
1. Introduction

Quantum computing utilizes unique quantum fea-
tures such as quantum coherence and quantum entangle-
ment to solve some problems much faster than on clas-
sical Turing machines. The most dramatic example of
the power of quantum computing is Shor’s algorithm
for factoring a large integer [1]. This algorighm is sub-
stantially faster than any known classical algorithms of
subexponential complexity. Another major example is
the search of an object in unsorted data containing N
elements. Classically it would require, on the average,
O (N) searches. However, Grover showed that, by em-
ploying quantum superposition and quantum entangle-
ment, the search can be carried out with only O (��N)
steps [2–4]. Grover’s algorithm thus represents a poly-
nomial advantage over classical counterparts.

In recent years, Grover’s algorithm has been realized
in NMR [5], optical systems [6], and a proposal has
been made for its implementation in cavity QED sys-
tems [7]. All these studies are, however, restricted to
N = 4 for which only one step is required to recover the
target state with probability 1. An extension to higher
values of N would be rather complicated [8]. The first
step towards realizing the search algorithm for arbitrary
N is to construct a circuit diagram in terms of quantum
logic gates. It is the objective of this paper to devise
such a circuit consisting of basic quantum logic gates.

Due to the coherent nature of quantum mechanics,
quantum computing algorithms are based on unitary
transformations. The one-bit unitary gate and two-bit
quantum phase gate suffice as the basic building blocks
for quantum algorithms. The design circuit elements are
based on the following gates that are representable in
matrix forms as

(i) 1-bit unitary gate

(1.1)

with respect to the ordered basis {|0Ò, |1Ò}. (The super-
script (j) here denotes that this operation is on the j-th
bit.)

(ii) 2-bit phase gate

(1.2)

with respect to the ordered basis {|00Ò, |01Ò, |10Ò, |11Ò}.

The one-bit unitary gate is an elementary gate in com-
mon quantum operations, while the two-bit quantum
phase gate has been experimentally demonstrated in
cavity QED systems [9]. In our quantum circuit, qubits
are carried by Rydberg three-level atoms. Our scheme
for implementing Grover’s algorithm is based on reso-
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nant atomic interactions with classical fields and disper-
sive coupling with quantized cavity fields. More specif-
ically, one-bit gate Uq, f’s are implemented via the reso-
nant interaction with a classical field. We can specify
the parameters q and f by choosing a proper Rabi fre-
quency, interaction time, and phase of the driving field
[10]. The two-bit quantum phase gate Qh can be imple-
mented via dispersive coupling to a cavity field having
either 0 or 1 photon. The cavity field acts as the inter-
mediary that causes one atom to interact with another.
We can achieve the proposed phase shift by setting a
proper coupling coefficient and interaction time.

Consider the quantum circuit design for two qubits
presented in [7]. A key feature in that design is that it
embodies quantum entanglement. Here we furnish the
complete circuit design for the general n-qubit case.
First, we wish to point out that the two types of quan-
tum gates in (1.1) and (1.2) do satisfy universality, even
though, when n = 1, e.g., a unitary operator of the form

(1.3)

can not be approximated with arbitrary accuracy by (1.1)
because the 1-bit gates (1.1) generate only the special uni-
tary group SU (2), since the determinant of (1.1) is always
1. However, the phase shift matrix (1.3) hardly matters
according to the results in [11], and thus the basic quan-
tum gates (1.1) and (1.2) are indeed universal for n ≥ 2.
Therefore this assures that a quantum circuit design can
be made. Albeit this fact is true, there obviously exist
many alternative ways of design, and considerable tech-
nical details need to be worked out. Our major task here
actually is to achieve a design with as much simplicity as
possible. In this paper, the complexity of our design,
measured in terms of the total number of elementary
quantum gates (1.1) and (1.2) needed in a single Grover
iteration, is O (log N), where N is the size of the database.

