)t + ρ43e
i(ω2−J)t + ρ21e

i(ω2+J)t).
(14.53)

The spectrum has two pairs of peaks, one pair around the precession fre-
quency ω1, another pair around ω2. See Fig. 14.9. The splitting is a result of
coupling. If the system have more than two spins, the coupling will split up a
peak into up to 2n−1 peaks where n is the number of spins. We also combine
all the constants in C to make the formula concise. Only four of the elements
out of the density matrix appear in this spectrum, so we need to design certain
control pulses to move the expected information to these four positions where
numbers can be shown via free induction signal. If multi-tests are allowed,
theoretically, all the elements of the density matrix can be retrieved [15, 14].
It is also possible to transport the desired information (computational results)
to the four positions where the observer can see.



14 Zhang, Chen, Diao, & Hemmer: NMR Quantum Computing 477

J J J J

ω1 ω2

Fig. 14.9. Simplified stick spectra of a two-qubit molecule. The two dotted lines
show two peaks at ω1 and ω2, respectively, when no coupling is applied (J = 0).
After coupling, every peak is split into two small peaks with the intensities reduced
to half.

A typical pulse used in reading out is a hard Xπ/2 pulse which rotate all
the spins about the x-axis with angle π/2. Let us still use two-spin systems as
an example. The operation is the tensor product of two x-rotation operators,
i.e., Xπ/2 = X1

π/2X
2
π/2. The imaginary part of the four effective elements of

the density matrix ρ′ after the operation, utilizing the fact that the density
matrix is Hermitian, are

Im(ρ′31) = 1
4 (ρ33 + ρ44 − ρ11 − ρ22 − 2Im(ρ21) − 2Im(ρ34)),

Im(ρ′42) = 1
4 (ρ33 + ρ44 − ρ11 − ρ22 + 2Im(ρ21) + 2Im(ρ34)),

Im(ρ′43) = 1
4 (ρ22 + ρ44 − ρ11 − ρ33 + 2Im(ρ31) + 2Im(ρ24)),

Im(ρ′21) = 1
4 (ρ22 + ρ44 − ρ11 − ρ33 − 2Im(ρ31) − 2Im(ρ24)).

(14.54)

Find the sum of Im(ρ′31) and Im(ρ′42) and that of Im(ρ′43) and Im(ρ′21):

Im(ρ′31 + ρ′42) = − 1
2 (ρ11 + ρ22 − ρ33 − ρ44),

Im(ρ′43 + ρ′21) = − 1
2 (ρ11 − ρ22 + ρ33 − ρ44).

(14.55)

Because what the coils pick up is the change rate of the magnetic field rather
than the magnetic field itself, the imaginary part we have listed above is
reflected in the real part of the spectra. The computation above shows that
the sum of the real parts of each pair of peaks in the spectra is proportional
to the population difference between the spin-up and the spin-down states of
the corresponding spin.

14.3 Solid state NMR

Liquid NMR, discussed in Section 14.2, has several constrains that make a
liquid NMR quantum computer not scalable. At first, as the result of the
pseudo-pure state preparation, the signal-noise ratio decreases exponentially
when the number of qubits increases, limiting its ability to realize more qubits.
Another difficulty arises when we want to control the system as accurately as
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desired. Because the range of the chemical shift is limited by nature, the
number of qubits represented by the same type of nuclei, such as carbon, is
constrained as the resonance frequency gaps between any two qubits must be
large enough so that we can distinguish the qubits easily and control them
with great precision. It is estimated that a quantum computer realized by
liquid state NMR can has at most 10 to 20 qubits.

Solid state NMR has the potential to overcome many of the problems of its
liquid state counterpart as in the preceding paragraph. These advantages are
derived partly from the lack of motion of the molecules and partly from the
ability to cool to low temperatures. As with many potential solutions, there
are tradeoffs to consider. Here we summarize:

1) At low temperatures, near or below that of liquid helium, it is possible to
initialize electron spins using the thermal Boltzman distribution. Nuclear spins
do not become significantly oriented until much lower temperatures because
of their 1000 times lower energies, but there are existing pulse RF sequences
that can transfer an electron spin orientation to nearby nuclear spins using
their mutual spin-spin interaction. In principle, this solves the problem of
qubit initialization. In practice, the thermal initialization process can be slow
since it depends on the electron spin population lifetime. It is possible to find
systems with short electron spin lifetimes, but this will tend to result faster
decoherence of the nuclear spins, since they must be coupled to the electron
in order to initialize in the first place.

2) Because the molecules in a solid are usually not tumbling, the dipole
coupling between nearby spins does not average out. This has the advantage
of making multi-qubit gates faster, since the dipole coupling is much larger
than the scalar coupling. The orientation dependent chemical shifts also do
not average out, in principle making individual qubits easier to address so
that more qubits can be used. Here, it should be noted that custom molecules
containing electron spins [111] can be used to enhance this effect. There is a
tradeoff to consider, in that the faster interaction with nearby spins provided
by dipole coupling can also lead to faster decoherence times.

3) Spin lifetimes in solids can be much longer than in liquids. Lack of
molecular motion eliminates the spatial diffusion of spins which is a problem
in liquid NMR for times in the range of milliseconds or longer [34]. Phonons
can cause decoherence in solids at room temperature, but this can be strongly
suppressed at temperatures achievable in liquid helium. It is not unusual to see
spin population lifetimes of minutes in solids, especially at low temperatures.
Unfortunately, spin coherence times are usually somewhat shorter due to de-
phasing caused by mutual spin flips through the strong dipole coupling. To
eliminate this decoherence mechanism, there are two main approaches. One
is to disperse the active molecule, as a dopant in a spin-free host. Actually
the host does not need to be completely spin free provided its spins are far
enough off resonance with those of the active molecule. Another technique is
to use stoichiometric materials consisting of relatively large unit cells contain-



14 Zhang, Chen, Diao, & Hemmer: NMR Quantum Computing 479

ing many spin-free atoms. The idea for both these approaches is to keep the
active nuclei relatively far apart, except for nearest neighbors.

Beside above differences, nuclei with non-zero spin in solid state can also
be used for quantum computation [67] and manipulated similar to the liquid
state NMR. Because all the nuclei are fixed in space, a static magnetic field
with strong gradient in one direction separates the nuclei into different layers
along the direction. Every layer of nuclei can be regarded as a qubit and the
qubits have different resonance frequencies as the magnetic field is different
from one layer to another. Readout also can be made to take advantage of the
bulk quantum computer much like the liquid NMR. Signal is picked up using
methods like magnetic resonance force microscopy.

