Physics 371 Intermediate Lab I: Electrons ...(And Error)

Prof. Justin Frantz

frantz@ohio.edu

9/6/11

First: a) SIGN UP SHEET

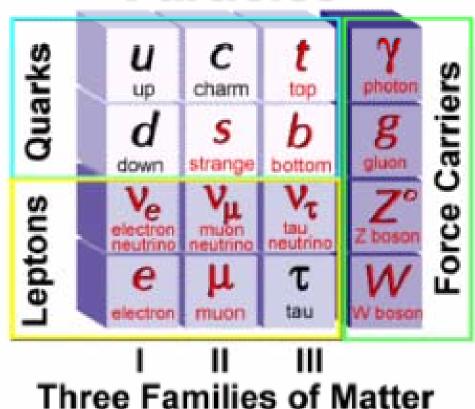
- b) Go over syllabus...
- c) Bevington & Robinson Text
- d) Go upstairs

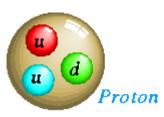
Physics 37X Series

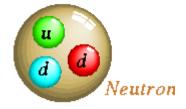
- 371: Electrons, 372: Photons, 373: Nucleons
- I am a high energy particle physicist so I may give the physics a slightly biased slant
- This (371) is first intro:
 - focuses a lot on error and uncertainty analysis
 - and report writing
- Electron: Subatomic particle
 - Elementary
 - Charge: Quantized
 - Mixture of classic experiments
- Photon: In almost every situation we will use photons to make our observations
 - 372: Modern condensed matter (e.g. Scanning Electron Microscopes)
- What is a Nucleon? N = n, p (neutron, protons)
 - 373: Nuclear and Particle physics
 - Counting experiments

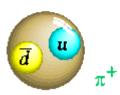
Elementary Particles

Elementary Particles



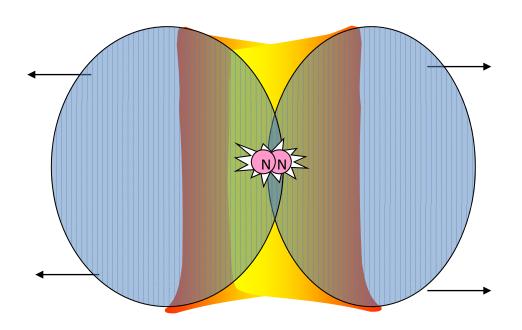






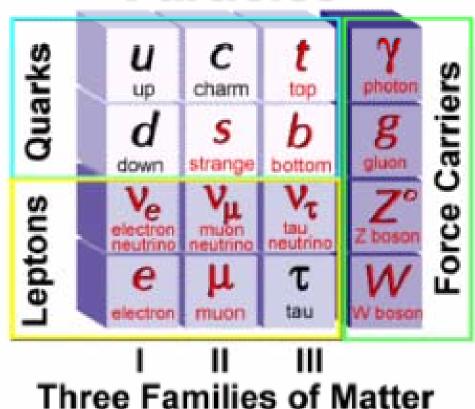
What I do: Relativistic Heavy Ion Physics

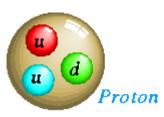
- Combination of Particle and Nuclear
- Nucleus + Nucleus Collisions at 200 GeV: RHIC