For the ease of quantum network representation in or-
der to be able to utilize the elegant results by Barenco
et al. [11], we have adopted the following convention:
throughout the paper, matrix representations are always
with reference to the binary string basis in increasing
lexicographic order:

|00 · · · 00Ò, |00 · · · 01Ò, |00 · · · 010Ò, …,

|11 · · · 10Ò, |11 · · · 11Ò, (1.4)

for the 2n dimensional Hilbert space H. Without loss of
generality we assume N = 2n. Throughout all the quan-
tum networks given below, the top wire always repre-
sents the most significance qubit; see Figure 1.
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We now give a brief overview of Grover’s algorithm
in the mathematical formalism as given in [12]. Let

D = {wi | i = 0, 1, …, N – 1}, (N = 2n)

be a database which is encoded in an n-bit quantum
computer as

D̂ = {|wiÒ | i = 0, 1, …, N – 1} with H = span D̂.

Without loss of generality, assume that |w0Ò is the in-
tended (unknown) search target in D̂. Associated with
this target |w0Ò, the only information available is
through a black-box oracle function

f: D̂ Æ {0, 1}, f (|wiÒ) = di0, i = 0, 1, …, N – 1. (1.5)

Let the binary symbol for |w0Ò be

|w0Ò = |a1a2 · · · anÒ, ai Œ {0, 1}, i = 0, 1, …, n. (1.6)

For future needs, let us also represent (1.6) as

|w0Ò = sx
(i1) sx

(i2) · · · sx
(ik) |11 · · · 11Ò, (1.7)

where

(1.8)

is a Pauli matrix (or, the NOT-gate) acting on the j-th
qubit, i.e., in (1.6), aj = 0 for j = i1, i2, · · · ik. All the other
aj’s are 1.

Let

be the uniform superposition of all basis states in H. We
define

(1.9)

(1.10)
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Fig. 1. The network notation for Lm(U); see Definition 1 for
Lm(U).



Both Iw0
and Is are unitary operators, and

G ≡ –Is Iw0
(1.11)

is Grover’s unitary operator to be used in the iterative
search for |w0Ò. Using |sÒ as the initial state, and apply-
ing the operator G, k times, i.e.,

(1.12)

we will obtain |w0Ò with a high probability (close to 1).
In the following sections we describe our procedures

for the quantum optical circuit design. The idea centers
on first constructing, and then using a key n-bit unitary
transformation

Kn ≡ I – 2 |11 · · · 1Ò, ·11 · · · 1| (1.13)

as a building block for both Iw0
and Is. More specifically:

Step 1: Construct the 3-bit key transformation K3 =
I – 2 |111Ò ·111|, and the Toffoli gate Controlled-
Controlled-NOT L2(X), where X is the NOT-
gate. See 2.

Step 2: Construct the n-bit transformation Ln–1(X) (cf.
Theorem 5 below) and then Kn. See 3.

Step 3: Use Kn as two major building blocks and as-
semble other 1-bit gates to construct the Grover
operator G for iteration. This is done in 4.

2. Construction of the Toffoli Gate and K3 from the
Basis Gates

We inherit the following definition from p. 52 in [11].

Definition 1. Let

be a unitary matrix and m Œ {0, 1, 2, …}. Define the op-
erator Lm(U) on (m + 1)-qubits through its action on the
basis by

L
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where “L” denotes the Boolean operator AND. �
The matrix representation for Lm(U) is

(2.1)

and the network notation is given in Fig. 1. We use X to
denote the NOT-gate sx in (1.8). Then L1(X) and L2(X)
are, respectively, the well known Controlled-NOT and
the Toffoli gates.

Lemma 1. We have

L1(X) = U(2)
p/4, p/2 Qp U(2)

p/4, –p/2 . (2.2)

Proof. Withe respect to the ordered basis {|00Ò, |00Ò,
|10Ò, |11Ò}, we have the matrix representations

It is now straightforward to verify by matrix multi-
plication that (2.2) holds. �

The equivalence of the two networks in (2.2) is de-
picted in Figure 2.

Lemma 2. Let

(2.3)

Then the unitary transformation K3 = I – 2 |111Ò, ·111|
=L2(U0) can be simulated by the network depected in
Figure 3.

Proof. It is easy to check from (2.3) that the equations
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Fig. 2. Equivalent networks for the equation (2.2).



are satisfied. We now quote Lemma 6.1 in [11] to con-
clude the equivalence of networks in Figure 3. �

Incidentally, we note that a more general version of
Lemma 6.1 in [11] can be stated as follows: Let U0 and
V0 be 2 × 2 unitary matrices such that V0

2 = U0. Then the
(n + 1)-bit gate Ln(U0) can be simulated by the network
shown in Figure 4.

