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Abstract

The quantum Fourier transform (QFT) is a powerful tool in quantum computing. The
main ingredients of QFT are formed by the Walsh—Hadamard trandfbamd phase shifts
P(-), both of which are Z 2 unitary matrices as operators on the two-dimensional 1-qubit
space. In this paper, we show thdtand P (-) suffice to generate the unitary grotfi2)
and, consequently, through controllédoperations and their concatenations, the entire
unitary groupl (2") onn qubits can be generated. Since any quantum computing algorithm
in ann-qubit quantum computer is based on operations by matrice$2), in this sense
we have the universality of the QFT.
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1. Introduction

The quantum Fourier transform (QFT) on the additive group of integers
modulo 2" is defined by

om_1q
1 PN /oM
Fon(la)) = T > /2y foraef{0,1.2,....2" -1} (1)
y=0

QFT plays a significant role in the development of the quantum computer (QC).
One may note, for example, that the potentially powerful integer factoring algo-
rithm by Shor relies critically on the QFT for the detection of periodicity springing
from the prime factors.

We can further analyze (1) as follows. First, write

a=a12" 1+ a2 %+t ay_ 12t + a2’ = (a1az. . .am)
and
_ szl 2m72 . 21 20 _
y=mn + 2 +o Tt Yym—12" 4 Y2 = (y1y2. - Ym)-

Then it is well known that
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% (|0> +e2”i(0'”1”2"'”m)|1)). (2)

| Ym)
(|O> +e27'[i(0.am)|l>)(|o> _i_eZni(O.am,lam)ll)) o

In the above factorization (or “untangling”), each factor is of the form
|0) + ¢'|2). 3)

Such a state can be produced in two steps [2, pp. 340-341]: First, apply the
transformation

11 1
vt 4]
whereH is known as the Walsh—Hadamard transform, to the $tate
1
H|0) = —=(10) +1)). (5)

V2
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Next, apply the phase shift operator
1 0
to (5), yielding
P(w)[H|0)] = %(m +e'[1)). 7)

The RHS of (7) is (3) (apart from a normalization coefficient). Therefore, we
see that the constituents of the QFT &feand P(w). From the quantum optics
point of view, H is realized by a half-silvered mirror (beam splitter) a”R@v)
represents a phase shifter, as in a standard Mach—Zehnder interferometer [2,4].
First, we wish to emphasize that the QFT strictly by itselfids universal in
guantum computing; see Remark 2 below. Thus, the question becomes whether
the two constituent& an P(-) of QFT are universal or not. The question we want
to pose here is the following:

[Q] “Can any QC algorithm be represented as a composition of
Walsh—Hadamard transforms and associated conditional
phase shifts?” (8)

The implication of (8) is that the realization of any QC algorithm translates
into a combination of elementary quantum interferometric operations, i.e., single
particle beam splitter (Walsh—Hadamard transform) followed by a conditional
phase shift. Any QC algorithm can thus be formulated, or reformulated, in
terms of elementary multiparticle quantum interferometric operations. The unique
universal fundamental properties of QC concerning quantum superposition,
entanglement and interference are all explicitly represented in terms of quantum
multiparticle interferometry (QMI).

QMI practically is not to be taken as a proposed embodiment of a QC any
more than the Turing machine is to be taken as a literal construction in classical
computing. Rather, Ekert [3] has suggested its equivalence to QC in the sense of
its universality, meaning that QMI could be viewed as the closest QC analogue
of the classical Turing machine (through the universality theorem established in
this paper). This concept and viewpoint should provide physical insights into the
operational aspects and can facilitate efficient design of a universal QC.

2. Mathematical proof of the universality of H and P(-)

Our answer to [Q] is affirmative. We now proceed to provide the mathematical
justifications below.

As usual, we letU (n) to denote the unitary group ondimensional space.
By abuse of notation, we regatfi(n) the same as the multiplicative group of all
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n x n unitary matricesSO(n) denotes the orthogonal group ardimensional
spaces or, equally, the multiplicative group ofralk n orthogonal matrices. We
also define thenaximal torus T'(n) in U (n) as

T(n) = {diag(ei“’l, €Y o1, W, wp € R},

i.e., T(n) consists of alln x n diagonal matrices whose diagonal entries are
complex numbers of unit magnitud&.(n) is a subgroup of the multiplicative
groupU (n).