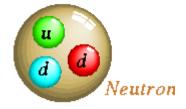


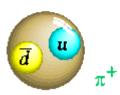
Elementary Particles

Elementary Particles







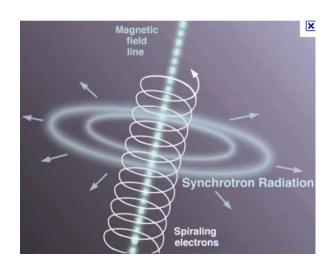


Electrons

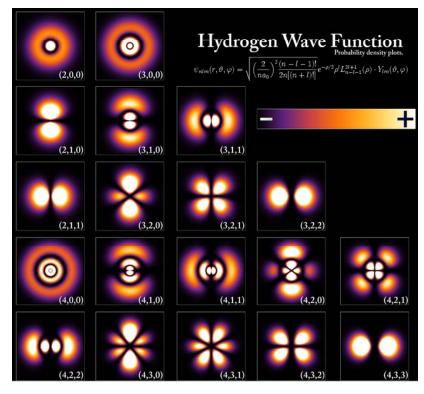
- Mass: 511 KeV 9.10938291×10⁻³¹ kg
- $1 \text{ eV} = 10^{-19} \text{ J}$ $E = \text{mc}^2$
- Atomic interactions (e_{cloud}-nucleus/lattice)
 - 1 eV to 1 keV (γ = "Photon" or "X-ray")
 - Conduction Band (10's of eV)
- Nuclear Structure interactions (e.g. n,p shell transitions)
 - 1 keV ~ 10 MeV (γ = "Gamma Ray")
- Nucleon Structure Interactions
 - $m_{\text{nucleon}} = 938 \text{ MeV } (1.67262158 \times 10^{-27} \text{ kg})$
 - $-m_{pion} = 135 \text{ MeV}$
- "Space (Vacuum) Structure" Effects
 - Higg's Boson Mass: ~100's GeV (top quark mass 173 GeV)

Electrons

- Particle Nature: e/m, movement in fields
- Quantum Effects: electron diffraction, Wave Fn



Picture from AstronomyOnline.org



This Lab will explore both sides

Other interesting facts

- Discovered by J. J. Thomson (1897)
- Has anti-particle: called positron e⁺
- called Weakly Interacting: does not feel "Strong Nuclear Force)
- Governed by Quantum Field Theory (it is a field, just like photon)
- Common component of most prolific plasmas (Earths/Sun mag field--)

Aurorae, Coronae

Report Writing

- Why Important?
 - Convince Other Scientists
 - You did the measurement
 - And you did it right
 - Reproducibility
 - In order to be considered a real result must be reproducible

Excel Tutorial

- Auto-complete
- Copy
- Definite
- Functions: Histogramming

Why is it important?

- A Measurement is meaningless without uncertainties!!!!!
 - http://deathbyvaccination.com/
 - Theoretical AOL Article about war waste \$
- Typically:
 - ~10% of time/work spent making measurement
 - ~90% of time/work spent evaluating/estimating uncertainties

Physics 371 Intermediate Lab I: Electrons ...(And Error)

Prof. Justin Frantz frantz@ohio.edu 9/8/11

First Lecture I Error

- b) Tutorials
- c) Go over to new location Clipp
- d) Lecture on Distributions

Reading Assignement Ch 2.

Intersection of Statistics and Error

- Random (Stat) Error → Bev. Ch 1 Model:
 - Single quantity measured N times
- Measurement = Truth + Error

 "Random Variable"
- Part I of course : Consider at Distributions of measurements
 - Histograms are way to view Distributions
 - Parameters (e.g. moments) describing these distributions

Table ...

Parent Distribution/Sample

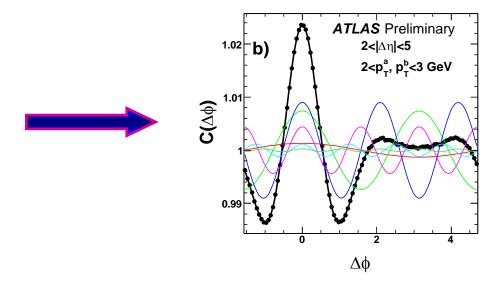
- Sample Distribution: Set of (N) measurements of "one" quantity
 - (often: same measurement repeated)
- Parent: "functional form" in limit of infinite number of measurements $N \rightarrow \infty$
 - (Distribution)
- ◆ Histogram → Visualization of Sample Distribution
 - Drawing to demonstrate

Parameters of Distribution

- You: fill in
- Mean
- Median
- Mode: Most Prob. Value
- Some Weird Examples Flat, prob neq mean
- Deviations
 - Standard (RMS) σ
- Variance σ^2
- See next slides: s²

What to use these parameters for?