We now note that we have the following equivalent
networks, in Figure 5.

Using Figs. 2 and 5 in Fig. 3, we obtain Figure 6.

Corollary 3. The key transformation K3 can be simu-
lated by the network in terms of the basic Uq, f and Qh
gates as depicted in Figure 6.

Corollary 4. The Toffoli gate Ln–2 (X) can be simulated
by a network in terms of the basic Uq, f and Qh gates as
depicted in Figure 7.

Proof. It follows from Corollary 3 and the same kind of
argument as in Lemma 1. �

Remark 1. From Fig. 7 we see that to make a Toffoli
gate, we need 11 basic gates: 6 Uq, f 1-bit gates and 5 Qh
2-bit phase gates. �

3. Construction of the n-Bit Key Transformation
with Linear Complexity from the Basic Gates

As pointed out in [11], there are many ways to con-
struct the n-bit transformation Ln–1(X). Some of such
constructions have exponential complexity (Lemma 7.1
in [11]). Here, we first design a network for Ln–1(X)
from the reversible Toffoli gates with linear complexity.
The n-bit key transformation then easily follows as a re-
sult.

Theorem 5. The n-bit gate Ln–1(X) can be simulated by
a network consisting of 2n – 7 Toffoli gates as shown in
Fig. 8, where n – 3 scratch bits, (s)1, (s)2, …, (s) n – 3,
are used.

Proof. We note that except for the two Toffoli gates
L2(X) controlled by bits 1 and 2 (see the top two wires
in the network on the right of Fig. 8), every L2(X) else
is controlled by a scratch bit (s) j, j = 1, 2, …, n – 3 with
the value |0Ò prescribed. Hence, if there is any |0Ò ap-
pearing in any one of the input qubits 1, 2, …, n – 1, the
L2(X) gate controlled by that input bit will act trivially
on the scratch bit, say (s) j, which is the controlled bit,
leaving its value equal to |0Ò throughout that wire. This
affects the functioning of the L2(X) gate controlled by
the scratch bit, again leaving the value of the next
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Fig. 3. An equivalent network for the transformation K3.

Fig. 4. An equivalent network for Ln(V0
2).

Fig. 5. Equivalent networks for Qp/2 and Q–p/2, where V0 and
V0* are given in (2.3).

Fig. 6. The network simulating K3 using the basic gates Uq, f
and Qh.

We also obtain the following.

Fig. 7. The network simulating the Toffoli gate using the basic
gates Uq, f and Qh.



scratch bit (s) j + 1 to be |0Ò, unchanged. This process
carries on to the very last bit (s)n – 3. Since (s)n – 3 is a
control bit for bit n, thus the value of bit n is unchanged.
Only when all of the input qubits take the value |1Ò, all
the L2(X) gates act nontrivially, flipping the value of the
(s) j bit from |0Ò to |1Ò, and then from |1Ò back to |0Ò on
the remaining part of the (s) j wire, for j = 1, 2, …, n – 3. 
Hence the Ln–1(X) transformation is accomplished. �

Corollary 6. The n-bit key transformation Kn (1.13) can
be simulated by the network as shown in Figure 9.

Proof. Same as Corollary 3.

Remark 2. From Remark 1, Theorem 5 and Corollary 6,
we see that in order to simulate the transformation Kn,

we need

(2n – 7) × 5 = 10n – 35 Qh gates,

(2n – 7) × 6 + 2 = 12n – 40 Uq, f gates,

for a total of 22n – 75 basic gates. Hence the linear com-
plexity as far as n is concerned. �

4. Assembling the Quantum Optical Circuit Blocks
for the Grover Unitary Operator

We are now in a position to present the major result
of the paper, i.e. the design given in the block diagram
Fig. 10 with interpretation and justification that it in-
deed constitutes the Grover unitary operator G in (1.11).

There are three major blocks in Fig. 10:

W: the Walsh-Hadamard block, which prepares the in-
put state

(4.1)

O: the oracle block, which is the unitary operator flip-
ping the sign of the target state |w0Ò:

|wiÒ → (– 1)f (wi) |wiÒ, i = 0, 1, …, N – 1; (4.2)

cf. (1.9)

| 〉 | 〉 | 〉00 0 1
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Fig. 8. Construction of the n-bit transformation Ln–1(X) using 2n – 7 Toffoli gates and n –3 scratch bits (s)1, (s)2, …, (s)n –3.

