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Abstract

The quantum Fourier transform (QFT) is a powerful tool in quantum computing. The
main ingredients of QFT are formed by the Walsh–Hadamard transformH and phase shifts
P(·), both of which are 2× 2 unitary matrices as operators on the two-dimensional 1-qubit
space. In this paper, we show thatH andP(·) suffice to generate the unitary groupU(2)
and, consequently, through controlled-U operations and their concatenations, the entire
unitary groupU(2n) onn qubits can be generated. Since any quantum computing algorithm
in ann-qubit quantum computer is based on operations by matrices inU(2n), in this sense
we have the universality of the QFT.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The quantum Fourier transform (QFT) on the additive group of integers
modulo 2m is defined by

F2m
(|a〉)= 1

2m/2

2m−1∑
y=0

e2πiay/2m|y〉, for a ∈ {0,1,2, . . . ,2m − 1}. (1)

QFT plays a significant role in the development of the quantum computer (QC).
One may note, for example, that the potentially powerful integer factoring algo-
rithm by Shor relies critically on the QFT for the detection of periodicity springing
from the prime factors.

We can further analyze (1) as follows. First, write

a = a12m−1 + a22m−2 + · · · + am−121 + am20 = (a1a2 . . . am)

and

y = y12m−1 + y22m−2 + · · · + ym−121 + ym20 = (y1y2 . . . ym).

Then it is well known that

RHS of(1)= 1

2m/2

2m−1∑
y=0

e(2πiay/2m)|y1 . . . ym〉

= 1

2m/2

2m−1∑
y=0

e2πi(0.am)y1|y1〉e2πi(0.am−1am)y2|y2〉 . . .

× e2πi(0.a1a2...am)ym|ym〉
= 1

2m/2

(|0〉 + e2πi(0.am)|1〉)(|0〉 + e2πi(0.am−1am)|1〉) . . .
× (|0〉 + e2πi(0.a1a2...am)|1〉). (2)

In the above factorization (or “untangling”), each factor is of the form

|0〉 + eiω|1〉. (3)

Such a state can be produced in two steps [2, pp. 340–341]: First, apply the
transformation

H = 1√
2

[
1 1
1 −1

]
, (4)

whereH is known as the Walsh–Hadamard transform, to the state|0〉:

H |0〉 = 1√
2

(|0〉 + |1〉). (5)
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Next, apply the phase shift operator

P(ω) =
[

1 0
0 eiω

]
(6)

to (5), yielding

P(ω)
[
H |0〉]= 1√

2

(|0〉 + eiω|1〉). (7)

The RHS of (7) is (3) (apart from a normalization coefficient). Therefore, we
see that the constituents of the QFT areH andP(ω). From the quantum optics
point of view,H is realized by a half-silvered mirror (beam splitter) andP(ω)

represents a phase shifter, as in a standard Mach–Zehnder interferometer [2,4].
First, we wish to emphasize that the QFT strictly by itself isnot universal in

quantum computing; see Remark 2 below. Thus, the question becomes whether
the two constituentsH anP(·) of QFT are universal or not. The question we want
to pose here is the following:

[Q] “Can any QC algorithm be represented as a composition of
Walsh–Hadamard transforms and associated conditional
phase shifts?” (8)

The implication of (8) is that the realization of any QC algorithm translates
into a combination of elementary quantum interferometric operations, i.e., single
particle beam splitter (Walsh–Hadamard transform) followed by a conditional
phase shift. Any QC algorithm can thus be formulated, or reformulated, in
terms of elementary multiparticle quantum interferometric operations. The unique
universal fundamental properties of QC concerning quantum superposition,
entanglement and interference are all explicitly represented in terms of quantum
multiparticle interferometry (QMI).

QMI practically is not to be taken as a proposed embodiment of a QC any
more than the Turing machine is to be taken as a literal construction in classical
computing. Rather, Ekert [3] has suggested its equivalence to QC in the sense of
its universality, meaning that QMI could be viewed as the closest QC analogue
of the classical Turing machine (through the universality theorem established in
this paper). This concept and viewpoint should provide physical insights into the
operational aspects and can facilitate efficient design of a universal QC.