- To estimate your measurement: (which parameter?)
- To characterize how accurate your measurement should be (come back to weird)
- If you reproduce experiment, how accurate might you expect your experiment to be.
 - This is why we make a difference btw s^2 and σ^2
- However note that quite often these same parameters are used for other purposes



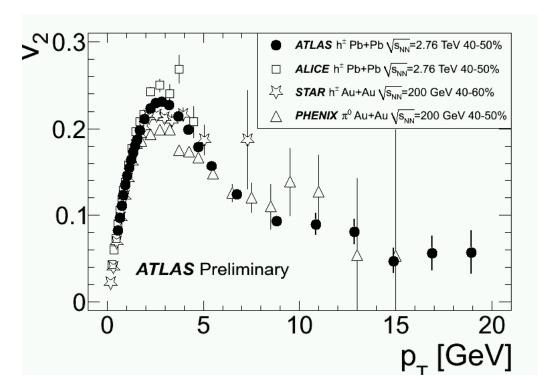
Error Tutorial

Columbia Error Tutorials Go to website

- Perform excercises in Excel: make new file, email me at the end. Put group names in first page.
- Make Histograms in Excel of: Histogram example, Exercise 3. see link on Justin's page
- Prof Frantz: example using ROOT

Bigger picture

- Usually we make "histograms" (in particle physics/counting experiment) /graphs of measurements as a function of some changing input.
- How do these distribs/params relate to these? (Draw)
- Accuracy vs Precision



Physics 371 Intermediate Lab I: Electrons ...(And Error)

Prof. Justin Frantz frantz@ohio.edu 9/13/11

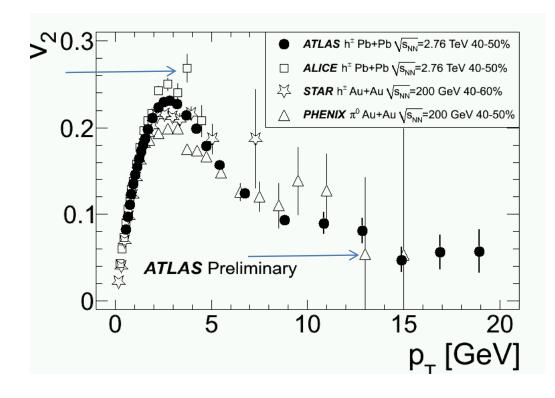
First Lecture I Error Lecture on Distributions

Reading Assigement Ch 3.

Bigger picture

- Usually we make "histograms" (in particle physics/counting experiment) /graphs of measurements as a function of some changing input.
- How do these distribs/params relate to these? (Draw)

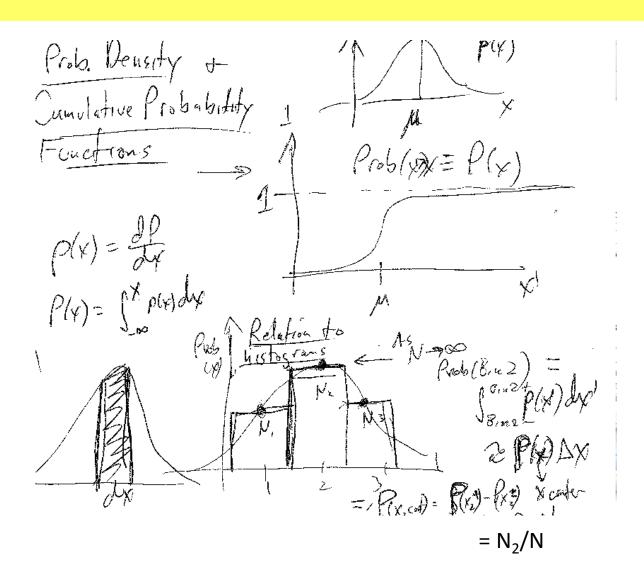
Accuracy vs
Precision: make
sure you know the
difference



Parent Distribution -> Probability

- p(x): Probability Density Function
 - "Continuous" (limit N→ inf, so do # bins in hist)
- Cumulative Probability Function P(x)
 - Integral
- In usual cases Parent Dist == p(x)
- $P(x) = 0 \rightarrow P(x) dx$
- Histogram $P(x) \Delta x$
- Relation between btw <x> formula
- Expectation value <f(x)>
 - Can estimate from any histogram
- We will discuss several common examples

Notes on board



More notes on board

Note: clarification made in class praving above is impossible in ventily only down for demonstration purposes (Prob(x) < 1 always but N: -900 so drawns assumed some scale factors (onplotted) e.g. $\frac{1}{\Delta x}$ I referred to this one in class. The other is a factor of Ne.s. He histogram would need divided by N to make drawing realistic. This should clarify the possible confusing vegarding the unnormalized "p(x2)"= N2 + the real p(x)