There are two types of methods to make such nuclei arrangement. Crys-
tal, such as cerium-monophosphide (CeP), is a natural choice, where the 1/2
spin 31P nuclei form periodical layers in the crystal with inter-layer distance
about 12Å [45, 116]. Another method is to grow a chain of 29Si that has 1/2
spin along the static field direction on a base of pure 28Si or 30Si which are
both 0 spin nuclei [1, 68]. The last one combines the mature crystal growth
and processing technology for silicon from the semiconductor industry. Liquid
crystal [117] or solid-state sample [69] are also candidates for realizing NMR
quantum computer.

Recently, there has been considerable progress made in the area of optically
addressed spins in solids. As a result some highly scalable designs have recently
come forward that have the potential to eliminate all of the limitations of
NMR. Aside from potentially solving NMR’s problems, optical addressing
has the important advantage that it would provide an interface between spin
qubits and optical qubits, which is essential to interface with existing quantum
communication systems, and for quantum networking in general.

Optically addressed spins are better known in the literature as spectral
hole burning (SHB) materials [80]. Most of these are dopant-host systems that
exhibit strong zero-phonon optical absorption lines at low temperature. Due to
the inherent inhomogeneity of dopant-host systems it is often found that this
optical zero-phonon linewidth is much larger than that of the individual atoms.
Furthermore, when these transitions are excited with a narrowband laser,
the resonant atoms can be optically pumped into a different ground state,
making the material more transparent at the laser frequency. This is known
as burning a spectral hole, hence the name SHB . In many SHB materials,
the optical pumping is into different ground state spin sublevels, and hence
the hole burning process can initialize spin qubits, as illustrated in Fig. 14.10.
This type of spin qubit initialization can be much faster than Boltzmann
initialization, especially in spin systems with long spin population lifetimes,
since the tradeoff between spin lifetime and initialization speed is removed.

In addition to optical initialization of spins, the hole burning process can
also be used to readout the spin state of the qubits. This happens when
the quantum algorithm returns some of the spin qubits to the state that
was initially emptied by the laser, resulting in a temporary increase in laser
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Fig. 14.10. (a) The signature of spectral hole burning is a narrowband dip in the
optical absorption spectrum. (b) This dip occurs when an optical laser bleaches out
an ensemble of atoms at a particular transition frequency. (c) In the case when
bleaching is due to spin sublevel optical pumping, it can be used to initialize qubits.

absorption and/or fluorescence that is proportional to the final population of
this spin state. Of course, the readout process also re-initializes, so one must
take care to work with a large enough ensemble to achieve the desired readout
fidelity. In general, optical readout is orders of magnitude more sensitive than
the typical NMR coil, and so it is possible to work with small ensembles
consisting of very dilute dopant-host systems that can have very long spin
coherence lifetimes.

Spin qubit coherence lifetime in SHB materials can be lengthened by a
variety of techniques. In dilute dopant-host systems, the choice of a spin-free or
low-spin host has the largest benefit. Examples include praseodynium [50] or
europium [32] doped in a yttrium-silicate host (Pr : Y SO or Eu : Y SO) and
nitrogen-vacancy [110] (NV) color centers doped in diamond, see Fig. 14.11. In
Pr : Y SO only the yttrium host nuclei have spin but the magnetic moment is
very weak. In NV diamond, the only host spins are 1% abundant 13C which
can be virtually eliminated with isotopically pure material. In dopant-host
systems dephasing due to host spins are reduced by the so-called frozen core
effect [101], wherein the magnetic field generated by the active (qubit) spin
system tunes nearby host nuclei out or resonance with the rest of the crystal up
to a distance which defines the frozen core radius. This suppresses the energy
conserving mutual spin flips that are the main source of spin decoherence.

In Pr : Y SO the spin Hamiltonian is given by [76]:

H = B ·
(
g2

Jµ2
B

←→
Λ

)
·B+B ·

(
γN

←→
E + 2AJgJµB

←→
Λ

)
· I+ I ·

(
A2

J

←→
Λ +

←→
T Q

)
· I,

(14.56)
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Fig. 14.11. (a) Spin sublevels of nitrogen-vacancy (NV) color center in diamond.
(b) Spin sublevels of Pr:YSO.

where the tensor
←→
Λ is given by

Λαβ =
2J+1∑
n=1

〈0|Jα|n〉〈n|Jβ |0〉
∆En,0

, (14.57)

←→
E is the 3 × 3 identity matrix, B is the magnetic field, and I is the nuclear
spin vector, gJ is the Lande g, γN is the nuclear magnetogyric ratio, AJ is
the hyperfine interaction. The term I · ←→T Q · I described the nuclear electric
quadrupole interaction and A2

JI ·←→Λ · I is the second order magnetic hyperfine
or pseudoquadrupole interaction.

Recently, a spin coherence lifetime of 1/2 minute has been observed in
Pr : Y SO [37]. This impressive result is made possible by combining two
techniques. The first technique involves magnetically tuning the qubit spin
to a level anti-crossing [38]. These are common in systems with spin 1 or
larger. Near such an anti-crossing there is no first order magnetic Zeeman
shift. Consequently, spin flips of nearby host and active spins, which ordinarily
introduce coherence by perturbing the local magnetic field of the qubit, no
longer have a first order effect. The complication is that the magnetic field
is a vector so that the level anti-crossing must exist in all three directions.
Nonetheless such global level-crossings were found in Pr : Y SO and were used
to lengthen the qubit spin coherence lifetime by orders of magnitude. More
importantly, the residual spin decoherence was found to decay as a quadratic
exponential in time, meaning it decays as e−(t/τ)2 . This is critical because most
quantum error correction schemes require the short-time decay to be slower
than the usual linear exponential decay. Since this condition was satisfied in
Pr : Y SO, a version of bang-bang error correction was successfully applied to
give the observed half minute coherence times.

Manipulation of spin qubits in SHB materials is generally done using RF
coils similar to those used in liquid NMR. Recently, optical Raman transitions
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have been explored as an alternative to this, in which case the spin-qubits
are manipulated by lasers instead of an RF coil. The advantages of this are
two-fold. First, the gate time can be made faster because it depends on the
optical Rabi frequency, rather than that of the spin transition. One reason
for this is that spin transitions are generally magnetic dipole allowed tran-
sitions, whereas optical transitions are often electric dipole allowed. Another
reason is that it is often easier to insert strong laser fields into a cryostat than
strong RF fields. Second, the selectivity of qubit excitation can be improved
considerably because only spins with the correct optical transition frequency
and spin transition frequency are manipulated. Additional spatial selectivity
exists because the optical laser beams can be focused down to microns, and
only the illuminated part undergoes qubit manipulations. This is especially
important for algorithms like those designed for a Type II quantum computer,
see Section 14.5.

