Introduction.
Syllabus Can we meet Fridays, instead of Thurs?
General thoughts.

This class is usually taught by theorists. |am not a theorist. But | use QM in my work a lot and am
very comfortable with it. Point is | am not quite familiar with all the things that theorists find useful to
concentrate on. Example Charlotte told me everyone should use del notation/€; | agree. Everyone
should work out the group multiplication for all the angular momentum states. |don’t agree so maybe
we won’t concentrate on that quite as much.

In fact last year we didn’t make it to Chapter 3: ( this year is different, this year we must. ) Gives you an
idea of the pace of the course. This course will cover approximately Ch-1-2 and some decent fraction
of Ch 3. of Sakurai. Then there will be several other special topics

Therefore do not expect to move through Sakurai quickly. We will go very slowly through it. |
recommend reading the entire 1% Chapter quickly, then for my “reading assignments” go back and
carefully restudy.

How fast we can move will be partially dependent on you guys. | will be quizzing you along the way,
both formally and informally.

I'd like to cover somethings related to my research, of Heavy lon physics, but probably the most relevant
thing is scattering which we won’t get to in this course.

Didn’t make it there last year though: Instead I'd like to teach a little about quantum entanglement and
perhaps quantum computation.

Still, we will approach lectures a little differently. We will try having a day (Friday) where we do
problems in groups.

The Web:

There is a lot out on the web, including solutions to many problems in Sakurai. Remember about
cheating. Personally | don’t care as long as you understand the solution.

| recommend Wikipedia for many subjects. | have been referring to it for preparation for this class. You
can find quite a bit of detail on it. e.g. Mathematical Definitions.



| will put links occasionally, some for reference and some will be required reading.

At least at one point during the semester (possibly 2), | may want to meet with some or all of you
individually, sometime after the first few weeks of the quarter. These will be 15-30 minute
“conferences” and we will discuss your plans,your performance in the class, specifically any homework
problems or midterm problems you may not have done so well on.

| will call on people specifically to answer questions sometimes. This will be part of your participation
grade. | will go through the list of names in alphabetical order so | will let you know when your turn is
up, and you should try to be in class those days.

Reading assignment Sakarai 1.1



I. Some Topics from Linear Algebra to Review

Note: First 1.1- ~2.2 (first 8 sections of Sak), formalism introduced. It is very mathematical, in large
part, just like an extension of standard linear algebra to include complex vector spaces (where matrices
are generalized to operators). Thus | find it very useful to review some linear algebra.

1) Properties of (usually nxn) Matrices

System of linear equations: (e.g.)

ax+by=e
cx+dy = f
fl11 iz | (L _ y]
g1 (23] |3 Y

represented by

Ax=y
(matrix multiplication) X

2) Improved notation for original equations: (“Coordinate free rep” best?)

Aijxj = yi ievyi, xi 2 represent vectors

row i then column j) !

makes it easy to generalize to higher dim:

- ANY number of dim, incl. >3 (# eq + variables increase too)
Alternative view of above: A is transformation for any vector x to new vectory.
One way to solve (for x) such an equation is by inverting A.

Finding the inverse A" such=that AA = 1 = | identity matrix
thenx = Ay

For a matrix to be invertible it’s determinant must not = 0.

3) Deterimants

From Wikipedia “Determinant”,



“The fundamental geometric meaning of a determinant is a scale factor for measure when A is
regarded as a linear transformation.” It is the scale factor for n-D volumes before and after the
transformations .

Property of Determinant: det(AB) = det(A)*det(B) (Easier to compute, e.g. if one has the “LU”
[Lower/Upper] Decomposition)

Note oddity: central to the properties of matrices, > determinant very important in Linear Algebra,
not ostensibly for QM. (focus on instead algebraic properties).

4) Non-zero Determinants

Conversely if

for non-zero x, its determinant must be 0.
What's that called? (It has a non-zero/null kernel ie which x is part of).

Kernel: space for which this is true, Range



Lecture 1/5/10

Notes uploaded (pages)

Quiz today (?)

Reading for tomorrow: Sakuarai 1.1

5) Orthogonality / Symmetric Matrices
If A'is symmetric A =transpose (A) = AT AT i=Aj
If A has columns that are orthogonal, A called orthogonal

If A has columns that are orthonormal, AT = A™

6) Non- square Matrices, Row Vectors vs Column Vectors
. a .
Can view column vectors x = p)3s nx1 matrices themselves

Then x" is row vector x' =(a b)

Then with Normal Matrix Multiplication:

- dot product: (inner product) x-v = x'v=(a b) (ccl) = ab + cd =number

a _ofac ad _ .
- outer product (b) (c d) =? (bc bd) = matrix
(Any dimension vector works) as above (--——--) (|)=2/ (|)(-)

nxm: (n:rows, mcolumns) (nzm) >
-Remember any [n x m] [m x p] is allowed (no restrictions on n or p) !
-Important example: projection matrices
7) Projection on Subspaces (Often forgotten from L.A.:)
The projection of a vector x onto a subspace W defined by the orthonormal vectors v..v, is
Projw x = MM 'x

where the m x n (m =dim of the vectors) M = [v1]...]vn].



Example (1) (1,0,0), (0,1,0)

BY DEFINITION n < m in order for us to be taking a projection. (thus M is not a square matrix)

Why does M have this form? (Also good way to remember: a pneumonic)
pneumonic: trick to remember things -- word | use a lot
Think of projection onto a 1-D subspace: onto the line of a vector v:
wix= (v-x)v
Example (1) (1,0,0), (0,1,0)

Back to above Example (2)

8) Gram-Schmidt Method for finding orthogonal bases
(Gram-Schmidt ‘sche Orthogonalisierunsverfahren)

If we have any (e.g. non-othogonal) basis v, ... v, spanning a space, we can use it to find an orthogonal
(or orthonormal) set ws...w, recursively with the following steps...

1) wy =vi/|vq].

2) W, =V, — Projuiv, ( /| va— Projuva| to normalize)...

n) w, = v, — Projev, (/| va—Projev,| to normalize)

Where n is the number of basis vectors = dim of space and E is the subspace spanned by the n-1
preceding vectors w,,.

9) Eigenfunction Equations / Bases
If

Ax=Ax
X is an eigenvector of A and A is an eigenvalue

The latter are found by



(A-A1)x=0
or
det (A-A1)=0

If A'is symmetric the eigenbasis is orthonormal. (1 double checked this, in class | wrote orthogonal, but
in fact | should have written orthonormal--easy to forget this!)

10) Diagonalization

To “diagonalize” a matrix A we form the diagonal matrix
D=S"AS

where S is the matrix whose columns are the eigenvectors of A
For symmetric matrices B this can be written

D=S'BS

which is another way of stating that symmetric A has orthonormal basis



Il. Review of Introductory Quantum Mechanics (Wave Mechanics)

Just so we are on the same page...

Postulates of Liboff underlined
Wave Functions ¢> States Complex-valued “Scalar Fields “ of position vector x

Related to Probability to be at position x

Probability density o< dx (W )(W*)

[axtwiwe)
is < the actual probability density as a function x. If normalized, =to prob density
E.g. 1-D W(x)
* means complex conjugate (c.c.)

Digression: Quick Review of c.c.
This means subtract 2i * the imaginary part. “Replace every i with—i”. (?)

z= ie® = i(cosa + i sina) = -sina + i cosa
z* =? -ie™ = -i(cos(-a) + isin(-a)) =-icosa—i(-i)sin(a)) yes of course: (ab)* =a*b*

From Wikipedia “Complex Conjugate”: “In general, if ¢, is a holomorphic function whose
restriction to the real numbers is real-valued, and ¢ (z), is defined, then ¢(z*) = ($(z))* “

This can also be extended to (¢(z,w,u,...))* = ¢(z*,w*, u*,...)
You should be familiar with complex analysis, although we won’t use residues or anything like that.
Quick practice what’s thec.c. of uv'w?

u*(V*)Z*W*W*

Observables € operators acting on wave functions, usually differential operators

These are perhaps the most important concerning wave mechanics:

px =-ih d/dx



Hfree = pz/zm = (1/2m) dz/dX2
H = (1/2m) d*/dx* + V(x)

Measurement of observable A forces Y to become = to eigenfunction of operator A

Eigenfunction equation for H is called the Time Independent Shrodinger Equation (TISE)

H(x) = E(x)
Given the above differential form of H, this is just a 2" order, linear ODE. Because of the Sturm-
Liouville theorem, the general set of solutions for { will be a set of functions {; “spanning” the entire
space of functions of x.  They are then called complete.
The theorem also states that they are orthogonal
I-dx (W, )(Wp*) =0 unlessa=b

Thus any Y(x) (any f(x)!) can always be expanded in terms of this basis of eigenfunctions ;.

Expectation Value :
©) = f dx W* C W

Note often (e.g. if you can’t remember the normalization constants) it is useful to perform the
expectation value calculation as

(C) :fde*CLIJ

f dx W*W
In general in Wave Mechanics we can find the projection of any Wave Function W (x) on any other ¥ (x)
I-Projw x = dx W*x (more like dot product)

This represents the probability if the state is in W that it would be found in state x e.g. if x were the
eigenfunction of another observable, the probability of measuring the eigenvalue of x .



The Time-Dependent Shrodinger Eq Determines time evolution of the wavefunction

ihd/dt () =H U

For a time-independent H, this implies that each eigenfunction of H ( {); ) has time dependence given by
the function f(t) = exp(-iEit).

It is instructive to remember how this solution comes about, as an important technique in solving
differential equations

If H is time independent, H = H(x)

ihd/dt (P) = H(x) ¥ & g(t)y = h(x)y

Any time you can put a differential eq into this way, a separable solution will work.

b = W(x)f(t)

£ 38 const = 0D
f v

The rest of elementary Wave Mechanics then relies on solving the TISE, finding eigenfunctions for
different forms of the potential term V(x) or in 3-D V(x).



E.g.
Free Particle: V=0, H=p*/2m

Solution: = A exp(ikx- wt) Ey=h%k*/2m

Half free particle on a constant potential “step” (region of constant potential V)

Vo

Solution in the right hand region is
P = A exp(-k x) with Ex = Vo — h’*/2m

when E is less than Vq

Angular Momentum
The angular momentum operator can be defined as
L=rxp =rxihV

In 3 dimensions it is often convenient to write the hamiltonian in terms of L, and Spherical coordiinates,

1, 0 WL _
H=-— -2 4 + V(r
21 r""'r or 2mr? )

The solutions to this Hamiltonian involve Spherical Harmonics Y|(6, ¢)

We’ll talk a lot more about angular momentum later, and it won’t be this ugly now. Point is before
you dealt more w/ these solutions from a functional point of view now we will concentrate mostly on
their algebraic properties



Approximation Methods: (WKB) SKIP — we will cover this in class
For non-constant V(x), even for the Simple Harmonic Oscillator (V(x) = kx?), the form of the solutions
P (x) are not often easy to find.

The SHO has an easy trick to find it’s Eigenvalue Energies, which we will discuss at length in this class.
But the functional form of its wave functions “Hermite Polynomials” are not easy to remember!

However in the case of a slowly varying V(x)

For now we will ignore what constitutes “slowly varying” or how slowly it must vary. Let’s just say there
is some range of the input parameters to the problem for which this can be satisfied.

Then we can look for solutions that have a similar form as the constant potential solution. There we
had V =V, as the solution

Wwie = Aexp(i [ k(x) dx)

w/ k(x)=2m \/m
We will have occasion to return to such a solution...
It will be useful in the future to see how this comes about.
First we assume the basic form = Aexp(iS(x)/h )

-ih d’S/dx® + (dS/dx)* = 4m’=\[E — V (x) (0.1)
The crux is to expand the solution around h itself.
[Taylor series expansion:  f(x-Xo) = f(Xo) + (X-Xo)f'(Xo) + (x-x0)?/2 (f(x0)) + ... ]
S =So(x) + A Sa(x) + R%/2 Sy(x)+...

Example of approximation expansions using essentially any parameter often in Quantum Mechanics. In
this case we say his< 1,

|II

Not true in some small length units: “semiclassical” approximation 2 > 0

In particle physics i = 1 so this approximation is by definition unusable

Simple substitution of expansion into (0.1) and grouping all terms to the LHS we get an equation



Fo + h Fl(X) + hz Fz(X) w..=0
where Fy = (dSe/dx)*-4m” (E-V(x))*= 0 for example.

The key is that every term in this series must vanish independently. Thus we can set each term =0;
Fo=0 = dSy/dx=k(x) kgiven above.

First order simple ODE—> And thus we have our solution form.