Regroup:
$$= \frac{1}{N} (x_1 + x_2 + x_3 + x_4 + x_5 ...)$$
Regroup:
$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + (x_4 + x_5 ...) + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + (x_4 + x_5 ...) + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_4 + x_5 ...) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + (x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

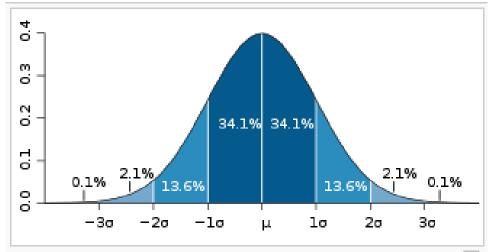
$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}{(x_1 + x_2 + x_3)} + ...}$$

$$= \frac{1}{N} (x_1 + x_2 + x_3) + ...}{(x_1 + x_2 + x_3)} + ...}{(x_1 + x_2$$

Normal or Gaussian

- #1 Normal or Gaussian Distribution
- Origin of 2/3 rule
- Origin of
 "Standard Statistical
 Interpretation"
 Many errors are
 assumed to be Gaus like
 Example: flat



Dark blue is less than one standard deviation from the mean. For the normal distribution, this accounts for about 68% of the set, while two standard deviations from the mean (medium and dark blue) account for about 95%, and three standard deviations (light, medium, and dark blue) account for about 99.7%.

Gauss

Functional Form

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Memorize
- Continuous Distributions
- Mean is mu
- Sigma is RMS
- Often used for convenience

Errors vs. Uncertainty Slides from Tues Often used interchangably (by everyone)

- Error: measurement are always inherently off by some amount
 - Example 1: measuring lengths (locations of lines)
 - Example 2: determining number of cosmic rays/second
- Random Errors Fluctuations
 - Systematic: error somehow always the "same" (usually has some random element though initially)
 - Random errors: always different each measurement.
 - Statistical Error

Counting Experiments

- Binomial and Poission
 - Two important non-Normal Error Distributions
- Integer cases: (discrete not continuous)
 - Now Histogram-like Sum becomes exact
- In limits of large N → Gaussian
- Any time we histogram something we are counting things
- Often underlying physics processes are discrete
 - Example: Energy measurements in particle detectors

Binomial

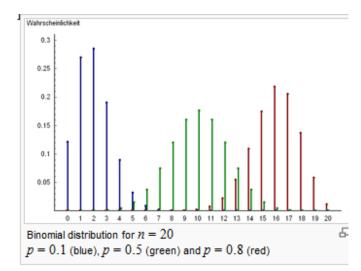
- 2-outcome experiments: prob "success" is p
- Count # of Success
- Combinations Symbol

$$C(n, x) = \frac{Pm(n, x)}{x!} = \frac{n!}{x!(n-x)!} = \binom{n}{x}$$

$$P_{B}(x; n, p) = {n \choose x} p^{x} q^{n-x} = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

- q = 1-p
- Mean np
- Variance npq

$$\mu = \sum_{x=0}^{n} \left[x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \right] = np$$



Physics 371 Intermediate Lab I: Electrons ...(And Error)

Prof. Justin Frantz frantz@ohio.edu 9/15/11

-Note about assignments in lab manual

Lecture: - Distributions continue - Error propagation

Tutorials

-Reading Assignment Ch 4.
-Start looking through Lab
Choices—decide if you like
one better than others.

Binomial

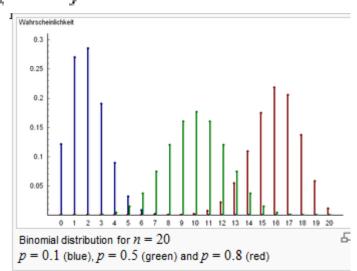
- 2-outcome experiments: prob "success" is p
- Count # of Success
- Combinations Symbol

$$C(n, x) = \frac{Pm(n, x)}{x!} = \frac{n!}{x!(n-x)!} = \binom{n}{x}$$

$$P_B(x; n, p) = {n \choose x} p^x q^{n-x} = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

- q = 1-p
- Mean np
- Variance npq

$$\mu = \sum_{x=0}^{n} \left[x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \right] = np$$



Poisson Distribution

• Poisson distribution \rightarrow limit of Binomial Distribution when p(q) is small $p \rightarrow R \Delta t$

In counting random events, the number of events occurring within a time interval is described by a Poisson distribution, dependent on the rate

(number expected: $\lambda = R \Delta t$).