2. Mathematical proof of the universality of H and P(·)

Our answer to [Q] is affirmative. We now proceed to provide the mathematical
justifications below.

As usual, we letU(n) to denote the unitary group onn-dimensional space.
By abuse of notation, we regardU(n) the same as the multiplicative group of all



72 C.M. Bowden et al. / J. Math. Anal. Appl. 274 (2002) 69–80

n × n unitary matrices.SO(n) denotes the orthogonal group onn-dimensional
spaces or, equally, the multiplicative group of alln × n orthogonal matrices. We
also define themaximal torus T (n) in U(n) as

T (n) = {diag(eiω1, . . . , eiωn) | ω1,ω2, . . . ,ωn ∈ R
}
,

i.e., T (n) consists of alln × n diagonal matrices whose diagonal entries are
complex numbers of unit magnitude.T (n) is a subgroup of the multiplicative
groupU(n).

Let A be a collection ofn × n unitary matrices. In this paper, we will use
Gn(A) to denotethe unitary subgroup of U(n) generated by A, i.e.,

Gn(A) =
⋂
α

{
Gα | Gα is a subgroup ofU(n), A⊆ Gα}.

We will write Gn(A) simply asG(A) if the value ofn is clear from the context.
We begin withn = 2.

Lemma 1 [1, Lemma 4.1].We have U(2) = G(SO(2), T (2)), i.e., U(2) is gen-
erated by SO(2) and T (2); more precisely, for every A ∈ U(2), we have

A =
[
eiδ 0
0 eiδ

][
eiα/2 0

0 e−iα/2

][
cosω sinω

−sinω cosω

][
eiβ/2 0

0 e−iβ/2

]
,

for some α,β, δ,ω ∈ R.

Lemma 2. T (2) ⊆ G(H,P (·)).

Proof. We first note that the NOT-gate

X ≡
[

0 1
1 0

]
(9)

can be obtained as

X = HP(−π)H. (10)

ThereforeX ∈ G(H,P (·)). From this, we have

XP(ω1)XP(ω2) =
[

0 1
1 0

][
1 0
0 eiω1

][
0 1
1 0

][
1 0
0 eiω2

]
=
[
eiω1 0

0 eiω2

]
, (11)

for any givenω1,ω2 ∈ R. ThereforeG(H,P (·)) contains the maximal torus
T (2). ✷
Lemma 3. SO(2) ⊆ G(H,P (·)).



C.M. Bowden et al. / J. Math. Anal. Appl. 274 (2002) 69–80 73

Proof. For each rotation matrix

R(ω) =
[

cosω sinω
−sinω cosω

]
,

we easily verify that

R(ω) = P

(
π

2

)
HP(ω)XP(−ω)HP

(
−π

2

)
. ✷ (12)

Theorem 4. G(H,P (·)) = U(2).

Proof. This follows immediately from Lemmas 1–3.✷
At this point, it should already be clear from the results in [1] thatU(2n) can be

generated through controlled-U(2) gates for anyn = 1,2, . . . . To make this paper
sufficiently self-contained, however, let us give the following concise, rigorous
treatment as to how to construct anyV ∈ U(2n) from a serial connection of a
collection of unitary matricesVij , where eachVij is a (generalized) controlled-
U(2) gate. The precise statement is given below.

Theorem 5. Let V ∈ U(2n). Then

V =
2n−1∏
i=1

i−1∏
j=0

Vij (13)

for a collection of matrices Vij ∈ U(2n) such that
Vij :Sij → Sij is the identity transformation,

Sij ≡ span{|m〉 | m ∈ {0,1, . . . ,2n − 1}, m �= i, m �= j },
0 � j < i � 2n − 1

 . (14)

In other words, each V ∈ U(2n) is a product of (generalized) controlled-U(2)
unitary matrices Vij , which acts nontrivially only on S⊥

ij = span{|i〉, |j 〉}.