Let A be a collection ofi x n unitary matrices. In this paper, we will use
G, (A) to denotehe unitary subgroup of U (n) generated by A, i.e.,

Gn(A) =(){Gu | Gu is a subgroup of/ (n), A S G}.

o

We will write G,,(A) simply asG(A) if the value ofn is clear from the context.
We begin withn = 2.

Lemma 1 [1, Lemma 4.1]We have U(2) = G(SO(2), T (2)), i.e., U(2) is gen-
erated by SO(2) and T (2); more precisely, for every A € U (2), we have

a_[e® o[ed? o cosw sinw |[e#2 0
10 || 0 2| —sinw cosw|| O e 2]
for some«a, 8,8, w e R.
Lemma2.T(2) C G(H, P(")).

Proof. We first note that the NOT-gate

|10 1
X= [1 0} ©)
can be obtained as
X =HP(-7)H. (10)

ThereforeX € G(H, P(-)). From this, we have

srencrea=[2 [ 2 2[4 2]

eiwl 0
= [ 0 eiw21| ) (11)

for any givenwi, w2 € R. ThereforeG(H, P(-)) contains the maximal torus
T@. O

Lemma 3. SO(2) € G(H, P(")).



C.M. Bowden et al. / J. Math. Anal. Appl. 274 (2002) 69-80 73

Proof. For each rotation matrix

R(w):[ cosw sina)]
—sinw  cosw
we easily verify that
R(a)):P(%)HP(w)XP(—w)HP(—%). o (12)

Theorem 4. G(H, P(-)) =U(2).
Proof. This follows immediately from Lemmas 1-30

At this point, it should already be clear from the results in [1] #&2") can be
generated through controlled-U (2) gatesfor anyn =1, 2, . ... To make this paper
sufficiently self-contained, however, let us give the following concise, rigorous
treatment as to how to construct alfye U(2") from a serial connection of a
collection of unitary matrice¥’;;, where eaclV;; is a (generalized) controlled-

U (2) gate. The precise statement is given below.

Theorem 5. Let V € U (2"). Then

2"-1i-1

v=T]TTv (13)

i=1 j=0
for a collection of matrices V;; € U(2") such that
Vij :Sij — S;j istheidentity transformation,
Sij=spad|m)|me{0,1,...,2" =1}, m#i, m#j}, ¢. (24)
0<j<i<2"-1

In other words, each V € U(2") is a product of (generalized) controlled-U (2)
unitary matrices V;;, which acts nontrivially only on 3,# =spanli), |j)}.

Proof. We first quote the following fact [5,6]: For anly € U (2"), there exists a
collection of unitary matrice%; ;, 0< j <i < 2" —1,andaD € T(2") such that

2"—-1i-1
V:(H ]_[Tl-,,->D, (15)

i=1 j=0

whereT; ; € SO(2") C U(2") is a rotation involvingli) and|j) and satisfy-
ing (14). For the benefit of the reader and for the sake of self-containedness, we
include a direct proof of (15) in Appendix A, condensed from [5].
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Now we can break u@ into

do
d1
D =
where
do O
0 di
D1 = 1
and
1
D; = d;

=D1D>...Don_1q,

(16)

(17)

(18)

fori =2,3,...,2" — 1. It is easy to see thdd; acts trivially except on0) and
|1), and the otheD;’s act nontrivially only onji). In addition,D;'s commute with

each other, and eadh; commutes withr ;, VO< I < k < i, as well. Thus,

V=Tm_q10m 2...Ton_10Tm_22m_3...T;m_20...
X Tp1T2,0T1,0D1D2 ... Don_1

=Tom_1n2Ton_pom_3...Ton_10D2m_1
X Ton_pon_3...Ton_p0Don_2

x T21T2,0D2
x T1,0D1

For0< j <i <2"—1, define

if j #0,
if j=0.

T..
Vij:{ !

T;,jDi =T;oD;

Therefore we have reached

2'-1i-1

v=T1T1v

i=1 j=0

2"—1 strings of products

(19)

where each;; is a unitary matrix which acts nontrivially only on the statgs

and|j) satisfying (14). O
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Remark 1. (1) In Barenco et al. [1, p. 3465, right column, line 34], the equation
there corresponds to our Eq. (15). However, a summationsigs used instead
of the product sigr{ | (which is actually a double produ¢f; []; in our (15))
which, of course, is a misprint.