Time Independent Perturbation Theory
Last reminder of Intro QM/Wave Mechanics...
A very similar technique is used for a much more general approximation scheme.
If we can separate H into a form Hy + A H where Hg is one that we know the eigenfunctions for
H’ is called the to the Base Hamilitonian.
e.g. the most common thing (e.g. in Quantum Field Theory Scattering Calc’s —note that in that case we
are talking about a completely different mathematical Hamiltonian.) is to think of the entire V(x) as a
“small” so that Hg in that case is the free particle Hamiltonian.
ie H=p?%/2m+V(x) > p/2m + A V'(x) (it would be interesting to see the SHO handled this way—
perhaps we will come back to the idea when we learn about the SHO.)
Anyway making a similar expansion to the WKB this time in A
e.g. U= +Adi(x) +A%/2 dy(x); En= EO+AE1l+..
And setting each factor of A n = 0 independently and taking the expectation value of each equation we

find that we can represent the MODIFICATIONS to the eigenfunctions of HO in terms of a “mixing” of the
other eigenfunctions due to the perturbation H’.

124
Y=, + Z—EO _‘”EO
in T {

Where mixing is just a projection of one Wave Function W; on another:



Hp; = fdx Yn H'Y;
The new Energies (MODIFICATIONS to each states energy) are

E\"Y =EC+<H>



Lecture 1/8/2010:
-Problem Set Due Next Fri? (Reduced: TBA tonight)
-Class is NOT Canceled Wed: Prakash will cover.

-Quiz results: solutions: Index notation?

Il. Sakurai Section 1.1

A) Stern-Gerlach Experiment

Z-axis

drawing courtesy of Jacobus Verbaarschot (Stony Brook Physics Dept).
Interesting Aside:
From Wikipedia: Magnetic Dipole Moment

http://en.wikipedia.org/wiki/Magnetic_dipole_moment#Effects_of _an_external_magnetic_field_on_a_
magnetic_moment



the case of a current loop model is
F,=v (m-B)
In the case of a pair of monopoles are used (i_e. electric dipole model)
and one can be put in terms of the other via the relation
f}zﬁd+?ﬁx (‘F xB')
In all these expressions 47 is the dipole and B’ is the magnetic field at its position. Mote that if

there are no currents or time-varying electrical fields V x B’ — () and the two expressions
agree.

Interesting idea: electron (all spin % fermions) is composite particle made of two monopoles.
Analogy: Fractionally charged quarks confined in proton.

Two differences from Classical Expectation

1) Existence of p = Spin : Sakurai ===--- < |) 9 Liboff: [ (if unquantized “spin”
expected]

2) Quantization of pu = Quantization of Spin (at least in the z direction) -- =™

Quantization oft spinwas S,=+/-h /2

can be determined from the distance btw the 2 peaks (must have been tiny!) (probably why no
lab demonstration)



Basic SG:

Source

Second More Interesting SG Setup...

Led ]

S-G

" axis

Source

S-G

Z axis

Classical Expectation

Source

S-G

Z axis

Source

Main Points:

a) In1) Same value of z is selected

S-G

" axis

: Zy
5S-G
Zaxis F----------------------
No z
Ty
S-G
T axis R
i 24
S-G S-G
€I axils % Z axis r

this drawing (Wikipedia: Stern-Gerlach)

b) In 2) Of course x must have the same effect if by itself (azimuthal asymmetry—assuming gravity

wasn’t an issue! ). But more importantly, if somehow z was chosen as vector it didn’t affect

measurement of x direction. (except for intensity) (?)



c) Measurement of x DID affect the outcome of the second z measurement—it made it like the first z
measurement.

Lecture 1/11/2010

Pset posted (small changes made Sat) Index notation reading is optional for this week, but in
reality required for most

Prakash: Wed:

11.B) Analogy w/ light: (Demonstrations)

B.0) The situation is like light polarization and the behavior of light when using filters... Have you guys all
seen what happens such experiments?

The light has an electric field E that’s always transversely polarized. If traveling in the z direction. It can
be described via the vector field

E = EO cos (kz-wt) (c X + be' P)

c,b=0->pure y, x(X;,X2) 2 c=tb 2> X'y (x,x)’)

I +5) e S
iy [ -~ — R 1 A
A I -'J_-'?d (}.{‘4:'?} C g ..L_a__-":- "}2-_*_[_1_:.: t'("ic.?
(Verbaarshot)

My version:
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S } | 4 X‘l /1L /\
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’ ’}/L-"M [‘5L&+ ( o113 r]k/(«”bﬂ}]/\
x! =R+ %)

First take o — 0: for this we would need a laser (or CCD)? because incoherent light can take all
polarization states. And let’s stop using y because it can be confusing (it somehow makes you want to
relate y polarized light somehow to Sy, which as we shall see, the analogy does not intend that at all)
instead let’s use x1, x2.

Let’s analyze why this is true for light...

My reason for why this is true Vectors have the property of superposition a: any vector can be
thought of as an infinite set of vector combinations :

Can be thought of:



—

So for our light (help ful to draw it out)

The explanation is in of the filter experiment is the x’ filter removes minus portion of the 0y ( x;)

@ R

notice | reversed the usual convention for x-y (x;-x,) w/

component




Weird interpretion : the electric field Ex is still “there” in the y-direction even after x filter, but it just
has a value of 0.

But when we talk about Quantum Mechanical systems, this weird way of looking at it becomes 2 “the
normal way of thinking”. (to think)

B.1) QM Explanation of SG

Thus the idea behind the QM explanation of the situation of the SG experiment is that the> Ag
atom’s spin states re made up of abstract 2-D vectors called ket'’s.

Denoted w/ ket notation |Sz+>, |Sz->



Don’t get confused by the various directions here: Remember

Real Space Vector (Ket) Space
Sz+
|Sz+>
D ——
l Sz- |Sz- >

So the correspondence to filter is
|Sz+>, [Sz-> =D Xy, X

|Sx+>,| Sx-> = X'y, X',

Draw—>

ie There is a 2-D “internal” space spanned by the 2-D basis |Sz+>, |Sz - >!

Sx +- Syt states just linear combinations of these




C) Important Differences btw SG(QM)/Light
C.1) States And Collapse of the “State”

A Major difference in interpretation is that for the SG Measurement of Sx Quantum Mechanics says
there is a “Destruction of the State”/”Collapse”

Difference operationally hard to define now: Hard to define difference actually-- This can be phrased in
terms of the “incompatibility of Sz, Sx observables”

-Light we can be able to devise an experiment to “measuring” x;’and x; components
simultaneously. Where as by Quantum Postulate = Sz, Sx cannot be simultaneously measured.

[Difference operationally hard to define now:]
For now focus on what is meant by collapse:

One of the most important points to notice about these experiements, not just that one of 2 values of Sz
are chosen, but that afterwards the same value is chosen ie state is selected. (point of “more
interesting SG Exp...” part (a) above.

-Went from “unpolarized”(isotropic §) to “polarized” (Sz)
called “Collapse of the Wave Function”

Generalize: “Collapse of the Wave Function” = Collapse of the State (now that we aren’t
doing Wave Mechanics only anymore):

Postulate: Measurement causes collapse

This is something very non-physical and its nature is still debated. The major questions about what this
implies pertain to “Shrodinger’s Cat” type questions—what actually constitutes measurement?. As Far
As | Know (AFAIK) they are still unresolved.

Copenhagen Interpretation (this course) measurement causes change, likened
mathematically to projection operator being applied

Many worlds interpretation --all possibilities are realized ? ( Leonard Suskind: book)
Penrose others: very non traditional ideas...

Related to nature of QM entanglement, etc... To me: interesting frontier of physics (if experiments can
be devised) “Recent” paper claimed measurement position/momentum simultaneously.

Back to difference w/ light: Hard to define difference actually—It can be phrased in terms of the
“incompatibility of Sz, Sx observables”



-Light we can be able to devise an experiment to “measuring” x;’and x; components
simultaneously. Where as by Quantum Postulate = Sz, Sx cannot be simultaneously measured.]

We will define this more formally later this week...

C.2) (Light Pol/vs QM) Differences btw Polarization/Directions

The analogy with light is very nice and really helps understand some of the basic ideas of quantum
mechanics. But the analogy w/ light can only be taken so far:

-Light waves must be transversely polarized.: Direction of motion matters.
-SG: Direction of particle motion is irrelevant

These particles do not need to be. In fact it is easy to mistakenly think that the direction of the particle
beam is somehow analogous to the direction of the light going through the filter. In fact the direction
the particles are moving is somewhat irrelevant. x andy (Sx, Sy) in the SG are equivalent even though
one direction is | | to the beam and one is perp.

So there is No polarization of the SG particles in Real (our Euclidean) 3-D space. But they are polarized

III

in our “internal” spin space.

Mag field defines special direction

C.3) More Observations about Directions in this Experiment

This also makes the point that the actual directions themselves are not so relevant in the SG
experiment. Sz was special, quantized, but Sx (or Sy it turns out—we can do the same experiment with
the Sy it will be the same) isn’t.

Mag field defines special direction> NOT beam direction!

It means that of the three spacial directions, only 1 gets quantized, and the other two are then just
linear combinations of the quantization.

So ...
Question:  True/False: The SG exp. proves that nature has a preferred direction (z)? A: False
BUT: True/False: The SG exp. proves that nature prefers ONE direction ? A: True

—it does prefer ONE direction out of the 3 directions inherent in 3-D space, considering the Ang
Momentum of Quantum Particles. For any given particle locally 3 space?



How about if we define an axis z before the experiment--before it’s measured what is its spin state?—
Can’t we define it in terms of this axis? Yes, this chapter instructs us that we can—regardless of
whether we put a SG magnetic field there or not in fact. But of course that still doesn’t imply that our
chosen z direction itself is preferred—rather just that ONE direction is preferred.

IE Better to think more abstractly here: The major point of these experiments is that there is ONE
special space axis not necessary that we call it z, but still there is 1. It’s probably best (though not
required) to call it the “ALIGNED” axis, meaning aligned w/ the magnetic field.

In fact, the experiments imply not just that ALIGNED is special, but that there are 2 special space
directions. ALIGNED and ANTI-ALIGNED.

Correspondingly the other 2 space axes/ 4 spacial directions w.r.t. these two directions have hardly any
special significance, they are just linear combinations of the first 21!l In the internal spin space, the fact
that in real space, those other directions/axes correspond to linearly independent vectors/axes is
irrelevant.

We shall see that Quantum Mechanics is constructed in a way that automatically causes this weird
situation to have a mathematical explanation.

B.5) Therole of S, in Sakarai 1.1:

Finally we haven’t talked to much about S,.

Sakurai’s point is that treating Sy REQUIRES us to use complex spaces.

That we can continue our analogy w/ S, by simply choosing the circularly polarized state with
B=1, a=+/-n/2

E = EO cos (kz-wt) (X;+ e X,)

E = EO cos (kz-wt) X, + EO sin(kz-wt) X,

This is very nice: it makes the analogy so much nicer and very natural.



Just to summarize the whole analogy now:

|Sz+>, |Sz-> = Xy, X,
|Sx+>,| Sx-> = Xx’3, X,  w/ real coefficients (e.g. a = 0)
|Sy+>,| Sy-> = X’;, X',  w/ complex phase (a =  1t/2)

Sx: b =2 cwould give x’ considered so far (45) but other combo’s will be considered in homework

problems.
Important point again: |Sy+> is not orthogonal to |Sx+>: just one is complex one is not

However in the end there IS one thing special about Sx and Sy in relation to Sz: they are “maximally
incompatible” with z and with each other. Perpendicular in real space maps to maximal destruction of
one chosen direction by measurement of the perp dir.

However, | pondered whether it was true—could we use some other mathematical device, perhaps
higher dimensional matrices, for our initial state vectors and avoid complex numbers. The answer is
yes, but it would be very complicated.

One way to see this before even approaching our SG, is to start with answer the following more simple
qguestion. Complex numbers are much like 2-D vectors. Can we actually define an algebra using 2-D
vectors that have all the properties of complex numbers. Let me show you one | thought of—it’s good
practice w/ complex numbers and also an example of thinking about “constructing” algebras that fulfill
your needs, something that is done in advanced physics all the time (e.g. dot product in General
Relativity defined w/ metric—String Theory, etc...) :

Theideais totake our z=ag+hi = Z= (Z)

actually this way requires a special definition of “inner product” like in relativity one needs a “metric” to
put in the minus sign (remember only dealing w/ real numbers)

Actually Wikipedia shows us a better way...



nn
Matrix representation of complex numbers [edit]

While usually not useful, alternative representations of the complex field can give some insight into its nature. One
particularly elegant representation interprets each complex number as a 2=2 matrix with real entries which
stretches and rotates the points of the plane. Every such matrix has the form

a —b
b a

where a and b are real numbers. The sum and product of two such matrices is again of this form, and the product
operation on matrices of this form is commutative. Every non-zero matrix of this form is invertible, and its inverse Is
again of this form. Therefore, the matrices of this form are a field, isomorphic to the field of complex numbers. Every
such matrix can be written as

a —b 1 0 0 —1
b o] =% 1T o
which suggests that we should identify the real number 1 with the identity matrix
1 0
0 1)
and the imaginary unit i with
0 -1
1 0]

http://en.wikipedia.org/wiki/Complex_number#Matrix_representation_of_complex_numbers
(apparently matrix representation is better than my vector way).