Proof. We first quote the following fact [5,6]: For anyV ∈ U(2n), there exists a
collection of unitary matricesTi,j , 0� j < i � 2n − 1, and aD ∈ T (2n) such that

V =
(

2n−1∏
i=1

i−1∏
j=0

Ti,j

)
D, (15)

whereTi,j ∈ SO(2n) ⊆ U(2n) is a rotation involving|i〉 and |j 〉 and satisfy-
ing (14). For the benefit of the reader and for the sake of self-containedness, we
include a direct proof of (15) in Appendix A, condensed from [5].
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Now we can break upD into

D =


d0

d1
. . .

d2n−1

= D1D2 . . .D2n−1, (16)

where

D1 =


d0 0
0 d1

1
. . .

1

 (17)

and

Di =


1

. . .

di
. . .

1

 (18)

for i = 2,3, . . . ,2n − 1. It is easy to see thatD1 acts trivially except on|0〉 and
|1〉, and the otherDi ’s act nontrivially only on|i〉. In addition,Di ’s commute with
each other, and eachDi commutes withTk,l , ∀0 � l < k < i, as well. Thus,

V = T2n−1,2n−2 . . . T2n−1,0T2n−2,2n−3 . . . T2n−2,0 . . .

× T2,1T2,0T1,0D1D2 . . .D2n−1

= T2n−1,2n−2T2n−2,2n−3 . . . T2n−1,0D2n−1
× T2n−2,2n−3 . . . T2n−2,0D2n−2
...

× T2,1T2,0D2
× T1,0D1


2n−1 strings of products (19)

For 0� j < i � 2n − 1, define

Vij =
{
Ti,j if j �= 0,
Ti,jDi = Ti,0Di if j = 0.

Therefore we have reached

V =
2n−1∏
i=1

i−1∏
j=0

Vij ,

where eachVij is a unitary matrix which acts nontrivially only on the states|i〉
and|j 〉 satisfying (14). ✷
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Remark 1. (1) In Barenco et al. [1, p. 3465, right column, line 34], the equation
there corresponds to our Eq. (15). However, a summation sign

∑
is used instead

of the product sign
∏

(which is actually a double product
∏

i

∏
j in our (15))

which, of course, is a misprint.
(2) The factoring ofD in (16) into the product ofD1,D2, . . . andD2n−1 in

the form of (17) and (18) is peculiar in the sense thatD1 is chosen differently
from the otherDi ’s, i �= 1. It must be done this way (but no further mathematical
explanations were given in [1]. The reason for this is that there are 2n − 1
strings of products as indicated in (19). ThereforeD must be factorized to have
2n − 1 factorsD1,D2, . . . ,D2n−1, in the unique way of (17) and (18) in order to
satisfy (14).

Remark 2. Now it can be readily seen that the QFT itself is not universal in
the sense thatU(2n) is not generated byF2n (cf. (1), with m = n therein) or
(generalized) controlled-F2m (wherem < n) operations. First, checkn = 1: We
see thatF2n = F2 is actually the Walsh–Hadamard transformH (apart from
the normalization factor 1/

√
2 ). Therefore, the phase shiftsP(ω) in (6) cannot

be generated byF2 becauseP(ω) has eigenvalues 1 andeiω while H has
eigenvalues 1 and−1. For a general positive integern, the range ofF2n or of
controlled-F2m, m < n, consists at most of linear combinations of states of the
form

e2πi[(0.an)y1+(0.an−1an)y2+···+(0.a1...an)yn]|y1 . . . yn〉,
whereaj , yj ∈ {0,1}, for j = 1,2, . . . , n. The phases of such states arenot even
dense with respect to all possible phasese2πiθ , 0� θ < 2π .

3. Remarks on circuits

The decomposition (13) is a mathematical rendering of statement [Q] and
answers the conjecture affirmatively. In this section, let us further elaborate on
the circuit design aspects, based on the work in Barenco et al. [1, Section VIII]
and [4].