The real power of optically addressed NMR lies in multi-qubit manipu-
lations. The optical “handle” allows several options to increase scalability.
First, the relatively long range of optical interactions frees NMR from the
restrictions imposed by near-neighbor interactions. An example of this is an
ensemble-based two qubit gate demonstration in Eu : Y SO involving ions
separated by 100 nanometers [78], which is orders of magnitude larger than
distances required by conventional NMR. In this demonstration, a series of
optical pulses refocuses a “target” optical qubit with a different phase de-
pending on whether the “control” qubit is excited or not. Since these qubits
are defined only by their transition frequency, neither the exact location nor
number of spins located in between is unimportant. This demonstration also
illustrates the interesting fact that optical transitions in some SHB materials
have a coherence lifetime that is similar to that of many room temperature
NMR transitions.

In principle, long range optical interactions such as in the Eu : Y SO
example are scalable. In practice, however, the Eu : Y SO demonstration
experiment is not very scalable because well-defined pairs of qubits must be
distilled out of a random ensemble [94], and this incurs an exponential penalty
with number of qubits. To make this technique more scalable one approach
would be to apply it to special solid state pseudo-molecules. These pseudo-
molecules exist in a number of stoichiometric crystals, the most interesting
of which are those containing europium, for example EuV O4 or Eu2O3 be-
cause of their narrow optical transitions at low temperatures [48, 77]. In these
pseudo-molecules, localized defects have a large effect on the optical transition
frequency of the Eu ions. Up to 50 optical transitions can be easily resolved
in these materials. Assuming that all the defects are identical, each optical
transition would correspond to a Eu spin system in a well-defined location
near the defect center, thereby producing a pseudo-molecule. By using the
long range optical coupling demonstrated in Eu : Y SO, one could in princi-
ple construct up to a 50 qubit quantum computer without most of the usual
scaling limitations of NMR.
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To achieve scalability beyond 100 qubits, single spin manipulation is pre-
ferred. The excitation and especially detection of single spins in a solid is a
very active area of research. Much of this research is based on a proposal to
build a quantum computer using qubits consisting of nuclear spins of a phos-
phorous atom implanted in a silicon host [59], see Fig. 14.12. 31P nuclei in
spin-free 28Si have a spin population lifetime on the order of hours at ultra-
cold temperatures, with coherence lifetimes on the scale of 10’s of milliseconds
so far. Single qubit manipulations would be done with the usual NMR pulse
sequences. However, to avoid driving all the qubits at once, an off resonant RF
field is applied and the active qubit is tuned into resonance when desired by
using the interaction with its electron spin. The electron spin in turn is con-
trolled by distorting the P electron cloud with a voltage applied to a nearby
gate, called the A-electrode. To achieve two-qubit logic, the electron clouds
of two neighboring P atoms are overlapped using a J-electrode. The result-
ing exchange interaction between the two electrons can then be transferred
to the P nuclei using RF and/or gate pulse sequences. Since the P atom has
electron spin, Boltzmann initialization can be used, though a number of faster
alternatives such as spin injection are being explored. For readout, the nuclear
spin state is transferred to the electron spin which in turn is converted into a
charge state via spin exchange interactions with a nearby readout atom. The
charge state is then detected with a single electron transistor.

The Hamiltonian for P in Si is given by [59]:

H = µBBσe
z − gnµnBσn

z + Aσe · σn (14.58)

where µB is the Bohr magneton, µn is the nuclear magneton, gn is the nuclear
g-factor, B is the applied magnetic field (assumed parallel to z) and σ are the
Pauli matrices, with superscripts e and n for electron and nuclear. For two
coupled qubits the Hamiltonian becomes:

H = H(B) + A1σ
1n · σ1e + A2σ

2n · σ2e + Jσ1n · σ2e (14.59)

where H(B) is the magnetic field part and the superscripts 1 and 2 refer to
the two spins,

4J ∼= 1.6
e2

εaB

(
r

aB

)5/2

e
−2r
aB (14.60)

where r is the distance between P atoms, ε is the dielectric constant of silicon,
and aB is the effective Bohr radius.

Many of the more challenging operations proposed for the P in Si quan-
tum computer have recently be demonstrated in quantum wells/dots using
individual electrons and/or excitons [102]. In most of these experiments elec-
tron spins, rather than nuclear spins, are the qubits. Unfortunately, these
experiments are usually done in GaAs which is not a spin-free host and so
decoherence is a problem. Spin-free semiconductor hosts exist, but fabrication
in these systems is not yet as mature (except for silicon).
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Fig. 14.12. Operation of the P doped Si quantum computer. (a) Single qubits are
tuned into resonance with applied microwave field using voltages on A-electrodes
to distort weakly bound electron cloud. (b) Two qubit gates are enabled by using
voltages on J-electrodes to overlap neighboring electron clouds, thereby switching
on spin exchange coupling.

While the exciting prospect of single electron and/or nuclear spin detec-
tion is currently a technical challenge for most solids, it was done long ago
in nitrogen-vacancy (NV) diamond [47]. In this optically active SHB mate-
rial, single electron spin qubits are routinely initialized and read out with
high fidelity at liquid helium temperature. In fact, the fidelity is so high that
it begins to compare to trapped ions [52]. The electron spin coherence has
also been transferred to nearby nuclear spins to perform (non-scalable) two
qubit logic [53]. Single qubit logic is usually done with RF pulses, but op-
tical Raman transitions between spin sublevels have been observed in NV
diamond under certain experimental conditions [49]. Two qubit gates can be
performed using the electron spin coupling between adjacent qubits. Initial-
ization of such a two-qubit system consisting of a NV and nearby N atom has
recently been demonstrated using optical pumping. Scalability of this system
can be achieved using an electron spin resonance (ESR) version of a Raman
transition to transfer this spin coupling to the nuclear spins [113]. This ESR
Raman has already been demonstrated for single NV spins.

The spin Hamiltonian for NV diamond is given by [92]:

H = D(S2
z − 1

3
S2) + βeB←→g eS + S

←→
A I + P (I2

z − 1
3
I2) (14.61)

where D is the zero-field splitting, B is the applied magnetic field,
←→
A is

the electron-nuclear hyperfine coupling tensor, S and I are the electron and
nuclear spin vectors, and P is the nuclear quadrupole contribution.
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With optical Raman, it should be possible use long-range optical dipole-
dipole coupling [79], or eventually cavity-based Quantum ElectroDynamic
(QED) coupling, to perform two qubit spin logic, see Fig. 14.13. If success-
ful, this will be highly scalable because the optical transition frequency can
be tuned where desired using dc electric Stark shifts created by gate elec-
trodes (A-electrodes). By requiring both optical laser frequency and electrode
voltages to be correctly tuned, qubit excitation becomes very selective and
two-qubit coupling only exists when needed, in contrast to the usual case in
NMR.