Fig. 9. The network simulating the n-bit key transformation Kn.



I: the block for the unitary operator “inversion about
the average”, i.e.,

Is = I – 2 |sÒ ·s |; cf. (1.10) (4.3)

In the following, we provide the mathematical proofs
justifying that the circuitry blocks in Fig. 10 indeed sat-
isfy the properties (4.1) – (4.3) as intended.

The operation (4.1) in the W block of Fig. 10 is inter-
preted in the following.

Theorem 7.

(4.4)

Proof. This is a well-known fact. We have

(4.5)

Therefore the tensor product in (4.4) gives |sÒ as in 
(4.1). �

Next, we interpret the oracle block O in Fig. 10
through the following.

Theorem 8. Let |w0Ò be given by (1.6) satisfying (1.7).
Then

(4.6)

Proof. We first note that
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Therefore, by (1.6) and (1.7),

and, thus,

(4.8)

which is exactly (4.6). Note that in the derivation of
(4.8), we have utilized the property

�

Remark 3. The currently well-known standard approach
implementing the unitary operator Iw0

is via the unitary
transformation Uf : |xÒ |yÒ → |xÒ |y ⊕ f (x)Ò, with the
auxiliary qubit |yÒ set to 1——

��2 (|0Ò – |1Ò). Furthermore, the
implementation of f has to be done via another unitary
transformation |xÒ |0Ò → |xÒ | f (x)Ò, with one more aux-
iliary qubit, since f is in general not reversible. Taking
this fact into account, Fig. 11 renders us a complete pic-
ture of the construction. However, this approach calls
for a concrete realization of f, and it is not within the
scope of task of this article. We would rather concen-
trate on the operators directly related to Grover’s algo-
rithm. We adopt a different approach in that, for given
|w0Ò satisfying (1.5) – (1.7) (known only to the oracle),
the 1-bit unitary gates U(i1)
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Fig. 10. Quantum circuitry for the Grover iteration operator.

Fig. 11. Alternative circuit for the oracle call Iw0
.



subroutine and transmitted to the oracle block O in
Fig. 10, yielding the unitary operator Iw0

. This “hard
wiring” approach is easy to implement. �

Finally, the following theorem interprets the I block
in Figure 10.

Theorem 9.

(4.9)

Proof. First note that

Thus, similarly to (4.4) and (4.5), we have

(4.10)

H e n -c e ,f r o m(4.10)a n dt h ef a c tt h a t
U * p / 4 , – p / 2 = U p / 4 , p / 2 ,
we have

The rightmost gate in the I Block in Fig 10, U(1)
p, 0, just

represents –I. Hence (4.9) follows. �

Remark 4. Using Remark 2 and Fig. 10, we see that in
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order to perform one iteration G |sÒ, we need as many as

2 (22n – 75) + 5n + 1 = 49n – 149

elementary quantum gates. To perform Gk |sÒ, we need
no more than

2k (22n – 75) + n + (4n + 1) k = (48k + 1) n – 149k

elementary quantum optical operations. The total num-
ber of qubits required is actually n + (n – 3) = 2n – 3, 
where we recall that n – 3 is the number of scratch bits
used in Theorem 5. �

Summary

In this paper, we have presented a circuit design for
the implementation of Grover’s algorithm for an arbi-
trary number of objects in the search database. The cir-
cuit consists of only two types of quantum gates, name-
ly the 1-bit unitary gate and the 2-bit phase gate. A phys-
ical realization still remains a formidable task, as the
number of phase gates increase significantly, though
polynomially with increasing values of log N. Even
though we have used 1-bit gates based on resonant 
coupling of atoms with classical fields and 2-bit gates
based on dispersive coupling of atoms with cavity
fields, there is good evidence that devices made of ion
traps or quantum dots are modelled similarly or even
identically by the same 1-bit and 2-bit gates and, thus,
the circuit design should remain little changed. Also, the
“hard wiring” oracle call needs to be addressed more
carefully.
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