Each factorVij in (13) satisfies (14) and thusVij acts nontrivially only on
the states|i〉 and|j 〉. Denote the restriction ofVij to the 2-dimensional subspace
S⊥
ij = span{|i〉, |j 〉} by V̂ij . ThenV̂ij ∈ U(2). As pointed out in [1, p. 3465], each

Vij is not a standardΛn−1(V̂ij ) (in the notation of [1, p. 3458]) gate in the sense
that thecontrols are states rather than bits.

Nevertheless, using Proposition 6 below, Barenco et al. [1, Section VIII] point
out how to rearrange basis states with a “gray code connecting state|i〉 to state
|j 〉” such thatVij becomes unitarily equivalent toΛn−1(V̂ij ). In this sense,Vij

aregeneralized controlled-̂Vij gates.
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Fig. 1. Then-bit controlled-NOT gateΛn−1(X), whereX is given by (9). This gate implements the
two cycle(2n − 2,2n − 1) in Proposition 6.

Proposition 6. The symmetric group S2n of permutations on the symbols 0,1,
2, . . . ,2n − 1 is generated by the 2-cycle (2n − 2,2n − 1) and the 2n-cycle (0,1,
2, . . . ,2n − 1).

Proof. This is a basic fact which can be found in most basic algebra or group
theory books.

Incidentally, we note that the 2-cycle(2n −2,2n−1) is a permutation between
the states

|1 1. . .1 0︸ ︷︷ ︸
n bits

〉 and |1 1. . .1︸ ︷︷ ︸
n bits

〉

and thus can be realized by the controlled-NOT gate with thenth qubit as the
target bit and the first(n − 1) bits as thecontrol bits as shown in Fig. 1.

On the other hand, the 2n-cycle (0,1,2, . . . ,2n − 1) makes the rotation of
the states|0〉 → |1〉 → · · · → |2n − 2〉 → |2n − 1〉 → |0〉, i.e., the |x〉 →
|x + 1 mod 2n〉 operation. This can be implemented by the circuit as shown in
Fig. 2. ✷

Therefore, any permutation of the basis states|x〉, x = 0,1,2, . . . ,2n − 1, can
be realized by finitely many controlled-NOT operations consisting of circuits as
shown in Figs. 1 and 2.

Thus, each factorVij in (13) can be realized by the circuit as shown in Fig. 3.
By concatenating together all the blocksVij as shown in Fig. 3 according to the

factorization (13), we have constructed allV ∈ U(2n) with controlled-̂Vij gates
according to (13). EacĥVij ∈ U(2) is then further formed from concatenations
of the gatesH,P(ω) ∈ U(2) by Theorem 4. It is in this sense that we have the
universality of the Walsh–Hadamard gateH and the phase shift gateP(·) and,
consequently, that of the quantum Fourier transform with the affirmative answer
to question [Q] in (10).
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Fig. 2. This circuit implements the operation|x〉 → |x + 1 mod 2n〉 or, equivalently, the 2n-cycle
(0,1,2, . . . ,2n − 1) in Proposition 6. Note that the bit|1〉 at the bottom of the figure is the “scratch
bit” which is sometimes omitted in circuit drawing. All the gates in this circuit are controlled-NOT
gates.

Fig. 3. The unitary matrixVij in (13) as a controlled-̂Vij gate wherêVij ∈ U(2). The operations
(i,2n − 1) and(j,2n − 2) in the two boxes are cyclic permutations (which can be realized by con-
catenations of circuits in Figs. 1 and 2).

Appendix A. Decomposition procedure of general finite-dimensional
unitary transformations into a product of plane unitary transformations

First, we define a special type of unitary transformationsTpq(φ,σ ) ∈ U(n) by

Tpq(φ,σ ) = [tij ]n×n, 1 � p,q � n, p �= q,
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where

tij =


1, i = j, i �= p, i �= q,
cosφ, i = j = p or i = j = q,
0, i �= j, i �= p, j �= q andi �= q, j �= p,
−e−iσ sinφ, i = p andj = q,
eiσ sinφ, i = q andj = p;

i.e.,

Tpq(φ,σ ) = (p q )

(
p

q

)

×



1 0 0 0
0 1

1
. . .

cosφ −e−iσ sinφ
eiσ sinφ cosφ

1 0

0 0
. . .