Fig. 14.13. (a) Two distant qubits coupled by vacuum mode of cavity using cavity
QED. (b) Possible implementation of multi-qubit bus using photon band gap cavity
in NV diamond. (c) Illustration of the use of optical Raman with cavity QED to
couple spectrally adjacent qubits.

Electron spin population lifetimes up to minutes have so far been ob-
served at low temperature, with coherence lifetimes up to 0.3 milliseconds
at room temperature [52]. Interestingly, the optical initialization and readout
still works at room temperature (though with less fidelity), as well as the
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ESR Raman transitions. This raises the intriguing question of whether or not
a room-temperature solid-state NMR quantum computer can eventually be
built using NV diamond.

14.4 Shor’s algorithm and its experimental realization

Through the rest of the paper, we will describe two applications of the NMR
quantum computer: the Shor’s algorithm and a lattice algorithm. Entangled
states are extremely important in quantum computation. Entanglement, to-
gether with superposition, gives a quantum computer the power to perform
massively parallel computation and thus makes it particularly suitable for
computing certain complex problems. Shor’s algorithm for the factorization
of integers aimed at decryption is a special example of a “killer ap” of quantum
computing [30, 96]. Recently, a successful experiment has shown the potential
capability of the implementation of Shor’s algorithm, although it is still very
simple and tentative. In [111], Vandersypen et al. factor 15 into 3 times 5.
That work has demonstrated the liquid NMR quantum computer to be the
most successful quantum computer so far.

14.4.1 Shor’s algorithm

It is not difficult to factor a composite integer (i.e., non-prime) into prime num-
bers when that integer is small, but the computation burden grows rapidly
when the number increases. The currently most efficient algorithm, the num-
ber field sieve, requires an exponential running time ec(log n)1/3(log log n)2/3

,
where n is the number to be factored and clearly log n is proportional to
the number of the bits needed to store this number. This makes it practi-
cally impossible to factor a large number using a classical computer. This
difficulty is used to construct several cryptosystems, such as the RSA public
key cryptosystem [95]. Peter W. Shor has shown that this problem can be
solved in polynomial running time instead of exponential time by using the
quantum computer. A more accessible account of Shor’s algorithm is given by
Lomonaco [74].

Let n be an odd integer to be factored, and choose another random integer
x less than n. We require x to be coprime with n; otherwise, we find a factor
of n immediately by the Euclidean method. It is then known that function
f(s) = xs mod n is periodic. The period of f (and also of x) is the smallest
integer r such that xr = 1 mod n. For example, when n = 15 and x = 3, the
moduli of xs, with s being 1, 2, 3, . . ., are 3, 9, 12, 6, 3, 9, 12, 6, . . ., and the
period is 4.

Now we check the period r. If r is even, r = 2t, then x2t − 1 = (xt +
1)(xt−1) = 0 mod n, so either xt−1 or xt +1 has a common factor with n. A
classical computer can use the Euclidean algorithm to compute the greatest
common divisors, denoted as gcd(xt + 1, n) and gcd(xt − 1, n), in polynomial
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time. It is possible that we only obtain the trivial factors 1 or n using the x we
choose. This happens only when xt = −1 mod n, since xt − 1 = 0 mod n can
not happen with r being already the smallest integer such that xr = 1 mod n.
Fortunately it has been proved that the probability to meet such a bad x is
at most 1/2k, where k is the number of distinct prime factors of n. Since k is
at least 2, the probability is still large enough for us to find a good x, which
has an even period r and xt 
= −1 mod n.

A quantum computer can find the period r because of the speedup afforded
by quantum Fourier transform (QFT). Let us have two b-qubit registers. We
select b large enough such that we can observe many periods. At the beginning,
we set the two registers to state |0〉. Then we randomize the first register to
a new state

|ψ1〉 =
1√
S

S−1∑
k=0

|k〉|0〉, (14.62)

where S = 2b, the number of the total b-qubit states of the first register, with
b large enough such that 2n2 > S > n2.

We now design a certain series of pulses to compute f(k) = xk mod n,
and change the quantum state to

|ψ2〉 =
1√
S

S−1∑
k=0

|k〉|f(k)〉. (14.63)

Now, apply QFT [90] to the first register in (14.63), which is a unitary
transform mapping every |k〉 to another state:

|k〉 → 1√
S

S−1∑
k=0

e2πiuk/S |u〉. (14.64)

Then the quantum state of the system changes to

|ψ3〉 =
1
S

S−1∑
u=0

|u〉
S−1∑
k=0

e2πiuk/S |f(k)〉. (14.65)

Assume that f(k) has period r, and we write k = d+jr such that 0 ≤ d < r,
where d is the remainder of k after it is divided by r and j ranges from 0 to
A, the largest integer such that Ar < S. This way, we can write |ψ3〉 as

|ψ3〉 =
1
S

S−1∑
u=0

|u〉
r−1∑
d=0

|f(d)〉e2πiud/S
A∑

j=0

e2πiurj/SI(d+rj<S),

where I(d+rj<S) = 1 when d + rj < S, and 0 otherwise. If S = (A + 1)r,
I(d+rj<S) = 1 for every d and j. If S 
= (A+1)r, it is still reasonable to ignore
the difference and let I(d+rj<S) = 1 everywhere because we have chosen S
large enough. In this case, we let
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bu =
1
S

A∑
j=0

e2πiurj/S =
1
S

(
1 − e2πiur(A+1)/S

1 − e2πiur/S

)
, (14.66)

thus our quantum state is now

|ψ3〉 =
1
S

S−1∑
u=0

r−1∑
d=0

bue2πiud/S |u〉|f(d)〉.

We can now measure the first register, and we want to find such a u, for
which there is an l satisfying

∣∣∣∣ u

S
− l

r

∣∣∣∣ ≤ 1
2S

. (14.67)

There are about r such u’s, and it has been estimated that the probability
to find such a u is at least 0.4 [90]. Because 1

2S < 1
2n2 , and we know that

r < n, there is at most one fraction k
r satisfying the condition and we can use

continued fraction expansions to find the fraction. If k and r are coprime, we
obtain r as the denominator of the fraction. If not, we only find a factor of
r. If r is odd or xr/2 does not give us a useful result, choose another x and
try again. It may be necessary to try several (of the order O(log log n)) times
until r is successfully found, but the overall running time is still reasonable.