But you see that it is very complicated, requires many more external postulates. (“Definition” of
multiplication is BLAH). We get so much for free just from how complex numbers “work”. And we will
see that the same is true of the whole Hilbert Space technology we’ve been talking about above.

B.4) One more Interesting q: (not covered in class):

Why is there still a spread? (beyond points made previously)

( Remember Classical Expectation ====== < | ) Notice the two spreads are drawn in Sakurai fairly

similarly.sized. Perhaps it is just to indicate that the magnetic field/measurements themselves aren’t
perfect, but | wonder if Sakurai didn’t intend for it some other significance. Maybe related to the
inherent quantum uncertainty in Sx, Sy—or more probably, of the inherent uncertainty of the actual
wave function of the atoms and the imperfection of the original assumptions/approximation that we
could talk about classical trajectory.



Lecture 1/12/2010
For problem 1.2: just view o; as being complex matrices with the following definitions
[0 1 _ [0 —i 11 o
”1_[1 o] 02_[1' o] 03_[0 _1]
¢ :Vector of Matrices

For problem 1.12: can use the result of 1.9 without proof.

IMPORTANT: | WILL UPDATE THESE NOTES IN EVENING OF 1/12 to better reflect what we
covered and what we skipped.

lll. Quantum Formulism 1: Abstract Vector or Hilbert Spaces
A) Hilbert Space
Hilbert Space: Implies complex numbers (another digression: Argand Plane)

ket => abstract “vector” representing a physical state

)

It is complex. in some sense, meaning it has some imaginary portion or component, although it may
not be generally specified in all cases exactly what this means: the only thing that is specified is how
these imaginary parts change information that we extract from them. E.g. we do not say in general
that a |ket> can (ie it can’t) be written like z = a+ib. with “separable” real and imaginary parts: It
cannot be written like that in general.

Multiplication by a constant

i1 tl'lll tl'lll [
“ i /

Sometimes people we will use this notation. May seem pointless (?) in this situation—(As Sak states,)
“only the direction matters”. so pointless if in reference to a state by itself. (Could have relevance in
relating one state to another—ie defining the proportion of one ket vs another e.g. that add up a
third ket).



Many properties that may seem obvious, but should be stated for mathematical completeness

Addition = “closure”

|+ | @) =+ €H

(conceptual meaning...)

[+ o) = [+ ¢) __ ,
addition commuting

R Y

(This just means we can add any number of kets together..)

(lo)+ e+ 2} = () + (| o}+ [ 2))
[+ 0y = |)
|9+ | —¢) = 0

(1.4)

The last two relations state the existence ol a O-vector and the existence of a negative
vector with respect to | o).

1|y = |¢)
alb |¥)) = (ab) | ¥)
(a+b) |y = a|¢)+b|4)
al[ )+ @) = aly)+aly)

f1oEh

“Pneumonic”: word that means “trick to help you remember”

2
Pneumonic: best way to remember properties—> think of ket’s as column vectorse.g |[>=> | 1

-6

All of the above properties become completely obvious. The reason we like to state them this way
though is because they will apply to other mathematical objects besides vectors (e.g. wave functions).
But most of the time it will be very beneficial to think of them as real column vectors. THEY ARE NOT
FORMALLY column vectors. Later we will define a FORMAL representation of them as vectors, but they

will not be vectors yet.

The only difference: this space (so far) has with normal vector spaces that you may be used to, is its

complex-ness



It is perfectly acceptable: in a Hilbert Space for any of the above constant factors (numbers multiplying)
kets to be complex

111.B) Basis

The vector representation reminds us that the space is assumed to spanned by an complete or linearly
independent set (we can also envision this set as orthogonal if we like, although we will redefine
orthogonality in terms of kets in a second) of basis vectors.

which in the pneumonic of course you can remember as something like, for our above example

2
1 |[=2

1 0
0|—6]|0|+.
0 0 0
—6 0 1
ie it’s good to think about the “basis vectors” as (1,0,0,...) etc... (if the basis is orthonormal)

Q: What were examples of basis ket’s for the Stern Gelach experiment? Sz+/---Actually it could’ve
been the x’ (Sx) or even Sy eigenkets too

11I.C) Discrete or Continuous (skipped in class for now)

In the above examples we are thinking of kets that could be written as a “discrete” sum over some
some discrete basis (discrete, but possibly infinite in number), e.g. the basis members alternatively
could be labeled by a (possibly infinite) set of integers. (this in mathematics is apparently known as
“countable” or “denumerable”).

We will also consider spaces where the basis is infinite in a slightly different way

Ones whose space must be described by “continuous” set of basis vectors:, meaning two basis vector
labels can be infinitesimally close (like any rational number x, vs. x + €, taking the limit where € 2 0) |
will refer to these as “continuous kets”. Any linear combination of these types of “continuous” kets,
most importantly the expansion over the orthonormal basis kets, as the limit of the above vector
sums as an integral



c1|y) + e |a) = fr?(m) |w) dw

Actually a standard general label for these continuous kets is € ,ie if you see |§ > it may imply
automatically a continuous ket.

In Sakurai these types of kets are never explained 100% fully. Meaning some of the properties of our
kets that “come for free” for the discrete type of kets, will seem to require extra “postulates” in order
to e.g. calculate physical observables. However, if ever in doubt Messiah: explains in more detail ~all
the (little) aspects of these continuous kets/spaces .

END SKIPPED 1/12

111.D) Bra space

We will also define a “dual” space to the kets. In this case “dual” just means there is a 1 to 1 mapping
of all kets.

The dual to any ket | > will be denoted <W |
and called a bra (or bra vectors).
Mapping: The mapping will be such that the following is true:
<ap| = a* <y|
meaning “the dualto |ay> is a*<y|
(Now we see at least one use for the <ay | (“all inside”) notation.)

Main External Postulate necessary to make formalism work for Quantum Description

IIL.E) Inner Products

These we will be able to mathematically multiply bras and kets through a “multiplication” called the
braket (or bracket!) multiplication == Inner Product. Denoted as

<y |x>
And interpreted the same as an inner product for vectors—that is same as the dot product.

Operationally we ‘Il say that bra multiplication will have the algebraic properties of the dot product
between two vectors: e.g. very importantly it will be distributive:



<P |x+d>=<P|x> + < | d>
We know how to formulate the dot product for vectors as a v'v (row*column vect) in linear algebra.

Vector then we can say this inner product can be represented by a row vector times column vector:

N

1+1
-5

0 3i 1

which, because the we can always write our column vector as the sum over the unit vector basis
(1,0,0...), (0,1,0,0,...) ,it's easy to “prove” that this means that

correspondsto < | =(... a* b* ¢* .)

|W>=

L AT -

which in turns helps you remember

<Px>=<x | >*

As the vector representation implies, is a kdirect result of our “First Main Postulate” Above as we will
later find out. For now, you may think of it as being postulated separately, as Sakurai states.

The above implies

<P |P>isreal

Further we postulate a positive definite metric :

<YlY>=0

This will be because we want this product to be o< Probability as with our wave functions in wave
mech.

But also, it implies we can define a norm of the ket, which we can interpret geometrically as a length.



—_——

| v ||= \*,"'I{r_‘ )

These norms obey the same behavior as geometric vector lengths (pneumonic):

And as our vector pneumonic tells us, we can have kets which are orthogonal to each other
|x> and | > are orthogonal if <x|>=0

(all vectors are orthogonal to the null vector).

Obviously we can “normalize” any ket by dividing by it’s norm.

>/ [1el]

Thus we can always define an orthonormal basis if we have any basis—using a generalized Gramn-
Schmidt method!

now that defined orth & inner product
In terms of such an orthonormal basis
l \' — f G "' L
T 1

The oo in that relation should be replaced by N where N means the maximum value of n (ie “all n”)

SKIPPED THE FOLLOWING IN CLASS 1/12 (WILL COME BACK TO) you should read though to help
prepare for problem set? : (till “END OF SKIP BELOW”)

So we have the relation.

, . -
. _
V| ) e

8mnis the Kroneker delta (Lifm=n, O0if not)

We will have occasion to use this Kronecker delta a lot. Itis very useful.



For example we can easily prove the following relation for the projection of a general state ket onto
one of our base kets: which we will usually refer to as

o o0
P A T E e N o = E S
{'-J-*ur | ©) = II':"_I-" m | ¥n) An — fI:I.'Jr.'.l'-rf-.'.l = fln
n=1 n=1

MATH DIGRESSION: (Reminder)

There is a convention for using the Kronecker delta, part of something | mentioned the first day, which
also makes it more useful (this whole “system” of notation is collectively known as index notation):

Instead of writing the sum:
o
T —

A repeated index (in this case n) just implies a summation over all values of n. In index notation a,,
just means a vector. Type equation here.

Q: How do we write the dot product of two- normal vectors ¥ - U ? vu;§; = viu;
Normal Linear Algebra: Matrix notation for Matrix B = just B;;.

Q: How do we write a matrix times a vector BX in index notation? think if B; as jth element of vector
B; > Binmsmj = Binj

(Quick:)

Another common index notation element that we will see for 3-D vectors only (Sakarai uses it without
definition?) is of course € : the fully antisymmetric tensor or Levi —Civita Symbol. Reminder:

€123 = €931 €312 = 1
€321 = €132 = €913 = —1
all others = 0.

Most commonly used to define the cross product of two 3-D vectors axb=c = ci=€yaib;
-------------------- END Math Digression

Continous kets. Note one thing about our “continous” ket’s: the idea of the norm is a little weird
because we say that the norm of each ket is infinite! For continuous kets |§ > we define our
orthonormal condition as

<€1|& > =06(§1-€2)



Dirac Delta function... (0, except at 1 where it is infinite, such that fX 6(x)dx = 1 if X contains 0.)

Thus we can think of our continuous kets as having infinite norm. Sometimes another way to call these
types of vectors besides “continuous” is “infinite norm” kets. According to Messiah, this is related to
the fact that “[technically | §> itself is not a member of our Hilbert Space]” but rather only its
“eigendifferential” is. Eigendifferential is something like |£>d€ --see Messiah if you're interested.

MATH DIGRESSION: One way to define Dirac Delta 6(x)  d/dx of 8(x) (unit step function)

y
0 (X)

y=1

END OF SKIP 1/12

Final Exercise on Inner Products: show that < |x> = <x | >* implies our first Main Postulate: <ay| =
a*<y| in the form of <ay | x> = a*< | x>?

We don’t really NEED to prove this, because we started out postulating it to be true. However the point
is, one could postulate the < |x> = <x|P>* first, and then prove the other case. This means those two

postulates are equivalent.

lll. F) Operators (- Observable)
Note: idea w/ these two physical connections: all mathe

The basis we were just talking about before our digression will be defined in terms of Operators
which already places which, as in wave mechanics, we will associate physical observables with.

An Operator is a generalized “function” or transformation (in general) taking one ket into another.



Al _-lr_':: ] "J:fl

[

Continuing with our pneumonic can think of operators as (complex) matrix’s (plural of matrix =
matrices) , acting on ket “vectors”. Thus as before everything we will state about Operators can be
easily remembered since it will be the same as for matrix-es for vectors—including the above
statement. (A matrix is a transformation of 1 vector into another of course!)

Note the notation again (inside the |>)
There are several properties of these operators.

First for this quarter we will only consider linear operators:

Ala | ) +b|g) = ad| ) +bA | ).

-

(think of f(x) =x2 - f(a+b) !=f(a) +f(b) [instead it’s that +2ab!] ie f is not a linear transformation)
Other properties:
X =Y if and only if X|{> = Y|{> for ALL POSSIBLE | > !!!