(2) The factoring ofD in (16) into the product o1, Do, ... and D:_1 in
the form of (17) and (18) is peculiar in the sense thatis chosen differently
from the otherD;’s, i # 1. It must be done this way (but no further mathematical
explanations were given in [1]. The reason for this is that there &are 2
strings of products as indicated in (19). Thereférenust be factorized to have
2" — 1 factorsD1, D>, ..., D1, in the unique way of (17) and (18) in order to
satisfy (14).

Remark 2. Now it can be readily seen that the QFT itself is not universal in
the sense that/(2") is not generated by, (cf. (1), with m = n therein) or
(generalized) controlled=» (wherem < n) operations. First, check = 1: We
see thatF» = F» is actually the Walsh—Hadamard transfotth (apart from
the normalization factor //2). Therefore, the phase shiffXw) in (6) cannot

be generated byF, becauseP(w) has eigenvalues 1 and® while H has
eigenvalues 1 and-1. For a general positive integer the range ofF2: or of
controlled#>n, m < n, consists at most of linear combinations of states of the
form

ezni[(0~a71)yl+(0~an71an)y2+"'+(0~alman)yn] |y1 . yn>,
wherea;, y; €{0,1}, for j =1,2,...,n. The phases of such states aot even
dense with respect to all possible phase¥i?, 0< 6 < 27.

3. Remarkson circuits

The decomposition (13) is a mathematical rendering of statement [Q] and
answers the conjecture affirmatively. In this section, let us further elaborate on
the circuit design aspects, based on the work in Barenco et al. [1, Section VIII]
and [4].

Each factorV;; in (13) satisfies (14) and thui; acts nontrivially only on
the stategi) and|j). Denote the restriction df;; to the 2-dimensional subspace
S = sparili), |j)} by V;;. ThenV;; € U(2). As pointed out in [1, p. 3465], each
Vijis nota standardln_l(f/\ij) (in the notation of [1, p. 3458]) gate in the sense
that thecontrols are states rather than bits.

Nevertheless, using Proposition 6 below, Barenco et al. [1, Section VIII] point
out how to rearrange basis states with a “gray code connecting|statestate
[j)" such thatV;; becomes unitarily equivalent mn_l(Vij). In this senseV;;
aregeneralized controlled¥;; gates.
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Fig. 1. Then-bit controlled-NOT gated,, _1(X), whereX is given by (9). This gate implements the
two cycle (2" —2,2" — 1) in Proposition 6.

Proposition 6. The symmetric group So» of permutations on the symbols 0, 1,
2,...,2" — 1isgenerated by the 2-cycle (2" — 2, 2" — 1) and the 2"-cycle (0, 1,
2,...,2"-1).

Proof. This is a basic fact which can be found in most basic algebra or group
theory books.

Incidentally, we note that the 2-cydl@” — 2, 2" — 1) is a permutation between
the states

|11...10 and [11...1)
— ——
n bits n bits

and thus can be realized by the controlled-NOT gate withntiequbit as the
target bit and the firstn — 1) bits as thecontrol bitsas shown in Fig. 1.

On the other hand, the’zycle (0,1, 2,...,2" — 1) makes the rotation of
the states|0) — |1) —» --- — |2" — 2) — |2" — 1) — |0), i.e., the|x) —
|x + 1 mod Z) operation. This can be implemented by the circuit as shown in
Fig.2. O

Therefore, any permutation of the basis statesx =0,1,2,...,2" — 1, can
be realized by finitely many controlled-NOT operations consisting of circuits as
shown in Figs. 1 and 2.

Thus, each factov;; in (13) can be realized by the circuit as shown in Fig. 3.

By concatenating together all the blocks as shown in Fig. 3 accordlng tothe
factorization (13), we have constructed Hlle U (2") with controlledv,] gates
according to (13). Each’,j € U(2) is then further formed from concatenations
of the gatesH, P(w) € U(2) by Theorem 4. It is in this sense that we have the
universality of the Walsh—Hadamard gateand the phase shift gate(-) and,
consequently, that of the quantum Fourier transform with the affirmative answer
to question [Q] in (10).
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Fig. 2. This circuit implements the operatign) — |x + 1 mod 2') or, equivalently, the "2-cycle
(0,1,2,...,2" — 1) in Proposition 6. Note that the hjit) at the bottom of the figure is the “scratch
bit” which is sometimes omitted in circuit drawing. All the gates in this circuit are controlled-NOT

gates.