14.4.2 Circuit design for Shor’s algorithm

Before we introduce the experiment by Vandersypen, et al. [111], we extend
the above discussion a little further to the case when r divides S. Now S/r
becomes an integer and (14.66) always holds so that S doesn’t have to be very
large. Moreover, (14.67) becomes an identity

u =
l · S
r

, (14.68)

i.e., r is the denominator of the fraction u
S after cancelling the common factor

between u and S if l and r are coprime. The integer 15 falls into this situation.
The possible x can be 2, 4, 7, 8, 11, or 13. When we choose x to be 2, 7, 8
or 13, the period r is 4. In other cases, r is 2. The period r divides S = 2b in
both cases. Only 2 qubits at most are required to compute one period of f .
In the experiment, 3 qubits are used to obtain more periods.

Vandersypen et al. used liquid NMR to realize Shor’s algorithm in fac-
torizing 15. The sample in the experiment is a custom-synthesized material
whose molecules have five 19F and two 13C, so it has seven qubits ready for
use. Those seven qubits are divided into two registers, 3 to store the number
k (the first register, represented by |k2k1k0〉) and 4 to store the modular ex-
ponentiation y (the second register, represented by |y3y2y1y0〉), see Fig. 14.14
and Fig. 14.15. The total Hamiltonian is
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H =
7∑

i=1

1
2
ωiσ

i
z +

∑
i<j

2πJijσ
i
zσ

j
z.

Each run of the experiment consists of 4 steps. In the first step, the sample
is initialized to a certain pseudo-pure state; in the second step, a series of
specially designed pulses are applied to realize the computation of modular
exponentiation; in the third step, QFT is applied to the first register; finally,
the period was obtained through the reading of the spectrum. The system
begins from thermal equilibrium, where the density matrix is given by ρ0 =
e−H/kT ≈ I − H

kT . A suitable initial pseudo-pure state |ψ1〉 = |0000001〉 is
obtained by the temporal averaging method.

Although it is difficult to design a general circuit for the modular exponen-
tiation, it is easy to “hard-wire” for this special case in consideration. As the
exponent k can be written as k = k0 + 2k1 + 4k2, we can change the modular
exponential xk mod 15 into successive operations of modular multiplications
by x2iki , with i = 0, 1, 2, applied to the second register y beginning from
y = 1.

When i = 0, y · x = x = 1 + (x − 1), so the multiplication is actually a
controlled-addition with (x − 1) in case k0 = 1. For x = 7 = (0111)2, it is
equal to flip the state of y1 and y2 (y = (0001)2 before the multiplication).
For x = 11 = (1011)2, the same reasoning shows that we only have to flip the
state of y3 and y1, depending on k0. Gates A and B in Figs. 14.14 and 14.15
accomplish the modular multiplication xk0 .

The situation is a little more complicated for i = 1. We only discuss the
situation when k1 = 1, since y will not change when k1 = 0. Different strategies
are needed for x = 7 and x = 11. When x = 11, since 112 = 121 = 15× 8 + 1,
y×112 = y (mod 15). We need to do nothing and the same result holds for the
third qubit k2. When x = 7, we can design the circuit by first investigating
the following identity

y · 72 = y · 4 mod 15
= (y0 + 2y1 + 4y2 + 8y3) · 4 mod 15
= (4y0 + 8y1 + 16y2 + 32y3) mod 15
= (y2 + 2y3 + 4y0 + 8y1) mod 15

= (y2 · 20 + y3 · 21 + y0 · 22 + y1 · 23) mod 15.

It shows that the modular multiplication can be achieved by exchanging the
first qubit y0 with the third qubit y2, and the second qubit y1 with the fourth
qubit y3. In Fig. 14.14, gates C, D, and E are used to accomplish the former,
and gates F, G, and H the latter. Further simplification of the circuit can
be made. Since the control bit y3 is |0〉 before gate C, that gate can just be
omitted. Gates H and E have no effect on the period; they can be omitted,
too.

The circuit design for the quantum Fourier transform is just a standard
design; see, e.g., [30, Fig. 5]. It has 3 Hadamard gates and 3 controlled-phase
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gates. Figs. 14.14 and 14.15 show the circuit designs for y = 7 and y = 11.
Totally about 300 pulses are used in the experiment and it takes about 700ms
to accomplish all steps in the case of x = 7.
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Fig. 14.14. The quantum circuit for the (hard) case for the realization of Shor’s
Algorithm (x = 7). From top to bottom, the qubits are k2, k1, k0, y3, y2, y1 and y0,
respectively, in sequential order.
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Fig. 14.15. The quantum circuit for the (easy) case for realization of Shor’s Algo-
rithm (x = 11). From top to bottom, the qubits are k2, k1, k0, y3, y2, y1 and y0,
respectively, in sequential order.

14.4.3 Experimental result

Readout of the experiment needs a careful interpretation of the data. Because
an NMR sample consists of many molecules, the readout is the average value
of u from all molecules instead of the reading from a single molecule.

Both qubits k0 and k1 are found to be in state |0〉 after the extraction of
the spectra [111] for the easy case of x = 11, while qubit k2 is in a equally
mixture state of |0〉 and |1〉. Thus the possible u can be 0 and 4, i.e., 000
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and 100 in binary form. From (14.68), r can be obtained as r = 8/4 = 2,
and the greatest common divisors are computed as gcd(112/2 +1, 15) = 3 and
gcd(112/2 − 1, 15) = 5.

In the case of x = 7, the spectra in [111] indicate that only qubit k0 is in
state |0〉, and both qubits k1 and k2 are in equal mixture of states |0〉 and |1〉.
Thus u is in a mixture of states |0〉, |2〉, |4〉 and |6〉. We can see that the period
of u is 2, thus the period of the modular exponent r is 8/2 = 4. The factors of
15 can finally be obtained as gcd(74/2 − 1, 15) = 3 and gcd(74/2 + 1, 15) = 5.

14.5 Quantum algorithm for lattice-gas systems

In the previous sections, we have explained how to construct a quantum com-
puter using liquid NMR and illustrated a successful experiment. We have
taken it for granted that the coherence can be maintained long enough and
different qubits can be entangled even they are separated far apart in space.
Unfortunately, these assumptions are not always practical and in fact they
constitute great obstacles to overcome. The problem becomes more serious
when more qubits are involved. Type-II quantum computers are proposed to
alleviate this problem. A type-II quantum computer is composed of a net-
work or array of small quantum computers interconnected by classical com-
munication channels [120]. In stead of the global coherence and entanglement,
only local coherence and entanglement within every small quantum computer,
called a node, are required, and the difficulty faced by the centralized quantum
computer is dramatically eased.