Addition of OPERATORS (as opposed to vectors) Commutative and Associative. (Unlike
Multiplication)

X+tY=Y+X ; (X+Y)+Z=X+(Y+2)

Multiplication: (meaning: consecutive transformations) Associative But not commutative (just like
Matrix pneumonic)

Operators do not commute! In general XY is different than YX thus we define the
Commutator:  XY-YX = [X,Y]

thus [X,Y] is another non-null operator. If it =0, then we are free to reverse the order of
multiplication. We will also define

Anti commutator {X,Y}= XY+YX

Or course both the commutator and anti-commutator are different operators themselves, distinct
from X orY.

Exercise: Suppose we have 3 operators labeled A;, A,, and A;, prove that €;{A; A} =0.

Proof: by commutative property of addition, {A;, A} is symmetric in j, k it is equal with j and k reversed
{X,Y}={Y,X}. Itisinstructive to REALLY GRASP why this implies that € {A;,A} = 0. One way: it’s



because for each value of i, €;{A;, A} is a sum over nine terms which are 9 different anti-commutators.
First, by definition of €, the 3 terms that have j = k are automatically 0. For each of the 6 remaining
terms we can match them up and create 3 pairs, each of which as the same two indices, but in reversed
order e.g. one term will be €12{A1,A;} 1-2, the other will have 2-1 -- €1{ A;,A1} . Since {A1,A2} = {A2,A1}
these two terms are obvious equal but due the € having reversed indicies, opposite in sigh and therefore
each pair adds to 0.

Better way: (?) by our j,k symmetry due to commutativity of addition, €;J{A;Ac} = €;{ALA}. We are
free to choose any letters for our indices, so obviously on the RHS we can re-name the indices j>k , k=2].
Then it becomes manifestly obvious that the RHS = -(LHS) (still 9 = 6 term sums, but each non-zero
term will obviously always get the opposite sign. The only number (besides possibly infinity sometimes
perhaps) that = the negative of itself is 0.

Identity operator [l or 1. (special operator) This is defined as the operator whose transformation
doesn’t change a ket at all. 1|{>=1|>. The same as multiplying by a constant 1, however a true
operator. (Like the identity matrix, which has the same effect, but is different from the number 1)

Inverse: Operators can have one: if they multiply together to make the identity operator
AB=1

then B = A" and we call B and A-1 the inverse of A. For a product of operators.
(AB)'=B"A"

This follows from thinking of the operators as transformations.

Exercise: Explain this (what | mean)

(matrix (AB)'=B'A? also—pneumonic)

However, operators do not ALWAYS have an inverse (just like all matrices don’t).

Example of an operator: An interesting “more explicit” operator: “ outer product”:

SKIPPED 1/12: (to “END OF SKIP”):

There is a basic form of an operator that can be made purely in terms of kets/bras. It is called the outer
product.

| b><x]|



The pneumonic is very helpful here: analogous to the outer product of vectors now column x row (like
when we were constructing MM" x for projections Proj E x for single-vector space E. Except this is AB')

L\t 40, ) s
l-fir \/;T‘/ "|7l~.,

; = |

A

We can indeed form |a><a| and this will indeed look like 1-D MM exactly: thus it is easy to guess that
that this operator will indeed represent a projection in the space onto the ket vector | a>.

Back to the general |P><x]| (b #X): We can have that this operator acts on some other ket |¢$> and
by the power of associativeness, we automatically form a bracket, which indeed can be interpreted as
inner product (e.g. a number)

[b><x]  1>=1d>(<x||9>) = <x|d> [Y> =c|P>

Question: which associative law proves this? number-ket mult? operator?, a new associativity?: yes
we've defined a new associativity for outer products.

One thing to note about an outer product operator that can be written this way is:
Outer product is NOT INVERTIBLE

(-Messiah Why? | can’t see an easy way to prove this generally. Can this be derived from
vector/matrix pneumonic? likely -- It is easy to see for orthonormal unit basis vector -- Exercise:
explain why? hint: how many non-zero elements will it have for the unit basis vector)

end skip



Operators act on both kets & bras...

How will operators act on bras?
Question: what is the result of a row vector * Matrix? (is it a column vector, matrix, what is it?)
Just as with matrices, operators can act from the right or the left (just like matrix pneumonic)
<WIAlx> =< (Alx2) = (<¥|A) x>
~—"

Think of A acting on either x or Y. However it is important to realize that A is not performing the
same transformation in both directions!

Important: when acting to the left on a bra, an operator is not performing the transformation (in bra
space) that is "dual" to the transformation that occurs in ket space when A acts to the right on the
ket!!! To remember this think about matrices: even though it they can multiply a row vector, in
general, b,owC # (Cbeowmn)”  This only works for special cases of C (symmetric).

Another way to say this is <A | z<P]A:

Exercise: explain in words why the “inside the bra/ket” notation in the expression above expresses
this

This can be seen for our outer product operator (and is also fully implied by our ket-bra notation
borrowing the same associative convention as above)

<@l (Ib><xl) = <b|d> <x| =const x|

We get a bra state in the direction of <x|. Comparing to our above case where the outer product acted
on a ket to the right we obtained a ket in the direction of |{)>. We constructed our outer product
such that in general <x| was not the dual of |{ >

Definition: Expectation Value (for a): <a|B]| o>

END OF LECTURE 1/12

Il G.) Adjoints of Operators

Since <P |A # <Ay |, thatisto say <P |A is NOT the dual vector to A| >, it is important to find indeed
what is the bra that is dual to A|>?

Let’s analyze the situation with our matrix pneumonic comparing the two transformations:



Alg>= x>
<P|B=<x|

In other words,now B IS the transformation we are looking for, the one in the bra space that is dual to

what A does in the ket space.  The comparison is made for matrix /vector pneumonic below, forming
A with row vectors r; as shown, we can ask, what does B have to look like? First from observing this, we
can see obviously see that the same A will not work in the second case so B # A.

Why????

N[\ [rE

S -G >
2 G :

JVT *
!

()

What we need for A is a matrix that is the transpose and complex conjugate of A (A™) . “Conjugate
Transpose” We will denote this as At for matrices. (ie X'* = Xt

“Following the pneumonic”, we will define something called the adjoint or Hermitian Conjugate for our
operators in our ket space (not just the matrices in our pneumonic) and denote them the same.

This means ie that
dual conjugate to A| > is <P |AT
Properties of the Adjoint:
(XY)*T =Y+ Xt (like inverse or matrix transpose)
(cX)¥ = c*Xt

(A+B)t = At + Bt



same as '* for matrices. Easy to forget last one—exercise —“prove w/ our pneumonic”? Good
practice for index notation=> we add the matrix together element by element: (A+B); = A; + B;
Because of our complex conjugate rule * applies to each term in the equation. To perform the
Transpose, in index notation, we simply reverse the order of the indices, so taking the transpose of the
LHS we get ((A+B)*); but by the element by element logic, this is just Aji*+Bji *. which is AT + Bt

Finally based on the definitions, multiplications, etc..., outlined above one property of thing about our
special outer product operator is

((I><x)T = he><d]

Why? Apply |U><x| to |$>: we get c|y>where c =<y |¢>. By our rules, the dual to c| > is < |c* =
c*<|. Butc* can obviously be written as <¢|x >, since c = <x|$>. So the dual c*|y> can be written

<dx><v] .

Question: what is a special about our projection operator |a><a| with respect to the Adjoint? it is
the adjoint of itself! We have a name for such operators...

lll.LH) Hermitian Operators
An operator is A called self adjoint or most of time also Hermitian if
A=At

We will require that the operators we want to represent observables will be Hermitian in Quantum
Mechanics, for reasons we will soon see. Apparently there is a slight conceptual difference between
being Hermitian and being self-adjoint. The technical definition of Hermitian: H is Hermitian if

<HY|Y> = <P|Hp>

For this class we will refer to Hermitian and self-adjoint as meaning exactly the same thing: A=A*

Exercise: If A and B are Hermitian (Self Adjoint) is the product AB? only if they commute
(AB)+ =Bt At =BA

lllJ) Eigenkets/Eigenstates

Following the example of wave mechanics, you knew we were going to have eigen-somethings...

If we have the following relation



B|B >= b|B> (I1.1)

then we call the ket | B> the eigenket of the operator A. We will sometimes follow the convention in
Sakarai and label our eigenstates by their eigenvalue (which assumes that there are no degeneracies)

Eigenvalue degeneracy : means two or more linearly independent eigenkets correspond to the same
eigenvalue

Actually the notation we have been using for basis kets | ¢,> is nice because it avoids this issue—let’s
use a combination of both B|b,>-=b,| b,>. Sakarai’s notation has a problem of needing multiple
primes as we will soon see...this is a much nicer convention than using multiple primes (e.g. a’”’).

Hermitian Operator has real eigenvalues: important proof

First notice that even if | B> is an eigenket of B, if B is NOT Hermitian, then <B| might NOT be an
eigenbra of B. Itis only the eigenbra of Bf. The eigenvalue for Bt in bra space is must be b* for how
we defined the dual space. So the relation corresponding to eq lll.1 is

<B|b* =<B|Bt

For a Hermitian operator B, this of course becomes

<B|b* = <B|B

Now that this is established let’s switch to our new eigenvalue notation and go over the proof in Sakarai
that the eigenvalues for such a Hermitian B must be real. Consider when B is bracketed by two different
eigenstates: <b,|B|b,>: operating in either direction with b we see that

<b,|B|bn> = <b,|b,*|bm> = <b,|bm|bm>
considering the two right hand quantities only
<b,|b,*|bm> = <b,|bm|bm>

the b’s are just numbers, so moving through the bra’s and moving the right hand side (RHS) to the LHS
we get the same relation as in Sakarai

(bn*-by)<b,|bm>=0

The key point as to why this proves that the eigenvalues must be real, is because if m=n, <b,|b,>
cannot be 0 since it equals <b, | b,>--it will be 1 if the |b,>’s are normalized. Thus b,*-b,=0 or

b,* = b,



which of course means b, is real. This is true for any n, so it means that ALL eigenvalues must be real.

If m #n, then, using the realness of our b,’s means that for non-degenerate eigenvalues, b,,-b, will by
definition of non-degeneracy be non-zero. Thus the factor <b,,|b,> = 0.

NOTE that for degenerate eigenvalues/vectors, the relation implies that b, = b, for some m and n,
while the corresponding states are different. This only means that the states corresponding to the
same eigenvalues do not necessarily have to be orthogonal to each other, although they still must be
orthogonal to all others. This means that they will form a subspace that we can always make
orthonormal using the Gram-Schmidt Method. Thus the proof in a sense still demonstrates that we
can always form an orthonormal basis, with eigenstates.

(Q) Why do we want the eigenvalues to be real? Because we will say that the eigenvalues of
Hermitian operator will correspond to the values the observable which that operator represents.
(Observables have to be real).

Expansion in terms of eigenkets.

The above proof also shows that Hermitian operators have orthogonal eigenbasis, which also means
we can just normalize it and make it >orthonormal...

We know from our linear algebra review, if A" = A (the matrix is symmetric) it has an orthonormal
eigenbasis. As in that case however, it does not imply a complete eigenbasis though. (think of a 4-D
matrix 1)

How about completeness?

Are all observable/operator’s eigenket’s complete? Sakurai avoids the question: “under assumption”
Shrodinger Equation—> Sturm Liouville? (says yes for wave functions—wave functions of course are not
themselves going to be considered kets in our notation.) Postulated in Sakarai...

lll. J) Projection operator A,
We already stated that |a><a| would be a projection. We will refer to such an operator, with a A.

It’s projection quality is easiest to see in terms of our orthonormal basis (whether the basis is an
eigenbasis of some observable or not!) .

Thus the easiest projector to consider is Ay, = |bm><bn| (note here we are not using the index
notation implied sum)

Act on our expansion in the eigenbasis...

[P > = Z Cn |n > — (eigenbasis b) —»= Z a, |b, >

n n



(we use a, because b, is the eigenvalue, for |b,>, not the expansion coefficient.

(b >< bl (Z a |b, >>

n

= .,.@'(b,lh‘) Il'-'nb
- i Sh'l Galbp)

> Amlbay

Remembering how to quickly construct the matrix for this operator looks like in our pneumonic from
our discussion of the non-invertibility of outer product operators

(ie remembering |a> (a, b,c) |$,>==]a> (1,0,0,))

Question: describe this matrix. Like the case where we had two different eigenvectors ket-bra ‘d, it will
be a matrix with only 1 non-zero element of value 1. but this time only along the diagnonal.

Suppose we add all N pneumonic projector matrices? What matrix is this? Identity matrix. This leads
us to consider such a sum of ket-bra projectors.

Lecture 1/19/2010
lll. K) Completeness—As an operator.