The variance of a Poisson distribution is equal to the mean

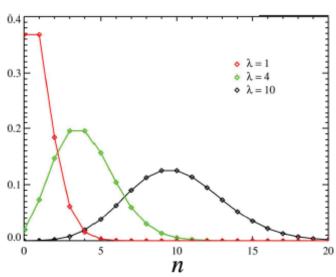
For a given measurement of N events in a given time interval, the standard deviation is \sqrt{N}

1 measurement of N: "mean"

N sigma = sqrt(N)!

Count things!

$$P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$$
 $P_P(x; \mu) \equiv \frac{\mu^x}{x!} e^{-\mu}$



(Measurement of N = N independent 1 measurements) on distribution" Wikipedia entry

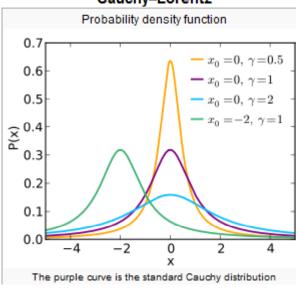
Other Important Non-normals

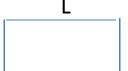
- Lorentizian: "Gaussian with tails"
 - unfortunately mean/variance of Lorentzian is infinite! (tails don't fall off fast enough somewhat like f(x) = 1/x

$$\frac{1}{\pi} \left[\frac{\gamma}{(x - x_0)^2 + \gamma^2} \right]$$

Flat Distribution: sigma = L/\12

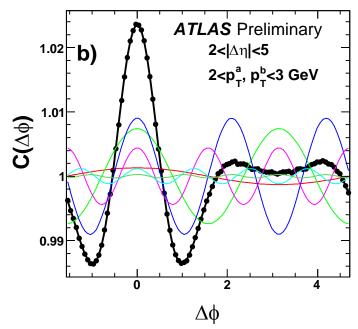
Cauchy-Lorentz





More details ...

- Gaussian: Integral Normalizations trick
- First guess for peak shape: Central Limit
 Theorem
- Lorentzian: used to describe resonance peaks



Continue Tutorial

• See pages

Data Analysis with ROOT

- C++: Object Oriented Language
 - Don't call functions as in fortran
 - rather: create object variables, tell them to run functions
 - variable type called "class", formally defined
- ROOT is a Free C++ Analysis Tool / Framework
 - A set of "C++ class libraries"
 Do virtually anything!
 - A command line analyzer (C++ intepreter)
- Most physics (all types) analysis is done with a similar tools: IDL (astro) MatLab (condensed matter other science too) Root (Older version PAW/Fortran)
- Links on webpage

Things about C++/root to remember

- int, float char, arrays (int a[3]); char * pointers
- constructors; text strings char *
- tab for "autocomplete" (class/type name)
- TH1F h1 TF1 cout << "hi"- .Fill() .Draw() "guass", "expo", "pol"
- TRandom r .Rndm() ->Eval, "[0] + [1]*x"
- Reference root.cern.ch ("Reference")
- .root_hist
- macros

Error Propagation

- Consider y = f(x)
 - Calc $y_i = f(x_i)$ from measurments x_i
- What is the distribution of y?
 - The answer to this is complicated, (standard Ans: Gaus)
 - First focus instead on μ , σ
- Mean: <y> = <f(x)>
- Sigma/RMS: First how much should any deviation
 Δx modify f?
 - "Taylor" Series $f(x + \Delta x)$

Error Propagation: Multi-D

- Function of several variables f(u,v,x,...)
 - Ignore higher order terms
- "Multi-Dimensional"
 - Common Assumption: u, v, x, ... orthogonal
 - More important: errors on each: independent (orthogonal)
- Main Error Formula
 - Variance and Covariance
 - Covariance: need to worry if variables have "CORRELATION"

Physics 371 Intermediate Lab I: Electrons ...(And Error)

Prof. Justin Frantz frantz@ohio.edu 9/20/11

_

Lecture : -Finish Error Prop -Ch 4 & 6 Points

-Big Tutorial

-Reading Assignment Ch 6.