The wave function of the whole type-II quantum computer system is a
tensor product over all the nodes:

|ψ(t)〉 = |ψ(x1, t)〉 ⊗ · · · ⊗ |ψ(xN , t)〉, (14.69)

where N is the number of nodes. The lattice gas algorithm (LGA) is specially
suited for this structure. Every computation cycle can be broken up into three
steps with two intermediate states |ψ′〉 and |ψ′′〉:

|ψ′〉 = Ĉ|ψ(t)〉,
|ψ′′〉 = Γ |ψ′〉,

|ψ(t + 1)〉 = T |ψ′′〉,
(14.70)

where Ĉ is a unitary operator acting locally on every node, while Γ is a
projection operator, such as a measurement, and T is the streaming operator
which exchanges information among nodes. The type-II quantum computer
takes advantage of parallelism in two ways: one classical, all the nodes work
simultaneously; the other quantum, quantum entanglement is still kept inside
every node. Because measurement is applied and the system is reset at the
end of every computation cycle, the coherence only needs to be maintained
for a short time.
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14.5.1 Quantum algorithm for a lattice-gas model

Consider a one-dimensional diffusion equation without boundary condition

∂ρ

∂t
=

∂2ρ

∂x2
, (14.71)

where ρ is the mass density or temperature function along the x-axis. Using
the finite difference method, we can write a finite difference approximation to
solve the above partial differential equation numerically:

ρ(x, t + τ) − ρ(x, t)
τ

=
ρ(x + l, t) − 2ρ(x, t) + ρ(x − l, t)

l2
, (14.72)

where τ is the time step size and l is the space step size. From physics, we
know that the above equation may be studied by a lattice gas algorithm.
Without loss of generality, we assume that τ and l are normalized so that the
difference equation can be written as

ρ(xi, k + 1) − ρ(xi, k) =
1
2
(ρ(xi+1, k) − 2ρ(xi, k) + ρ(xi−1, k)).

Points xi are evenly distributed along the x-axis, also called nodes. To study
the above equation, two functions, f1(xi, k) and f2(xi, k), called channels, are
defined for each node xi at time k. The set of values of these two functions
are called the state of node xi. Any physical observable, such as the density
function ρ(xi, k), is a function of the state at the node. The evolution of the
lattice, or the state of all nodes, consists of two operations: collision and prop-
agation. A collision is a local operator only defined by the state of the node
itself. The propagation operator transfers information from one node to an-
other and the state at one node changes according to the state of other nodes.
This is completed by defining a velocity vector for every channel which gives
the information flow a direction. In our special example here, information in
the two channels flows in opposite directions. After propagation, one channel
gets its new value from its left neighbor, while the other from its right neigh-
bor. This LGA is completed with a Type II quantum computer by J. Yepez of
the Air Force Research Laboratory and M.A. Pravia, et al. of the Department
of Nuclear Engineering at MIT [8, 93, 119, 120]. The actual result is not as
good as desired, but improvement is still possible.

To store a floating point number, a classical computer uses a register with
32 or 64 bits, depending on the machine. Quantum computers presently have
difficulty to do it the same way as classical computers because there is not yet
the technology for 32 or 64 qubits. In this quantum lattice-gas algorithm, a
two qubit system is proposed for every node. The two qubits are represented
by |q1(xi, k)〉 and |q2(xi, k)〉, respectively, and

|q1(xi, k)〉 =
√

f1(xi, k)|0〉 +
√

1 − f1(xi, k)|1〉,
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|q2(xi, k)〉 =
√

f2(xi, k)|0〉 +
√

1 − f2(xi, k)|1〉.
The state of the whole system |ψ(xi, k)〉 at node xi and time k is a tensor
product:

|ψ(xi, k)〉 = |q1(xi, k)〉|q2(xi, k)〉
=

√
f1(xi, k)f2(xi, k)|00〉 +

√
(1 − f1(xi, k))f2(xi, k)|10〉

+
√

f1(xi, k)(1 − f2(xi, k))|01〉
+

√
(1 − f1(xi, k))(1 − f2(xi, k))|11〉.

Quantities f1(xi, k) and f2(xi, k) are the probabilities of occurrence of the
state |0〉 for qubit 1 and 2, respectively, corresponding to the two channels, and
1−f1,2(xi, k) are the occurrence probabilities of the state |1〉. Since the states
are normalized, 0 ≤ f1,2(xi, k) ≤ 1, and we let ρ(xi, k) = f1(xi, k) + f2(xi, k).
It is noted that our Type-II quantum computer assigns ρ a continuous value
(a function of the occurrence probabilities) rather than a discrete value as a
digital computer does. An array of two qubit systems are used in the compu-
tation, corresponding to a series of nodes.

The quantum LGA here has three steps in every cycle that complete a step
of the finite difference algorithm computation: collision, measurement, and re-
initialization. The last two composed are equal to one propagation operation
in a normal lattice gas algorithm. Because the propagation needs information
exchange among different nodes, measurement and classical communication
are needed to accomplish one operation. We map the quantum state to a
vector in C4 as that given in (14.29).

In the collision step, a unitary operator is applied simultaneously to all
nodes:

|ψ(xi, k)〉 = U |ψ(xi, k)〉,
where

U =

⎡
⎢⎢⎣

1 0 0 0
0 1

2 − i
2

1
2 + i

2 0
0 1

2 + i
2

1
2 − i

2 0
0 0 0 1

⎤
⎥⎥⎦ . (14.73)

The new occurrence probabilities of the sate |0〉 of the two qubits after the
operation, f1 and f2, can be computed using

f1 = 〈ψ|n1|ψ〉, n1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

f2 = 〈ψ|n2|ψ〉, n2 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ,

(14.74)

leading to
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f1(xi, k) = 1
2 (f1(xi, k) + f2(xi, k)),

f2(xi, k) = 1
2 (f1(xi, k) + f2(xi, k)).

The collision operator is actually doing a job of averaging. The state after the
collision is also called the local equilibrium.

In the second step, a measurement is applied at every node and f1,2(xi, k)
of all the nodes are retrieved for future use.

In the third step, using information from the measurement from the pre-
vious step, the state of all the nodes are re-initialized to a separable state

|q1(xi, k + 1)〉 =
√

f1(xi+1, k)|0〉 +
√

1 − f1(xi+1, k)|1〉,
|q2(xi, k + 1)〉 =

√
f2(xi−1, k)|0〉 +

√
1 − f2(xi−1, k)|1〉.