Thus indeed, even with our ket-bra forms of the A’s, it is easy to see that if we sum all the projectors for
a given orthonormal basis, and multiply it by our expansion for | > we will get back | >

Q: explain in words. If we have the sum of all projectors (see below for expression), and each
projector individually when acting on our expansion (|{> =3 a,|b,>) yields a new ket = equal to a,|b,>,
then obviously the sum of all projections of a ket is just equal to the ket itself again.

Thus the

ZAzZlbn><bn|=H51
n n

We can think of this as a special form of 1 operator :



For our continuous kets, since by definition of continuous kets, the set of basis kets can be enumerated
by numerical labels € that are “infinitesimally close to each other”. Thus for continuous kets we need
must express our completeness sum as an integral over all states...

1=[dg |§><§]

This is a very important tool as it will allow us to prove and calculate many things using only the
bra/kets

Examples:
1) Prove that any hermitian operator B with eigenvalues b, can be written as ). b, Ap,
B= 1(B)1

for each 1 insert completeness (we must use different indices for each new sum we insert in
order to resolve them.

(Z(lbn >< bnl))B @ubm >< me)
(Z Z(wm >< byl) B(lby >< an)
(Z > (b >< bul) bulby, >< bn|>
(ZE b (b >< b llby >< bn|)>

n m

(ZZ bu(lbm > Spun < bn|)> = D bahy,

The above proof is done in section 1.5 of Sarakai.

This form of an operator is actually very important, let’s look at a concrete example (discussed in
Sakarai):

Example: Spin states: in terms of projector sums using the kets/bras of the Sz+/- states from 1.1, and
using what we said about the Sz eigenvalues from 1.1. What is an explicit ket-bra form for Sz?:

Answer: A/2|+><+| -R/2 |-><-| (I've formed a sum with all projectors and put the corresponding
eigenvalues in front of each.)



Q: In terms of the basis kets of Sx (|Sxt> ) what should the operator Sx look like.? Same.
h/2|Sx+><Sx+| - /2 |Sx- > <Sx- |

IMPORTANT—this ket-bra representation, though written with Sx kets, can still operate directly on Sz
kets e.g. we can still project | Sz+>on |Sx->: |Sx-><Sx - | |+>....

This can just be done using the reprepresentations of the Sx states we already guessed in Sakarai section
l1l.eg.

<Sx-| =1/V2 (<+] - <-])

PS we actually never stated formally the “distributive” property of bra-ket’ing (also applying to outer
product multiplication): but the following is always true: < |x+$>=<P|x>+<P|P> &

[W><x+d| = [P><x]| + |P><D]
SoSx==h/2*1/V2(|->- |+>) 1/V2(<-| - <+|) - Af2*1L/N2(]|->+ |+>) 1/V2(<-] +<+])
“diagonals “ cancel 2> =

Worked out here:

o, o b (15l 1575 )

/UOJQ*, §Z< C%C?f%ﬁﬁ&’% o [, -2 (Sz>
o7 1647 = L(1+74 ~>7

1 |+l 2] —
=13

Zé 7Z )7 é<t7>+>)
_; (/L(;,/)JQ, YIS D>

This is the same form in Sakurai: e.g. Problem 1.8. The same can be done to get S,



2) We will define the trace of an operator tr(Z) as

tr(Z) = Z < b,|Z|b,, >

n

show that the trace is independent of which orthonormal basis we use to perform the bracketing.

Proof:

- Z < b,|1(2)1 b, >

n

For the 1’s now insert the “completeness sum” for a different orthonormal basis, suppose for
concreteness they are the eigenstates |c,> of an operator C.

Z <bn|<Z|cm><cm|>Z Z|c]- >< ¢j| |1by >
m j

n

always move the summation symbols to the left first...

ZZZ < bylem >< ¢l Z|cj >< ¢j|b, >
n j m

<bn|cm>, <cj| bn> just numbers so

= ZZZ < bylem >< ¢j|by >< cp| Z|cj >
n j m

= ZZZ < ¢jlby >< byley >< ¢l Z|c; >
n j m

=ZZ<cj|2|bn><b||cm><cm|Z|c]->
j m n

-
1

=Z<cj|2|cm><cm|2|cj>
j m

j
3) As in Sakarai, we can also use this completeness to easily show that the sum of the norm’s squared
of the expansion coefficients : e.g. for orthonormal |>=3 a,|b,>, then 3 |a,|*=1



Lecture 1/20/2010  Announce: Homework due Fri 1/22 website still needs updated.

IV. (FORMAL) Matrix Representations

Once we’ve chosen a basis, as Sakarai explains in section 1.4, we can FORMALLY define a matrix
representation of our discrete type kets/bras:

Warning: This formal definition of the “Matrix Representation” of the bras/kets, operators but
conceptually, this is slightly different than my pneumonic of remembering them as vectors:

The difference is
pneumonic:
| Y>> (any column vector)
|¢.> = always unit (...,1,0,0,...) vectors
A (operator) 2> any (unspecified) Matrix A
Formal matrix def:
FIRST !l : CHOOSE <@, |: ... then,
<@, |W>> n"‘component of vector representation of | > ( * for <] )
<@nlAl®@> n,m matrix element of matrix representation of A
Really the difference (other than some extra notation) is mainly choosing a basis first.

In other words,for the pneumonic | want you to think of the ket itself as a vector to remember the
properties of kets. FORMALLY, the formal vector representation of a ket does not define it, it is just one
“description” of it. The point is that the ket /bras that are the fundamental things.

Nonetheless it will generally be sufficient for this class, to prove and evaluate things using the matrix
representation, for “discrete” kets. For now, we will also say that the matix rep. just doesn’t apply to
continuous kets.

There is a good summary (essentially of what is in Sakarai) of matrix representation on page 3 of the
document at http://www.isv.uu.se/thep/courses/QM/lecturenotes-1.pdf

Please take a look at this document. In these notes, the convention for the basis kets is (|a‘”)> which
will correspond to our |b,>.

Another way to state it is simply using our index notation:

One we’ve chosen the basis |b,> which we want to represent the operator A as a matrix in, (note the
|bn>’s are not the eigenstates of A) then:



The Matrix M" which represents A will be defined as (through definition of its elements)
(M%) = M{j‘ <bi|Alb>
An arbitrary ket <a| will be represented by a column vector with elements:
v; = <bj| a>
while the bra will be represented by the row vector
(v'*)=<a|b>

Note that this means that a bra in its own eigenbasis’s matrix representation will be the a unit row
vector: e.g. | b;> will be represented by (1,0,0....) |b,> by (0,1,0,....) Similarly for the column vectors
that represent the kets |b,>. This is just as my suggestion for the pneumonic—however as opposed to
the pneumonic, where | suggested always thinking of orthonormal basis vectors as unit vectors, if we
choose a different basis in the FORMAL matrix representation, e.g. for example say we want to
represent |b;> in the basis of the eigenbasis of A, |a,>, then the vector representing |b.> is no longer
unit vector (1,0,0...). . e.g. In the |Szt > basis, <+| = (1,0) but if we choose the eigenbasis of |Sxt> then
we wouldn’t get unit vectors for the eigenvectors of Sz.

How about notating the vector v itself in ket/bra notation: vV =<bla > ?

Practice 1:
4-D Basis |A Dn>(Z |dn>) = (eigenbasis op D)
what is MR of 1/v(3) (| d2>+v2|d4>)
what is MR of Operator K =-5|d3><d2|
Practice 2:

Exercise: For Spin states, What is the matrix representation of Sz? BEFORE YOU ANSWER | FIRST
MUST TELL YOU WHAT BASIS (OR YOU MUST CHOOSE & STATE IT!!!!)—OK so if we use the |+> ket’s of
Sz, operator Sz=Rh/2|+><+| - /2 |-><- |

forming the brackets for each matrix element: e.g. <+| Sz|-> =0, etc... we get:

h
Sz :E[(l) —01]

What is the matrix rep of Sx? FIRST | MUST TELL YOU WHAT BASIS!!!! (same) 1) In the basis of | Sxt>
states: it’s actually the same



h [1 0 ]
210 -1
IN THE BASIS of the Sz states. We can actually do it. But first we should construct the Sx operator in ket

and bras. BUT WE ALREADY HAVE IT!!!!

We already said Sx = h/2|Sx+><Sx+| - i/2 |Sx- > <Sx- | and we already said it this can act on +/-kets
/bras including eigenstates of any Operator, including Sz.

In this sense the ket-bra representations are “independent” of what basis you decide to work in.

Thus to get the matrix representation,in the basis of the Sz states we need to know how evaluate inner
products like <Sx-|+>.

R/2 (|+>< -] + |- ><+])

Using all this info to evaluate each matrix element of Sx in the in the Szt basis (meaning bracket the
above with all permutations of <t|, |+>), we get:

NEXT YEAR DO Sy instead?

h
S:=307 ol

It should now be easy to do Sakarai Problem 1.5 b following this prescription: It’s just an easier version
of doing this.

We can do the same thing to get Sy

h s
Sy :E[(i) ol]

Two things: we will use these three matrices (since normally we will be working in the Szt basis) a
lot. They will also be referred to with the index notation Sx, Sy, Sz=5,5,S;,

Note that for the problems Sakurai 1.11 & 1.12, it is very useful to think in terms of the Pauli Spin

Matrices:
SZ=S_=, = h/Z O3
SO

03 = [(1) —01]



etc... there are a lot of useful properties of these matrices listed on page 165 of Sakarai. e.g. {0,0;}=
2 & (some of which are repeated in this chapter in terms of the S matrices.) It will definitely be useful
for the problem set to use some of these properties.

Equally or probably more important as the matrix rep of operators (which are actual matrices, hence the
name “matrix rep”) is the matrix representation of the state kets. These will be the vectors with n
components <@,|W> We should always represent the kets in the matrix representation using the
same basis kets we use to rep the operators, so following the above examples,we will want to
represent an arbitrary state |a > in the |+> basis. The matrix rep vector of | o> will have 2
components <+| o> and <-| a>:

. << +a >>

< —|a>

As a concrete example we could think of the state |a> = |Sx->:.

1/V2 )
-1/V2

Matrix Rep( |S->) = (
Digression: Help on Problem 1.11) Sakurai
Here is the road map of doing this problem using the hint:

1) Write the matrix representation of H in the |1>,|2> orthonormal basis —this will be a 2x2 matrix
whose elements are the constants in front of the outer products:, e.g. Hy;

2a) From here you could just approach the problem like the quiz problem of finding eigenvalues/vectors
in Linear Algebra. The vector (Z) you get obviously represents a|1>+b|2>. Messy: A ‘s will be some fn’s

of Hyy, Hyy, etc... but DONE... you need not follow the next steps...

2b) BUT INSTEAD to use the hint though, then the exact same way you did last week in problem 1.2,
write that 2x2 matrix H in the 1.2 form.

The answer looks like this: 1 H + AH o3 + Hy,01 (for a clever but not so hard to think of choice
of H,AH)

Thus the a of 1.2 in this case is the vector (H1,,0,A H)

3) The connection to hint about the eigenvector of S n isthatS-n o« o-a. IfHhad only the o-a
term, you obviously could just use the given hint answer with the substitution |+> - |1> and |->
- |2>and fory 8 suchthatd = 7



4) But from Linear Algebra: Eigenvectors of matrix A are same as Eigenvectors of matrix (A+xI)
(try it!). So 1.2 form should still have given hint eigenvector form, so then find y, 8 from step 3 in
terms of constants Hi; etc...

cos ’B = A H*/(A H? + H12?)?
For 1.12: use 1.11results: y-> B

Lecture 1/22/2010 --- Homework next week will again be due on Fri: let me know about other
class’s midterms—we need to schedule ours.

V. Measurement (Part 1)
A) Postulates
Three Postulates concerning Measurements in Quantum Mechanics:

Postulate 1) The only possible values for a measurement of an observable B, will be the possible
eigenvalues of the Hermitian operator representing B. (How to find the operator B if don’t already
know the eigenvalues we want e.g. through first measuring them! == empirically determining them, will
be discussed later, and is not specified by this postulate).

Postulate 2) Before measurement for a quantum system in the state |a>, the probability to measure
eigenvalue bn of B will be given by |<b,|a>|?> which defines the probability distribution P(n) for each
state n. During measurement an eigenvalue bn will be randomly chosen, according to the probability

distribution P(n). P(§1< & < &2) = f§f|c(§)|2d5 - f§f|< D& >|2dE

Postulate 3) Immediately after measurement, the system will “collapse” into a new state that is
completely in the direction of the eigenstate |b,> or in some cases, when there is something called
degeneracy, to an “eigen” sub-space defined below, corresponding to the chosen b,..

Notice the postulates are not specific about how to mathematically represent this measurement

Can measurement be represented by operating with the projection operator? The plain projection
operator acting on a state, will give back a state that is no longer properly normalized. Thus we
could think of this as a way to mathematically represent measurement, but we would have to specify
that the state afterwards benormalized again.