-1 Homework Due Th

-Lab Manual

Propagation of Error/Uncertainty (σ)

From Wikipedia ("Propagation of Uncertainty")

Function	Variance
f = aA	$\sigma_f^2 = a^2 \sigma_A^2$
$f = aA \pm bB$	$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2 \pm 2ab \operatorname{cov}_{AB}$
f = AB	$\left(\frac{\sigma_f}{f}\right)^2 = \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + 2\frac{\sigma_A \sigma_B}{AB}\rho_{AB}$
$f = \frac{A}{B}$	$\left(\frac{\sigma_f}{f}\right)^2 = \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 - 2\frac{\sigma_A \sigma_B}{AB}\rho_{AB}$
$f = aA^{\pm b}$	$\frac{\sigma_f}{f} = b \frac{\sigma_A}{A}$
$f = a \ln(\pm bA)$	$\sigma_f = ab \frac{\sigma_A}{A}$
$f = ae^{\pm bA}$	$\frac{\sigma_f}{f} = b\sigma_A$
$f = a^{\pm bA}$	$\frac{\sigma_f}{f} = b \ln(a) \sigma_A$

Partial derivatives

Given $X = f(A, B, C, \ldots)$

$$\Delta X^2 = \left|\frac{\partial f}{\partial A}\right|^2 \cdot \Delta A^2 + \left|\frac{\partial f}{\partial B}\right|^2 \cdot \Delta B^2 + \left|\frac{\partial f}{\partial C}\right|^2 \cdot \Delta C^2 + \cdots \\ \sigma_X^2 = \left(\frac{\partial f}{\partial A}\sigma_A\right)^2 + \left(\frac{\partial f}{\partial B}\sigma_B\right)^2 + \left(\frac{\partial f}{\partial C}\sigma_C\right)^2 + \cdots$$

[edit]

Distribution: Gaussian Assumption?

- Some say these error prop formula's assume Gaussian errors
- This is true only in the sense that we usually still expect the result f(x) to be normally distributed
 - Mathematically it can be shown this is not true in many cases
- Central limit theorem: in many cases (e.g. sums)
 even if you don't start Gauss → get Gauss
 - also "contrary" to the above...

SEE DISTRIBUTIONS TUTORIAL

Error Prop: Usually however...

- Using the derivatives (like ones on previous page) is often a pain...
- AND it can be more exact to just use
 - f(x), $f(x+\sigma_x)$, $f(x-\sigma_x)$
 - For multi-variables (computer) one can calculate all \pm permutations of $f(u\pm\sigma_u, v\pm\sigma_v, x\pm\sigma_x...)$
- Good Practical idea anyway:
 - When the differentiation gets complicated, checks for mistakes
 - If the two methods don't agree, then maybe other systematics are not completely understood
- In real practice this usually equates to doing the measurement several times with different input conditions
 - "f()" is like an operation: Example perform entire analysis w/ slightly different "cuts", Raw * Corr = Measurement
 - Mostly this is for studying systematics (sys errors)

Important Applications of Error Prop

• ...

Standard Distribution of the Mean

- So far we only discussed one sample at a time
- If one considers multiple samples n one may ask what is the distribution of the means in those samples $\mu_i = x_i$
 - Again let's focus on mean and sigma
- Mean: 1/n Sum μ_i ? No
 - Weighted Sum where weight higher for smaller uncertainty
 - $-\overline{\mathbf{x}_{\mu}} = \Sigma \mathbf{w}_{i} \mu_{i} / \Sigma \mathbf{w}_{i}$
 - Weight : $1/\sigma^2$ (For "usual" cases e.g. counting, will be propto N_i num of measurements in each sample i)
- Using error prop for sum
 - For identical sigma: sigma/sqrt(n) can be derived from Error prop of above we
- Demonstration: Poisson $sqrt(N) \rightarrow N$ independent 1+/- 1 measurements:

Standard Error : σ_{μ}

- Usually the error we quote should be su
- So far: use just σ or s?
 - Most important USE: Sigma/RMS: gives idea how close single reproduction of measurement should be expected to be → Probability Tests
 - When small number of measurements (especially changing parameters for sys error studies) we usually use sigma for error
- When to quote σ_{μ} :
 - Remember σ_{μ} = 1/sqrt(N) assumes knowledge of parent distribution
 - Circular process: 1) several measurements 2) confirm distribution (measure sigma) 3) Then take 1/sqrt(N)
 -why Student's t Distribution for Prob Tests is needed later

Combining Measurements

- Generally Different Measurement/Samples will have different uncertainties
- Mean:
- Sigma:
- This is method used by Particle Data Group e.g. Pion Lifetime