(14.75)

It can be seen that the second and third steps have accomplished the propa-
gation operation. At node xi, the new state of channel one is acquired from
the same channel of its right neighbor node xi+1, and channel two acquires
its state from its left neighbor. It is complicated here only because the com-
munication between two quantum systems is difficult.

To see how this LGA works, let us begin from a local equilibrium state,
f1(xi, k) = f2(xi, k) = ρ(xi, k)/2, where the states come off a collision opera-
tion (step 2). We list the f1,2 around position xi before the third step in two
rows

f1 : · · · ρ(xi−2,k)
2

ρ(xi−1,k)
2

ρ(xi,k)
2

ρ(xi+1,k)
2 · · ·

f2 : · · · ρ(xi−2,k)
2

ρ(xi−1,k)
2

ρ(xi,k)
2

ρ(xi+1,k)
2 · · ·

and after the third step

f1 : · · · ρ(xi−1,k)
2

ρ(xi,k)
2

ρ(xi+1,k)
2

ρ(xi+2,k)
2 · · ·

f2 : · · · ρ(xi−3,k)
2

ρ(xi−2,k)
2

ρ(xi−1,k)
2

ρ(xi,k)
2 · · ·

We can see that the row of f1 (channel one) moves left and the row of f2

(channel two) moves right. According to our definition, the new value of ρ is
the sum of f1(xi, k + 1) and f2(xi, k + 1), i.e., ρ(xi, k + 1) = 1

2 (ρ(xi+1, k) +
ρ(xi−1, k)). It is easy to check that

ρ(xi, k + 1) − ρ(xi, k) =
1
2
(ρ(xi+1, k) − 2ρ(xi, k) + ρ(xi−1, k)),

as desired.
Applications of the Type-II quantum computer with quantum LGA also

have been reported in the simulation of the time-dependent evolution of a
many-body quantum mechanical system [121], solution of a one-dimensional
magnetohydrodynamic turbulence [105], representation of solitons [104] and
other equations.
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14.5.2 Physical realization and result

The experiment in Subsection 14.5.1 uses a two-qubit molecule, chloroform,
whose structure is shown in Fig. 14.6. The hydrogen and carbon nuclei serve
as qubit 1 and 2, respectively.

The actual results obtained from the experiment are compared with simu-
lation results [93]. After 12 steps, the error becomes very large. Imperfection
in the decoupling sequences is blamed and it is believed that the problem
can be mitigated when the technology is improved in the future. Extreme re-
quirement of high accuracy in the control pulse and readout is a disadvantage
of this Type-II quantum computer, because it uses a continuous represen-
tation (the probability of occurrence) instead of a discrete one. Thus, it is
more vulnerable to the inaccuracy in the NMR operation. Small errors in ev-
ery step accumulate and finally become intolerable. Repeated measurement
and re-initialization ease the requirement for coherence time, but place a high
requirement on the fidelity at the same time.

14.6 Conclusion

In this article, we present the basic technology used to construct a quantum
computer with liquid state NMR. The successful experiments for many algo-
rithms have shown that liquid state NMR is capable of simulating a quantum
computer and forms a test bed for quantum algorithms. It is so far the only
technology available to realize a 7 qubit algorithm in laboratory. One rea-
son for its success is the robustness of the spin system which only interacts
with the external magnetic field, and it is possible to maintain the coherence
for a long time (from seconds to hours). Besides, over the 60 years history
of NMR spectroscopy, analytic tools have been developed for the purpose of
chemical and medical applications, and exact description and dedicated co-
herence control of the dynamics of the quantum spin system is now available
to achieve high accuracy in the pulse design and application. In fact, the ex-
perimental techniques established in NMR, especially the coherence control
technology, can be easily transferred to other quantum systems if they have
a similar Hamiltonian, and the research in NMR is therefor helpful for the
development of other more complicated and powerful quantum computers.

Liquid NMR has played a pioneering role in the quantum computer tech-
nology development. But its lack of scalability has constitute a severe obstacle
to its future applicability. However, in Section 14.3 we show new technology
of solid state NMR which has the potential to overcome liquid NMR’s dif-
ficulties. For solid state NMR, under low temperature, the relaxation times
of spins are typically very long, and the coupling between qubits is strong
so that the control can be fast and easy. The small ratio of the gate time
and the decoherence time makes more gates available, and more complicated
algorithm can be tested. The nuclei can be cooled down easily and the spin



496 Advances in Mech. & Math., Vol. III, Gao & Sherali (ed.), Springer, 2006

system is highly polarized. The signal is much stronger so that fewer nuclei are
needed. Even without the help of gradient field and the silicon technology, as
we have mentioned, a quantum computer with 30 to 40 qubits is envisioned
with designed molecules similar to that of the liquid state NMR computer
except that the ensemble is in a solid crystal state. This is already a quantum
system that reaches the limit a classical computer can simulate. Although it
is still not scalable and not a standard quantum computer, these small and
medium scale quantum computers will help in the building of a scalable and
working quantum computer.
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14.7 Appendix

A The Homeomorphism from SU(2) to SO(3)

We use the same notation as in Section 14.2.3. Recall that U is a complex
matrix in SU(2), and we want to find a mapping R from SU(2) to the space of
3×3 real matrices, so that R(U) and U represent the same physical operation.
Let v be a Bloch vector corresponding to the old state |φ〉 and v′ to the new
one. Then the following identity must be satisfied:

v′ = R(U)v, (14.76)

where U ∈ SU(2). Using the definition of Bloch vector and density matrix,
we obtain

v′ · A = U |ψ〉〈ψ|U† − I0

= Uv · AU†, (14.77)

where A = [Ix, Iy, Iz] and we use the dot to denote the inner product between
vectors.

The product of Ii and σj satisfies

Tr(Iiσj) = δij , i, j ∈ {x, y, z},

where σj are the Pauli matrices. By multiplying both sides of (14.77) with σk

and taking the trace of both sides, we obtain

v′
k = Tr(v′ · Aσk)

= Tr(σk U Ii U†)vi,
(14.78)

where v′
k and vi are, respectively, the k-th an i-th entry of the corresponding

vectors. We apply the summation convention in this section, where summing
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over repeated indices is implied unless otherwise stated. Comparing the above
result with equation

v′
k = R(U)kivi,

we obtain the desirable matrix R(U):

R(U)ki = Tr(σk U Ii U†). (14.79)

Thus we have constructed a mapping from SU(2) to the set of 3×3 matrices.
Let us now tentatively accept the fact the target matrix is real which we will
prove later. We first show that R(U) is in fact a proper rotation matrix, i.e.,
R(U) ∈ SO(3) by proving that it is isometric and preserves the three-fold
product; cf. (14.82).