This is easy to see by thinking of Successive measurements... Successive projection operators might
keep reducing the normalization of the state. One might be tempted to equate this with our Stern-
Gerlach experiment, where each time we “block a state” we are removing half of our Ag beam, and thus
successively reducing the intensity of the beam. It is important to realize this is NOT EXACTLY THE
CASE. Because if we only consider what is happening to 1 Ag atom alone, after it “survives” one filter, it
still has probability of 1 to go either way in the next filter. (In thinking about the beam intensity/”flux”
of Ag, as a whole though this may not be a such a bad model.)



Thinking about whether it doesn’t survive the filter, This is related to another point that contains the
essence of Quantum Mechanics: without the S-G there, in fact, no definite state is chosen. One
must be careful.

B) Expectation Values
If we know the probability of all outcomes, we can calculate what the outcome will be on average:

Average weighted by the probabilities:
(Br) = ) P(by)b,
n
Sum C P(C) This is the most important relations to apply to science. Use it all the time in
experimental physics...

Since by our postulates above P(b,) =|<b,|a>|?, for any general state a then it is easy to see, thinking
of our projector form of the operator B, that this expectation value can also be written

<a|B|a>

This we already know from wave mechanics. We will discuss how the wave mechanics version of the
expectation value fits in to our new formalism this week.

C) Compatatible/incompatible observables.
If [A,B] == 0, then A and B, along with their observables, are called compatible
Else they are called incompatible.
Good examples are angular momentum matrices. (we will demonstrate with our Pauli matrices o;)

From wave mechanics, L2 and Lz are compatible, while Lz, Lx are incompatible. Similarly for our spin
matrices we can define the operator S2

S2 = SxSx+SySy+SzSz = h2/4(012 + 022+032)
Here are some useful properties of the o matrices, you can check w/ the matrices themselves:
0,0 =i€ ;0 +1§;
e.g. (0 1 02 sheet) —-try it with the matrices themselves e.g. o>
which also implies
{o,0}=265

[0,0] = i€k 0



One thing that is interesting from these relations is that
S2=h2/4(1+1+4+)=3h2/4

There fore it is obvious that S2 commutes with every operator. This includes the S... Itis compatible
with any of them. On the other hand each Si is incompatible with any of the others.

Starting 1.11/1.12. While we’re on the subject of the o matrices and their properties, let’s talk about
a few hints for the problems 1.11:

D) Non-commuting (Incompatible) Operators cannot have common eigenstates.
Suppose | , > were an eigenvalue of both Aand B. Then

[A,B]|d n>=anbn|¢$ n>-bnan|d n>=0. But by first definitions of operators this implies [A,B] =

E) Compatible operators share eigenstates:

Chr=1Clpp= T 0 7 B3l
SRR L0 <£|L>
"5 Bl Ch

Because B and C commute, it is easy to show that the term in the red box has only non-zero diagonal

terms. That is in the basis |b,>, Ci = C;y6 ; (noimplicit sum). If this is the case then the sum is
removed, and the last line becomes

= <bkl|C|bk> |b> = number x | bk>
which of course means that | bk> is an eigenket of C, with eigenvalue <bk|C|bk>.

This proof of Cij = C;6;; is similar to the Hermitian => real eigenvalues proof:



<BO K =)

=&\BC-CE >
= (b,.- be ) <\ C b>

thus as long as bm-bk are not the same, (which implies m and k are not the same). Then the term
outside the parenthesies (the term in the box) must be zero.

F) Degenerate Operators and Eigenspaces:--

We will call cases where bm = bk for any m # k the degenerate case: B will be called a degenerate
operator that has degeneracies, degenerate eigenvalues meaning more than one the same. So if B has
degenerate eigenvalues, then this proof isn’t sufficient, but only only for the degenerate states. For the
“non-degenerate” states, and obviously for any operators that don’t have any degeneracies, it is
sufficient to prove the initial statement.

F.1) Degenerate operator H: Some eigenvalues A = h,, are the same (hn = hm for m# n).
(see text above)

F.2) Degenerate eigenspace: (sometimes called just an eigenspace, since eigenvector implies 1-
D space): sub space spanned by all these |hn’s> for which this is true. (Multiple
degeneracies>multple degenerate eigenspaces)

As before, it just makes things more convenient to assume non-degenerate case: the entire proof still
works for those states bn that do have distinct eigenvalues. And for the ones that don’t it is easy to see
that C still always takes a degenerate eigenstate into another state that is still in the degenerate
subspace. By definition this subspace is spanned by these eigenstates, so thinking of the linear algebra
of either the pneumonic or the actual FORMAL matrix rep, it should be easy to believe we can always
find a linear combination of the |bn>’s which “diagonalizes” C. Diagonalization in fact is what we call
when Cij = Cij6 ij! Such diagonalization is the subject of the next section.

Prob 1.17: Essentially: if [H,A;] = [H,A;] =0, but [A;, A;] # 0 prove that H must have degenerate
eigenspaces.

Problem 1.17 in fact is really all about our discussions about degenerate eigenspaces...

- Reminders:



-We also said we can always represent any operator H as in the form H=3 h, |h,><h,| --

if H is the “Hamiltonian”, we can call the eigenvalues En ie hn = En ( although we
haven’t actually gotten this far yet in the formalism—but you already know this from (Wave
Mechanics.) H=3 h, |h,><h,| = I E, |h,><h,|

For this problem 1.17 especially, and to understand what we’re talking about with degenerate
subspaces, it is good to think about the matrix representations of operators. The above form makes
it obvious that the matrix representation in the | hn> basis is diagnonal

0

© oy

If there’s a degenerate subpace it means some number are the same: (point out grouping) for
simplicity lets think about a concrete 4 D example.

Now for this problem it is also very useful to think about “block diagonal” form of any matrix: it
means matrix within a matrix, along the diagonals.

O

e

D T

From yesterday: if we have another operator A, that commutes w/ H,
then by our | (hm-hn)<hn|A|hm>=0 | relation, = it must have




a) common eigenstates for all the non degenerate eigenstates, which means
b) these matrix elements in the |hn> rep are also diagonal.

c) Even for degenerate eigenspaces, in fact the relation actually also means that this matrix
rep is “BLOCK DIAGONAL” (but NOT fully diagonal)

/A\ODO
o Ay Ayl

0 Ay

0
b 0 0 A

See this by actually considering matrix elements 1 by 1: from our relation in fact any elements A,
must be 0 unless m and n are BOTH in the set of degenerate indices: in this case 2 or 3. This is exactly
equivalent to our two statements from yesterday: statement A) that each eigenSPACE corresponding
to each distinct eigenvalue are still proven to be orthogonal by our relation above [in the case
there are 3 eigenspaces: two 1-D spaces, corresponding to E; & E; and one 2-D eigenspace
corresponding to E, (E;=E;). ] and statement B) that A acting on any eigenket | hn> produces another
ket which is still within the same eigenspace.

Finally to do the problem it is important to realize that when multiplying block diagonal matrices, you
are just multiplying the “blocks”. E.g. to see “why” A and H commute it can be traced down to the
commutation of each block, e.g. that the “middle” 2x2 block of matrix A must commute with the
corresponding block of H? Think about why that must be, and what would have to happen for it to
fail.

Lecture 1/25/2010

More on degenerate eigenspaces, eigenvalues: Sakurai Prob 1.17. See powerpoint slides below
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One can be even more general and think of arbitrary number of nxn blocks of arbitrary size...
thenit is proven generally for alf discrete operators with the same relations btw H, 42, A%

The big picture here is to realize that the above “mathematical” proof involving the matrix

rep’s of the operators is reallywhat is behind the same proof for the operators
And inthe sameway, the relations imalving compatible operators sharing eigenkets and

degenerate eigenspaces really boil down to how their matrixrep’s look




F) cont.

Notation for degenerate eigenstates (use > 1 label!): when we do have degeneracy it is obviously
convenient to label the states according to the eigenvalues of both C and B, to uniquely specify which
state we are talking about.

| bnlcj>

e.g. from Wave Mechanics our L2 operator will have the same eigenvalue a I(I+1) for 2I+1 states: those
will be further labeled with the Lz eigenvalues i m,.

ILm>=> L2|l,m>=Hhl(I+1) |[I,m>; Lz |[lLm>=FAm, |I,m>

for my notation where | label each eigenvalue h,with the integer n it is actually not necessary: the state
is still fully specified. But in Sakurai’s notation, and actually as you have seen above for e.g. ang
momentum/H atom states, other common labeling schemes, it is necessary.

F.3 Rule: If we find all such operators which commute with another we will call this the maximal set.
Then the labels for all those operators will resolve all the degeneracy. NOT well posed statement (we
can find an infinite number of commuting observables of form c* ) thus not very important for now.

G) Refinement to Measurement Postulate #3

Measurement of Degenerate Eigenvalue A°,n. for degenerate observable G causes “partial collapse” to
Degenerate Eigenspace {|A\%.me>} @ subspace of the full Hilbert space.

In this case the probability of measurement of value A%, Will be equal to the norm squared of the
projection of the orginal state |)> onto the subspace. We have not discussed how to write a projection
operator for a eigen subspace in bra-ket notation only the projection operator for a single eigenket.
However from linear algebra, it should be 100% clear how to represent the Matrix Representation of
such a projection Operator: It is just our Proj matrix from our linear algebra review

Projw x = MM 'x

ie MR (Degenerate Eigen space Proj op) is just MM . Remembering how M is constructed, you should
be able to figure out a way to represent this in ket /bra format. Therefore | expect that you should
already be able to derive an expression that represents this probability. More on this later.

Note that the partial collapse aspect is one of the essential properties of Quantum Mechanics. Itis a
VERY IMPORTANT feature of quantum systems and actually is what provides the basis

P-Set #1 Essay discussion Updated for 2010:

-Cat |W > = (Alive + Dead): whether you believe or not-> matter of opinion (no wrong
answer)



-however, | don’t believe, | think most physicists are skeptical at best...(this is something
philosophers like to debate, not physicists as much.) Think of this: why isn’t the cat a valid
observer—observation depends on I1Q? Roger Penrose (famous mathematician) has theory of
thought having quantum roots which is supposed to explain this, so my guess is there must be some
way to validly pose the “thought == measurement” theory. Thus | will not discount it completely.
However for this class, we will never rely on this argument.

But the reasons for me not believing Cat = Alive + Dead have to do with details of the cat
being a large complex system, and | don’t believe the quantum mechanics of simple states like in the
SG expereiment apply to it as a whole without some further specifications. That is | don’t believe one
can so simply connect the cat to the simpler 2-state system. | do believe that the 2-state system is in
the “Alive + Dead” superposition, and in that sense the Alive + Dead way of thinking is the more
correct quantum mechanical intuition.

Screen or B field... (I will accept all answers as long as they were justified)

-FIRST almost no one said “after”—(eyes see?)—this would be equivalent to
thought==measurement :

-Good! Important point: not just a question of “does the falling tree make noise if no
one hears it”? We don’t want to answer that question in this class. We are only concerned
w/ things we can test in science—by definition that is an untestable question.

-I’'m not 100% sure of answer myself: For this course, we are only concerned with
BOTH Mag + Filter/Screen. So as Sakurai never does, | will not be able to give you a definite
answer for now—we will discuss the situation a little further though, and after that we will be
able to say more. Also we will see in the next section how we can find out for sure by expt—
which is really the most important determiner.

-The safest answer is the screen. True, the B field by itself should do SOMETHING.
But even for the single atom, if there is no screen, the two possible states |+> should have an
Quantum Mechanical interference effect, much like when a single electron beam goes through a
double slit collimator and exhibits an interference pattern that is equivalent to a superposition
of it going through both slits. So as with the electron, it may depend on actual wave function
considerations of the changes in trajectory (meaning the space wave function from wave
mechanics, which of course still is part of the atom’s quantum description—for example, will the
beam split be small or large--something that is ignored in this thought experiment) as to
whether such an interference will occur, and thus whether a full collapse has occurred in the
magnetic field alone occurring in the SG at the B field or screen

So taking the interference effect into account, my best answer is that the B-field by
itself (without the screen) is a “partial” measurement that causes a partial collapse: the state



is collapsed into a superposition of +/- for whatever the direction of the Bfield was, but it does
not necessarily choose one or the other: it can in fact be left in a state that is the
superposition of both.

Part of this question has to do with whether initial state are a “pure state” or a “mixed
state” something we will discuss later in the course.