Q2" -1 Q2" -1

o o G’zn 2) [ ] [ ] L] [ ] (j,2n 2) e o

o

N
v,

Fig. 3. The unitary matrixV;; in (13) as a controlled%; gate whereV;; € U(2). The operations
(i,2" — 1) and (j, 2" — 2) in the two boxes are cyclic permutations (which can be realized by con-

catenations of circuits in Figs. 1 and 2).

Appendix A. Decomposition procedure of general finite-dimensional
unitary transfor mationsinto a product of plane unitary transformations

First, we define a special type of unitary transformatitps¢, o) € U(n) by

Tpy(p,0) =tijluxn, 1< p,qg<n, p#q,
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where
1, i=j, i#p, i#q,
Cosp, i=j=pori=j=gq,
—e”'?sing, i=pandj=gq,
e'? sing, i =g andj = p;

ie.,

Tpg($,0) = (p q)(;’)
0
1

-1 0 (0g
0
1
X cosp —e %sing
€% sing cosp
1 0
00 ..
L 0 1J

Tpq (¢, 0) is just a plane unitary transformation acting nontrivially only on states
p andg.
Let V € U(n). We want to find somé&;, ,_1(¢, o) such thatr* v =V'=

nn—1" —
[v;j]nx,,,wherev;l . =0

1,
1 0 O
01 O
0 0 1

. O
Tn,nflv =
cosp e"7 sing
O —e'? sing COoSsp
V11 V1,n-1 Vin
% : : ,
Un-1,1 -+ Un—1n—-1 Un—1n
Unl cee Un,n—1 Unn

so
U;Ll,n = Uy—1,1 COSP + vyne "7 SiNG.

We consider all possibilites:
Casel:v,-1, =0. Thenwe choos¢ =0,0 =0, i.e.,T,,_1,(¢,0) = I, and
we obtaim’

n—1n = Un—1n = 0.
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Case2:vy—1,0 #0, vy, =0. Then choose = 7/2,0 =0. Obtalnvn 1n= =0.
Case 3: vy_1, #0, vy, 0. Write v,_1,, = rnfl,nelgﬂ L Yy = Fppe'fm.
Chooser = —6,_1., + 6y and¢ = tan(—r,_1.,/ra). Obtain

/

Uy—1.n

=COSP - Fy_1.,€' %17 4 SiNG - rype’ (7O HOm)

= <rn Ln —i—tand))r,m cospe!fn-1n = Q.

T'nn

Therefore, we have fount}, ,—1 € U (r) such that

* * V1,
* _ . . /
T n,n— 1V - : : vn—Z,n
0
v v v
nl n,n—1 nn

Similarly, we can findl}, ,—2, Ty n—3, - . ., Tn,1 Such that

— /-
*k *k Uln
. : "
v
* * _ . . n—3,n
Tn T n,n— 1V - . i ’
: 0
* * 0
” ” ”
Lvy Uy n_1 v, 4

* * _ —
T n2- Tnn ZTan_ : . =W.
* L. * 0
5n1 .. ﬁn,n—l ﬁnn
SinceW is unitary, we concludé,; = v, =--- = 0,.,—1 = 0 andi,, = /% =
d, for somex,, € R. Thus
0
* * * _ ol :
nl nZ Tn n— Tn n— 1V - 0
0 ... 0 d,

Now, applying the same technique to the remairiing 1) x (n — 1) undiagonal-
ized matrix block(xx) above, together with a simple induction argument, we ob-
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tain plane unitary transformatidby1, . .
T32 andT>1 such that

%k Ak R * *
Ty T3 13T - T, 1 1--- T2

n n

d1

d> 0
= . = D’

0 dy
whered; = ¢/ for j =1,2,...,n.
Therefore

V= Tn,n—lTn,n—Z .. Tann—l,n—Z-

n

i—1
=([1[17.)p

i=1j=1

and (15) is proved.
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