Let v = [a b c]T ∈ R3. First note that we can find its norm by comput-
ing the determinant of a special matrix:

det(v · A) = 1
4

∣∣∣∣ c a − bi
a + bi −c

∣∣∣∣
= − 1

4 (c2 + a2 + b2)
= − 1

4‖v‖2.

(14.80)

Together with (14.77), we see that the transformation is isometric:

‖v′‖2 = −4 det(v′ · A)
= −4 det(U v · AU†)
= −4 det(v · A)
= ‖v‖2.

(14.81)

Direct computation also shows the preservation of the three-fold product,
as follows. Let vl, l = 1, 2, 3 be three vectors on the Bloch sphere, v′l =
R(u)vl. We have

Tr
(
(v1 · A)(v2 · A)(v3 · A)

)
= Tr(v1

i v2
j v3

kIiIjIk)
= i

4v1
i v2

j v3
kεijk

= i
4v

1 · (v2 × v3).
(14.82)

The above identity can be used to show the preservation of the three-fold
product :

v′1 · (v′2 × v′3) = 4
i Tr

(
(v′1 · A)(v′2 · A)(v′3 · A)

)
= 4

i Tr
(
(Uv1 · AU†)(Uv2 · AU†)(Uv3 · AU†)

)
= 4

i Tr
(
(v1 · A)(v2 · A)(v3 · A)

)
= v1 · (v2 × v3),

(14.83)

and we see that R(U) ∈ SO(3). To prove that the mapping is surjective,
we introduce a parameterization of SU(2) in some exponential form. For any
U ∈ SU(2), we can find a θ ∈ [0, 2π) and a unit vector n such that
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U(θ,n) = e−i θ
2n·σ

=
[

cos θ
2 − in3 sin θ

2 − sin θ
2 (n2 + in1)

sin θ
2 (n2 − in1) cos θ

2 + in3 sin θ
2

]

= cos θ
2I − i sin θ

2n · σ,

(14.84)

where σ = [σx, σy, σz]. Every combination of θ and n also corresponds to
a complex matrix in SU(2). By using (14.8) and the equality U(θ,n)−1 =
U(θ,−n), the element of R(U) can be computed as

R(U)ij = Tr(σi U Ij U†)
= Tr

(
σi(cos θ

2I − i sin θ
2n · σ)Ij(cos θ

2I + i sin θ
2n · σ)

)
= Tr(σiIj cos2 θ

2 + iσiIjn · σ sin θ
2 cos θ

2

−iσin · σIj sin θ
2 cos θ

2 + σin · σIjn · σ sin2 θ
2 ).

(14.85)

We divide the trace into four parts and compute them separately:

Tr(σiIj) = δij , T r(σiIjn · σ) = iεijknk, T r(σin · σIj) = iεikjnk, (14.86)
Tr(σin · σIjn · σ) = Tr(σiσkIjσlnknl)

=
1
2
Tr ((δikI + iεikmσm)(δjlI + iεjlnσn)nknl)

= δikδjlnknl − εikmεjlmnknl

= δijninj + (2 − δij)ninj − δij = 2ninj − δij . (14.87)

Substituting (14.87) and (14.86) back into (14.85), we obtain

R(U)ij = cos2 θ
2δij + sin2 θ

2 (2ninj − δij)
−εijknk sin θ

2 cos θ
2 + εikjnk sin θ

2 cos θ
2

= cos θ δij + (1 − cos θ)ninj + sin θ εikjnk,
(14.88)

showing that R(U)ij is real. We also claim that R(U) is a rotation about the
axis n with angle θ in the three dimensional Euclidean space by comparing it
with the standard formula of a rotation matrix. Because every matrix in SO(3)
can be regarded as a rotation about a certain axis with a certain angle, that
matrix is now shown to be an image of some U ∈ SU(2). Thus the mapping
is surjective.

Finally, we want to show that this mapping from SU(2) to SO(3) is a
homomorphism and to investigate the multiplicity. Let U and T be two ma-
trices in SU(2), v be an arbitrary vector on the Bloch sphere, and v′ = R(U)v,
v′′ = R(T )v′ = R(T )R(U)v. Using (14.77) repeatedly, we obtain

v′′ · A = T (v′ · A)T † = TU(v · A)U†T † = R(TU)v · A,

thus v′′ = R(TU)v. Because v is arbitrary, R(V U) = R(V )R(U), implying
that the mapping is a homomorphism.

For the multiplicity of this mapping, we investigate the kernel of R,
ker(R), which is an invariant subgroup of SU(2), and the quotient group
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SU(2)/ker(R) will then be isomorphic to SO(3). Suppose that U ∈ SU(2)
and R(U) = I3, the identity matrix in SO(3). Then for any v on the Bloch
sphere or R3, we have equality v ·A = U(v ·A)U†, since v = Iv. Multiplying
both sides with U from the right and using (14.84), we have

v · A(cos
θ

2
I − i sin

θ

2
n · σ) = (cos

θ

2
I − i sin

θ

2
n · σ)v · A.

Subtract from both sides the term v · A cos θ
2I,

(v · A) (n · σ) sin
θ

2
= (n · σ) (v · A) sin

θ

2
.

Assuming that sin θ
2 
= 0, we can divide this factor from both sides to obtain

(v · A) (n · σ) = (n · A) (v · σ).

Let v = [1, 0, 0]T . Using properties of Pauli matrices, we obtain

n2Iz − n3Iy = 0.

The above is possible only when n2 = n3 = 0. Trying other different v leads
to n1 = 0, too. This is a contradiction, because we know that n is a unit
vector. Thus we need sin θ

2 = 0. In this case U = I or U = −I and it is
easy to verify that these two are really mapped to the identity in SO(3).
Now, we can conclude that the mapping we defined by (14.79) is a two-to-
one homomorphism from SU(2) to SO(3) with kernel ker(R) = {I,−I}. The
mapping is also surjective, so it defines an isomorphism from the quotient
group SU(2)/ker(R) to SO(3). The two elements in the kernel, ±I, are in
fact the same transformation for quantum systems because only the relative
phase matters for a quantum system. For any O ∈ SO(3), the two elements in
R−1(O), U and −U for some U ∈ SU(2), represent the same transformation,
too. Thus, nothing is lost if we employ SO(3) to represent the transformations
of a one-spin quantum system.
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