H) Consequence of Measurements (Summary)

For Degenerate Observables: For an observable that has a corresponding operator which is degenerate,
measurement of (only) that observable which results in the degenerate eigenvalue being measured will
only cause a “partial collapse” of the state into the degenerate subspace. The exact state within the
subspace is not generally affected by the measurement, and is still uncertain.

For compatible observables: During two successive measurements of two different but compatible
observables, the second measurement can not change the state in such a way that the previously
measured eigenvalue, if measured again, will not be measured again.

“Measurements of Compatible Observables do not interfere”

Incompatible Observables: on the other hand: During two successive measurements of in compatible
observables, the second measurement causes a “re-collapse” of the state which changes the probability
of subsequent measurements.

“Measurements of Incompatible Observables DO interfere”

1) Example of Measurement Interference

Consider the following set of S-G —like apparatuses applied in succession: 3 observables A, B, C, and a
filter for only picking one of the eigenstates.

If before going through measurement filter A, our quantum state (think of the state of an atom flying
through all three, like in SG) is some arbitrary state |a>, then we can write the total probability to have
the set of measurements indicated in the drawing (an, bn, cn) as Pyo; = | <at|@>|? Pyspsc Where Pyspc is



P = |<cn|bn>|2|<bn|an>|2

(
Could’ve labeled it ak, cj, bn=>means the same—thus let’s just use a, b,c. We can rewrite Pasbsc @s
<c|b><b|a><a|b><b|c> Thus, the sum over all measured b routes to get one particular a—>c
combination, Paecb as

aybyc

P.sc’ =5, <c|b><b|a><a|b><b|c>
Notice there is only one sum over all the b states.

Now compare to if we remove b completely from the picture

oy 1)
A

..I iy

(we can just imagine the presence of B)

For here Pa—>cis just |<c|a>|2 which can be rewritten inserting 2 closure sums over b (the concrete
expression of our b imagination), and therefore two different sums over b

Pa>c=3 13 m<c|b,><b,|a><a|bn><bn,|c>
Notice: it is not the same as P,° NI!I!

Neat. Huh good demonstration of the essence of the weirdness that is at the heart of Quantum Mech.
But really this is not very hard to understand what’s going on here or really very “surprising” what we
already stated about measurements in general.

Why it’s not hard to understand: Thinking of routes “through b states” is very helpful to understanding
this:

Q explain in terms of what b states are “gone through” in each case: what routes? every time
it’s going through all states of |b> at once. N routes. As opposed to going 1 route N times.
Think of a traffic: it only 1 road is open out of N. the resulting traffic will certainly not flow as
efficiently.

Why it’s not too surprising: it is just a result of the collapse of that occurs from the measurement of b).
All it is saying is that |a>=3 c|b># |b>



How to use this result to answer our question of where the collapse in the Stern-Gerlach takes place
definitively — in the B field or when it hits the screen/filter?

Actually it’s not this relation per se that could prove it for us, but using 3 successive SG we could at least
gain some valuable insight: Suppose we repeat our first “MIORE INTERESTING” SG experiment w/ 3
successive SG's

SG1: z field filter SG2: x field filter SG3: z field filter

Now just remove the filter part of SG2 leaving only the x B field. Our argument before was that we were
“removing half of zero” w/ the x filter, which caused a new state with both Sz components again. So if
the magnetic field caused z field to again have both components then it is likely that the x field alone did
cause a collapse. Though it is still not clear whether the collapse was in the x+ or x- direction.

Note that in class | did think we could also determine whether or not the collapse was occurring by
comparing probability sums just like the above case w/ A, B, C. Although seemingly in need of the actual
filter | believe there may be a way around not having an actual filter, by averaging over all possible filter
configurations, and comparing that sum to going without the filter, but only having the field. | still
think this may be possible using a single atom beam (ie one Ag atom at a time), but | do not have time to
figure it out—if you’ve thought of a way, please let me know...
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Review : Mention Diagonalization of Degenerate subspace/Labeling

J) Generalized Uncertainty Relation: (Last thing about Incompatible Operators)

We all remember the Heisenberg Uncertainty relation AxAp > h/2

One of the most important points of this course is impress upon you that such relation is not just

restricted to p and x, but is

true for any two incompatible observables.

Thus it should be derivable from just our most general formalism.

In Sakurai the following relation is proved

AN =

FICEA I



OK we can take sort of take the sqrt of both sides: point is it’s still an “uncertainty” relation....

However it is just as easy (perhaps more) to prove:

Let A and B be hermitian operators. With Schwartz’ inequality follows

_ | q———, _ _
(@ (A-AB-B)|¢)| = [ (A~ Ay |(B- B

= < (A=A || (B~ B

— AA, AB,

Note that by convention what we call AA equals V( <(A A)>> whichisequalto || |AAY > ||
(meaning norm of ket | AAW>) Obviously A means <A> which is just a number.

Now turning to the LHS, we know that we know that for any complex z, |Im(z)|* < |z]|?

| Tm{w | (A~ A)(B - B) |[¢) <|{&|(A-A)(B- B)|v)]

One also has
\ i

e

1 . - = - . — X .
= S WIA-AB BlY (A B B Y
1, . - , - L HelrrTg
= 3 [ | (A~ A)B — B) (B B)(A - A) | )|
., DR
= 3 | {1 |€1 “d (B Hﬂ i) |
L || oy | | o
= 3 | (it |AB— BA | )| = 5 {0 | [A, B | )
50..
1

S @ A B 9) | < (AA)4(AB),,.

The proof in Sakurai is more complicated. I'll let you read it and let me know if there is anything you

don’t understand. But it does use 1 useful relation we may use in the future.

An Anti-hermitian operator (AT = -A) has purely imaginary expectation values (use < |A|x> = <Ax|>*)



Lecture 1/27/2010 Note: scanned version of chalkboard notes (more condensed version of text) at
end

VI) Transformation Operators
A) Introduction

We had mentioned diagonalization: in our discussion of degenerate spaces: the idea was we said there
is we could always find a set of basis vectors | $,> for which the following would be true for A

diagonalization: <¢m|A|Pn> = <Pn|A|Pdm>Emn (no implied sum)

This is just a completely literal statement of the fact that the matrix representation of A in this basis is
diagonal

Remembering from linear algebra that the way we diagonalize matrices means that we
find the matrix S such that we can form the matrix D =S'AS where S'S =1,
We also remember if it's a symmetric matrix (if AT = A) then §*=§".
For operators we will think of the matrix S= operator U called the “transformation operator”.

Just as for symmetric matrices, for hermitian operator B (B=Bt), the operator Uz = U which diagonalizes
it, will always have the property that Ut = U™ or

uut=utu-=I

Note that such an operator is NOT hermitian in general (but could be in specific cases? e.g. Proj
operators?).

We will remember for matrices, that this is essentially equivalent to finding the eigenvectors of the
matrix, since S is made up of the eigenvectors. (evl|ev2]|..) On the operator side, if we have a
mathematical form for the operator, and we have a complete set of basis states, it is the problem of
finding the expansion of each eigenstate in the old basis:

[by>=3 cm |am>

that is, finding the coefficients c,, for every n ([c],) : this will be the ingredients for forming U (in fact
we will find, U, (matrix rep) =[cn]..) Note however simply expanding |an> in the |b> basis is not
what is performed when we apply U to a ket: ie it’s not what we use U for. For that all we need is to
insert closure=1 > |b>=3 |a><a|b>. What we DO with U is very different as we shall see.

You might be thinking at this point: don’t we already have the answer for what U is: [c], = <am|bs>?
The answer is actually true —however you’ve missed the point: to calculate <a,|b,>, we need first
need the expansion parameters [c,],! So then we can actually calculate <am|bn> = as

<am|( 2 o lae



—only in this form do we know how to “remove” the innerproducts.
B) Tempting Confusions in Sakurai:

1) Above: Bra/ket expressions so simple (e.g. Bra/ket form given for U) one thinks there is
magic ket way of avoiding Linear Algebra work w/ Matrices to find eigenvectors. There isn’t, you must
still do the same Linear Algebra operations

2) simple expansion in different bases (passive rotations) which is performed with the
completeness operator (ie 1) with b) the action of U (which is to actively rotate vectors).

C) Action: What does this transformation operator actually DO?:

Let’s think deeper about this. We said ALL operators are transformations. How are these
“transformation transformations” different?

When we diagonalize a matrix what are we actually doing? Answer: we have a set of basis vectors @,, ,

that are unit vectors .e.g @, = (0,1,0 ...) and we have some matrix B which has eigenvectors Enwhich
are NOT unit vectors, but when we diagonalize B, we “switch places” between the b’s and a’s: now the
b’s become the unit vectors, and the a’s will actually no longer be unit vectors in the new “diagonal”
space. In fact explicitly this is what the S matrix does: a=S"b. Thus this is also exactly what U does
in our bra-ket formalism:

Answer: It provides a 1 to 1 mapping of one orthonormal basis state to another--- FOR ALL BASIS
STATESI!!

Thus if we want to change from basisato b: |bl>=U|al>and |b2>= U|a2> ...

Compare thisto |b1>=3 |a,> etc.. itis very different. One we are just writing |b1> as an expansion in
|a>’s-- in the other changing the a’s to b’s

Now think of our pneumonic or the FORMAL matrix reps: these are vectors. We already said we can
always think of different orthonormal bases spanning the same space. If each of these bases are an
eigenbasis of two operator. From completeness we know we can always expand a vector in any of
these basis.

[oa>=3 |b><b|a>=3|c><c|o>

Remembering how our SG example of Sx “basis” could be thought of as a rotated version of the Sz basis,
should be clear that it is like a rotation of a coordinate frame.



Geometrically it is clear that this is just a “change in coordinate frame” (from orthonormall to
orthonormal2). That s, it’s like a passive rotation: vector stays the same, coordinates (coefficients of
the basis states) change.

The “transformation transformation” we’re talking about is like an active rotation: you take the vector
(e.g. |al>) and rotate IT into one of the |bn’s> (which we might as well label |b1>)—COORDINATES stay
the same!ll with respect to the new coordinate basis.

The U’s are indeed like “rotation matrices”—many parallels --rotation matrices always have det =
1->like being unitary. Think of the Stern Gerlach: But NOTE that we are NOT talking about the SG
rotation in REAL space of 90 degrees, (which we said was meaningless for the SG), but rather the
rotation in | ket> space of 45 degrees. Abstract rotations in our abstract vector space. And there are
more than just rotations in ket space that can be unitary. Real rotations in 3-D space will be discussed
in Chapter 3.

C.1) Transformation Operations Within the SAME Basis

Transformation operators do not have to connect 1 eigenbasis to a different eigenbasis. One can also
imagine a transformation operator that maps each basis ket into a different basis ket IN THE SAME
BASIS.

|[a2>=U]|al>, |ad4>= U|a2>, etc...

These are necessarily all rotations of 90 degrees. Such transformations are usually related to some
symmetry.

Other than our first application of unitary operators, most later applications will be of this type.
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D) Explicit forms for U

It is easy to see that we can make an easy representation of U in our ket-bra notation as

U=3m [bm><anm|



where |b,,> is the basis one may have the expansion of some vector |a> in, and |a,,> is the new basis.
(obviously we could replace |b> by any other orthonormal basis that spans the same space).

Also as with the matrix representation, such an explicit representation for a unitary operator only
applies to discrete kets. (discrete summation)

It is very easy to construct Ut and prove that UUT =1.

You see again, although U has the above simple form, to find the matrix elements of U in either basis
e.g.in |a> > <an|U|am> it will be necessary to know the expansion of |b>in the |a> basis, so it is
perhaps good to think of the above simple form of U as really

U=3m (2n [Cmln |an>)<am]

or something similar with only |bm><bn| outer products in it. Thus notice despite the original nice
compact form of U, we still haven’t magically gotten away from this problem of having to find the group
of numbers| c,,], to specify it.

Not to be confused with the completeness operator as described above:

1=3n |am><am| =2m |bm><bm|

E) Matrix Representations and U (see above diagram)

Hopefully I've convinced you that U acting on a ket will never just give us the expansion in another basis.
Neither will Ut . However you will notice that Sakurai seems to concentrate on something that sounds
similar: that

one can get the MATRIX REPRESENTATION of an arbitrary state |a> in the NEW BASIS by
multiplying the MATRIX REPRESENTATION of Ut in the OLD BASIS by the MATRIX
REPRESENTATION of |a> in the OLD BASIS. --(proper statement)

For example on page 38 he writes eq. (1.5.11): (New) = Ut (Old)

It is of extreme importance that you do NOT interpret this as

Such an interpretation isn’t at all true. In fact, we stated that |b>=U]|a> and |b>'s where the “new
basis ket’s”. So at best this relation would be “backwards” if interpreted this way. It can in fact only be
interpreted as my “proper statement” above. This is perhaps the clearest case that can distinguish our
“pneumonic” from the real matrix representations—it is something that only makes sense for the
FORMAL matrix representations of the kets, not for the kets themselves.