0 1


.

Tpq(φ,σ ) is just a plane unitary transformation acting nontrivially only on states
p andq .

Let V ∈ U(n). We want to find someTn,n−1(φ,σ ) such thatT ∗
n,n−1V = V ′ =

[v′
ij ]n×n, wherev′

n−1,n = 0:

T ∗
n,n−1V =



1 0 0
0 1 0
0 0 1 ©

. . .

cosφ e−iσ sinφ
© −eiσ sinφ cosφ



×


v11 . . . v1,n−1 v1n
...

...
...

vn−1,1 . . . vn−1,n−1 vn−1,n
vn1 . . . vn,n−1 vnn

 ,

so

v′
n−1,n = vn−1,n cosφ + vnne

−iσ sinφ.

We consider all possibilites:
Case 1: vn−1,n = 0. Then we chooseφ = 0,σ = 0, i.e.,Tn−1,n(φ,σ ) = In, and

we obtainv′
n−1,n = vn−1,n = 0.
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Case 2: vn−1,n �= 0, vnn = 0. Then chooseφ = π/2,σ = 0. Obtainv′
n−1,n = 0.

Case 3: vn−1,n �= 0, vnn �= 0. Write vn−1,n = rn−1,ne
iθn−1,n , vnn = rnne

iθnn .
Chooseσ = −θn−1,n + θnn andφ = tan−1(−rn−1,n/rnn). Obtain

v′
n−1,n = cosφ · rn−1,ne

iθn−1,n + sinφ · rnnei(−σ+θnn)

=
(
rn−1,n

rnn
+ tanφ

)
rnn cosφeiθn−1,n = 0.

Therefore, we have foundTn,n−1 ∈ U(n) such that

T ∗
n,n−1V =



∗ . . . ∗
...

...

...
...

∗ . . . ∗

v′
1n
...

v′
n−2,n

0
v′
n1 . . . v′

n,n−1 v′
nn


.

Similarly, we can findTn,n−2, Tn,n−3, . . . , Tn,1 such that

T ∗
n,n−2T

∗
n,n−1V =



∗ . . . ∗ v′′
1n

...
...

...
...

... v′′
n−3,n

...
... 0

∗ . . . ∗ 0

v′′
n1 . . . v′′

n,n−1 v′′
nn


,

...

T ∗
n1T

∗
n2 . . . T

∗
n,n−2T

∗
n,n−1V =


∗ . . . ∗ 0
...

... 0
...

...
...

∗ . . . ∗ 0
ṽn1 . . . ṽn,n−1 ṽnn

≡ W.

SinceW is unitary, we concludẽvn1 = ṽn2 = · · · = ṽn,n−1 = 0 andṽnn = eiαn ≡
dn for someαn ∈ R. Thus

T ∗
n1T

∗
n2 . . . T

∗
n,n−2T

∗
n,n−1V =

 ∗∗
0
...

0
0 . . . 0 dn

 .

Now, applying the same technique to the remaining(n−1)× (n−1) undiagonal-
ized matrix block(∗∗) above, together with a simple induction argument, we ob-
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tain plane unitary transformationTn1, . . . , Tn,n−1, Tn−1,1, . . . , Tn−1,n−2, . . . , T31,

T32 andT21 such that

T ∗
21T

∗
31T

∗
32T

∗
41 . . . T

∗
n−1,1 . . . T

∗
n−1,n−2T

∗
n1 . . . T

∗
n,n−1V

=


d1

d2 0
. . .

0 dn

= D,

wheredj = eiαj for j = 1,2, . . . , n.
Therefore

V = Tn,n−1Tn,n−2 . . . Tn1Tn−1,n−2 . . . Tn−1,1 . . . T32T31T21D

=
(

n∏
i=1

i−1∏
j=1

Ti,j

)
D

and (15) is proved.
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