Outliers/Probability Tests

- Chauvenet's criterion for throwing out outliers
 - If Prob < 0.5 "Events"
- Confidence Levels: Statement about how probable "Truth" is to sample μ based **on** σ_{μ}
 - Different than what to expect in reproduction experiment
 - 1 sigma : 68% confidence level:
 - 2 sigma: ~95% (Whatever normal dist tells)
 - Very often these are used when no actual measurement is possible (e.g. a search for an effect that yields a null result, limits can be placed how large it could be)
- Student's t Distribution: Another Distribution of like gaussian but in terms of t
 - t = # sigma deviations (sigma = σ_{μ} , but requires N ie uses σ info)
 - More accurate for generating confidence levels samples with lower numbers of measurements or when outliers present

Physics 371 Intermediate Lab I: Electrons ...(And Error)

Prof. Justin Frantz frantz@ohio.edu 9/22/11

_

Lecture: -Last Error lecture: Fitting -Ch 6 Points

-Big Tutorial

-Intro into Labs.

-Due Tuesday: Preliminary

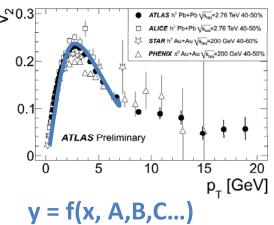
Questions

-Lab Plan: Due Thursday

Intro to Curve Fitting

- This is for cases where you're changing parameter x_i and measuring y_i, x_i (y_i(x_i))
 - (not y = f(x) calc → That's Error Prop^{>0.3}
 - what prob density distribution
 describes measured values y_i,x_i
 - parent dist
 - A,B,C called Fit Parameters
- Maximum Likelihood

• Minimize
$$\chi 2 = \sum_{i=1}^{k} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$$

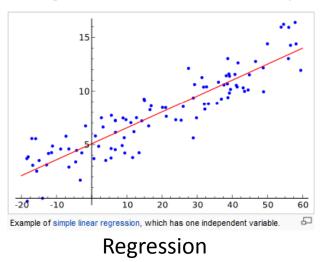


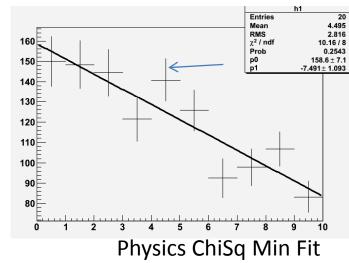
Reduced
$$\chi^2 : \chi_v^2$$

= χ^2 /num degrees of freedom
ndof = k – # fit parameters

(Linear) Regression vs Physics Fitting

"Regression" vs. Physics Fittting





- Depends on what you're minimizing:
 - Least squares fitting (ambiguous)
 - Regression: min $(y_i y(x_i)^2)$ or (ri r(x))
 - In physics we assign an error to every measurement so we think it only makes sense to min $\chi 2$

How to do practically

- With ROOT or any Analysis Tool, automatic, very easy... any functional form
 - Provide automatic calc's of x2 and most importantly $\sigma A, \sigma B, ...$ Error estimates of fitted parameters A, B, C
- Usually other functions polynomials can be accomodated with linear fit
 - $-y = eBx x3 \rightarrow y = A + Bx^3$
- Linear Fit functionality in Excel:
 - Trendline can be used for when uncertainties are all the same (absolute size)
 - Use solver: see web link

Data Analysis with ROOT

- C++: Object Oriented Language
 - Don't call functions as in fortran
 - rather: create object variables, tell them to run functions
 - variable type called "class", formally defined
- ROOT is a Free C++ Analysis Tool / Framework
 - A set of "C++ class libraries"
 Do virtually anything!
 - A command line analyzer (C++ intepreter)
- Most physics (all types) analysis is done with a similar tools: IDL (astro) MatLab (condensed matter other science too) Root (Older version PAW/Fortran)
- Links on webpage

Things about C++/root to remember

- int, float char, arrays (int a[3]); char * pointers
- constructors; text strings char *
- tab for "autocomplete" (class/type name)
- TH1F h1 TF1 cout << "hi"- .Fill() .Draw() "guass", "expo", "pol"
- TRandom r .Rndm() ->Eval, "[0] + [1]*x"
- Reference root.cern.ch ("Reference")
- .root_hist
- macros