As long as this is clear, then | will finally state that, yes, there is something else we can use U for in
MATRIX REPRESENTATIONS, if we already have U’s own matrix representation defined, that is, all its
matrix elements are calculated. It is just what we started out saying about how the ingredients of U =2
U Were related to the expansion of |b> in the basis |a>.

So we can think of the “other use” as the inverse relation of this: if have the matrix element numbers
Umnalready, we actually have a convenient formula that Sakurai shows, for the projections of an
arbitrary state |a> onto the new basis states <b|a> in terms of the old projections, <a|a>

<b, I o>=3, U-'-nm<am|a>

Notice once more: it is nothing like U operating on |a>. The Ut,,.’s are indeed pure numbers — in fact
since matrix At = A™* we can actually write these numbers more explicitly as (Um)” (note the ordering
of the indices switched > >transpose). All we have really done here is taken our original expansion, bra-
ed it to the right, and then taken the c.c. of both sides!

As it is just the uses of the numbers Unm that Sakurai concentrates on, it should now be clear that the in
the sub section where he discusses how to find these numbers using the standard methods from linear
algebra, the point is not HOW one does it (since we should already know this from linear algebra), but
rather THAT one needs to do it, despite the convenient ket-bra sum explicit form that was already given.

F) Unitary Equivalent Observables

A and the operator UAUT are said to be unitary equivalent observables/operators. It does NOT mean
they are equal!!! If you are trying to diagonalize A then UAUT will be diagonal but there will be other
cases where will want to consider unitary equivalent observables/operators O where UOUT (nor O) are
diagonal.
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Lecture 1/29/2010: 1) Pset will be posted Monday—will include Sak 1.28 c¢. 2) Upcoming expanded
reading assignment by next Friday including Sak section 3.9 and 3.4 up to p. 181 (see website). 3)
Midterm:

Sakurai shows the following which seems not very useful ever in this course: but just to further clarify
its meaning, so as to convince you of this:

if Ala>=ala>
UA]a>=U ala>
and since UUT =1

UAUT (U]a>)=a (U|a>).



(U]a> also eigenket of UAUT )

U could have been be any such transformation operator to any basis, but let’s indeed choose to
transform to |bn> w/ operator B. Thus suppose U|a> = |b> so we have

UAUT |b>=a]|b>.
Thus | b> is an eigenstate also of UAUT. |b>’s were eigenkets of the operator B originally.

Sakurai then states that UAUT = B in “many cases of physical interest.” What are we to make of this
statement? That usually the statement is true? | think it’s better to say usually not.

The above statement that |b> ‘s are eigenkets of the operator UAUT is nothing more than the
following. Remember: how we already said we could write any such Hermitian B operator with
eigenvalues bn as

B =Y, bn |bn><bn]| ?
Well by the same logic we can make arbitrary diagnonal operators X with the same form
X=3Y ,xn|bn><bn|

These operators X will have the |bn>’s as eigenvectors and eigenvalues x,,. (think of the pneumonic
representation—the |bn>’s are just unit vectors (1,0,0..) and X is any diagonal matrix).

Thus in effect that’s all we’ve done here by finding the diagonal form UAU+
UAUT ==5,an |bn><bn|.

Two points that are demonstrated here: 1) it is clear that only if the an’s equal the bn’s will B= UAUT .
(eigenvalues same). There seem to be many such operators that don’t have the same eigenvalues (any
other observable!) and thus diagonal operators we can imagine that AREN’T equal to B (any X which
has different xn’s) this is why my statement would be that they are usually not.

G) Diagonalization
If we want to USE diagonalization to solve a problem, the general procedure is as follows.
General Procedure:
1) Find U (using LA)
2) Rotate States/Operators with U (actually states go w/ Ut , basis vectors w/ U)
3) Do Calc’s etc

4) For many things (e.g. modified states) MUST ROTATE BACK ( Ut/U )a



le it’s good to think of these active rotations as being applied temporarily in the case of diagonalization.
For other uses of U this won’t be the case.

G.1) Points to remember when diagonalizing:

If we wish to do any calculations related to B, unless we want to also form UBUT which will NOT be
diagonal, UAUT is NOT a stand-in for A!l!! in the space of |b> --

E.g. Question 1): if we want to take the product AB in the basis b, can we just multiply the two
diagonal operators , B and UAUtT ? NO—in the space of |b>, A # UAUT If we wish to take the product

AB - (non-diagonal) (diagonal) = nondiagonal
=UAUt U B Ut - (diagonal)(non-diagonal)
=U(AB)UT - non diagonal

Question 2): If | specify for you the state of the system as | a> (say | give you its expansion in some
basis |a>) and you want to work in the diagonal basis,, does the transform of the state, U|oa> still
represent the same physical state? In some sense but remember:

This is a rotated state: 2 NOT the same state.

In fact you should form U|a> (as long as you always form UOUT for every operator O) and indeed
while doing your calculations it does represent the same state. But when the calculations are done
you need to rotate back. Thus it is really like a temporary rotation, which is always waiting to be
rotated back.

Concrete example: If system is in state |a> =|Sz+> and one wishes to diagonalize into the basis where
operator Sx is diagonal (|Sx+>), then the U we want is such that U|Sz+> = |Sx+> - U|a> is obviously
NOT the state we are actually in . So when doing calculations it may be helpful to form U|Sz+>, but
when the calculation is done, if we still wish to to describe the same state we have to transform it back.
Thus all we can do further that is helpful in that case, is to expand |a> = |Sz+> in the |Sx> basis:

|Sz+> = U,. |Sx+> + U, |Sx->. where U.x ~ {t 1/V 2} ie numbers.

In effect all this means is if you transform a state during a calculation, any results of the calculation
must be transformed back into the original basis.

For diagonalization: | said “you do not want to form the state U|a > and expect it to represent the
physical state”. For diagonalization: you may form U|a > and indeed do calculations with all operators



transformed as UOUT --in this sense you CAN in the diagonal space only think of U|a> representing
your state.

e.g. expectation values of O in new space will be
<a|U (UtOU) Ut|a> -> invariant of U “rotations”

However if not invariant quantity like the expectation value (ie in general things aren’t) -- you must
transform back when done w/ calc..

E.g. calculation finds state changes in diagonal representation from U|a> = |B’> (define as = U|B>)
Real new state is NOT now Ut |B> but must be transformed back U |B > = |B>
Just as original state is still|a> not U|a>

This is what is meant by diagonalization is passive rotation = always transform back (ie we never
changed the state—just exanded it in different basis)



Add example here: 3-D? 2 pset examples. Better examples for time dependence...

IV Position And Momentum In the Formalism
Introduction

Sakurai sections 1.6-7 tells us how to fit wave mechanics into our bra-ket formalism. The key point is
that the basis we will use for the position operator |x> will be our type of continuous kets.

One thing we never discussed: was summing up probabilities for multiple eigenvalues. We said our
measurement probability for discrete or continuous kets would be

P(a,) = |<aq|oa>|?

First though consider that by definition the probability of getting one of a group of an values (3,4,5)
would just be the sum of all probabities.

P(a)) = |<as|a>|*> P(anone of {a3, a4, a5}) = 3 r3t05 |<an|o>|?
Actually this statement we need to clarify slightly for continuous kets |§>:.

For our continous kets, just as we initially defined them, to make linear combinations of these we need
to integrate over our basis labels: e.g. for some random | > (like |a>)

| > =Jc(§) d€ |§>

where obviously by completeness c(§) = <§| ¢ >. In this expression we never specified what the
integration limits ? were: they could be over any range of § in fact, even + oo (o e. g. completeness).
Suppose |§ > is an eigenvector of some operator s : then it should be easy to guess that when trying
to find the probability given a state |$ >that € will be is in some range £ 1 - £ 2 when measured, we just
integrate the over that range.

&2 &2
P(§1 < € < £2) =L (&) 2de =L < pl¢ >[2d¢
1 1

A) Position Operators and Eigenkets
For position : we will formally define the
position operatorin 1-D: x

and



—its eigenkets: as continuous kets |x>.

Thus all of what we described as § will apply for x: Reminder: all the definitions/rules apply except
with an integral sign, in place of summation such as completeness.

A word about completeness: In fact we_postulate that | x> forms a complete basis, which certainly
makes sense: considering that we allow all x values from +/- infinity.

However one might wonder as per our statements regarding the fact that as continuous kets |x> has an
infinite norm and in fact we said that the ket |x> by itself is not a proper member of a genuine Hilbert
space, whether this is “technically true”. (infinite norm—->not proper Hilbert space members?) -

The answer is yes: the eigen-differentials we discussed that where the actual Hilbert space member,
must satisfy a completeness relations, and we will assume that this completeness relation can be
rewritten | |x><x| dx

Note that since the operator x should have only real eigenvalues, then by definition we must force it to
be hermitian. x=xt

Following our expression for probability of continuous kets, having in mind the probability for the
eigenvalue x to be found in some range (x1, x2)—we know the expression will be

x2
P(xl1< x<x2)= f lc(x)|?dx’

x1

were |¢(x)]2 = |<x]a>|? if the system is in the state |a>.

Looking back to our wave mech review we can see that it appears that the projection of |a> on to the
ket |x> must be the wave function (x) from wave mechanics!!

<x|o> =Y o(x)

If we like, we can extend the concept to 3 D:, defining such operators for each space dimension, x, y, z.
These will have the same properties as for x (e.g. hermitian)

We will say these three operators are all inter-compatible so they commute [x,y] = [y,z] =[z,x] = 0.
Thus they will have simultaneous eigenkets, |Pos>
X|P0os> = Xpos | POS>, y |POS> =y,0 |POS>, z...

which would naturally be infinitely degenerate! for each value of 1 dimension (in the other 2
dimensions for any value for the 3™. ( Now one will note our discussions of degeneracies so far were
only involving discrete kets. We won’t discuss resolving continuous ket degeneracies. )

Thus we will label the 3-D ket |x, y, z> or better | X>.

The 3-D wave function will then turn out to be the—> projection of the state |a> onto this 3-D ket.



<Xa> =Y (%)

Because we will obviously want the probabibility of particle to be located in some 3-D range {x1, x2: y1,
y2:z1,z2} as a triple integral

X2 ry2 22
j f dz'dy'dx" |< X|a >|?
x1 Jy1 Jn

It is important (!) to realize that the 1-D x eigenket | x> is very different than the eigenket |x,y,z> even
though both e.g. satisfy the eigenvalue equation.

x| X'>=x|x> & x|x\y,7>=x|xy,z'>

Matrix Elements of Position Operators, and Functions thereof:
Remembering our norm for continuous kets: <x|x’>= §(x-x’) it is obvious that the
Matrix element of x: <x|x|x’>=x" 6 (x-x’)
which say means that it is “diagonal” just like if <n|A|m> = A6 mn.
Similarly any operator which is a function f(x) of only the operator x (and no other operator)
has a matrix element (in the position (==|x>) basis !)
<x|f(x)|x">=f(x") 6 (x-x")

With this and in order to review many points at once, consider the general overlap integral expression
for our expression of the projection of one ket state onto another (the inner product):

In our wave mechanics review we said this projection of state a onto state B was given by the integral
[ax ga*(x) g (x)

Now it should be clear that in ket-bra notation, this is exactly what is implied by the expression <a|p>.
So suppose |B >

<a|B>where |B>=f(x)|B > = ????? = [dx P *(x) f(x') Y 5 (X')
We already described this integral in the wave mech review and described it as what <a| B> implies:
Q: Why? (<a [f(x)|B > =<al ([ f(x) [x><x|B>)

Question: what is the expectation value of x in a position eigenket?



Lecture 2/1/2010:

Concrete Uses of Diagonalization Here is an example of the steps | outlined previously for using
diagonalization (ie transformation operators etc...)
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In this second example imagine we have a physical process that is represented by the operator K
which projects into the eigendirection of |b,> This could be like as in a measurement of a third
observable that resolves the degeneracy btw 2 and 3.
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Also concerning our discussions about unitary operators and diagonalization: remember we said Sak.
introduces the explict U=5,, |bn><an| form of U emphasizing its nice property of it being very easy to
see why UUT =1,

Another easy way to explicitly create a unitary operator (which will work for both discrete or
continuous ket spaces) is to consider the following form of an operator

exp[tiA]
where A is Hermitian. exp A is shorthand for the taylor expansion of exp(x)

expA=1+A+A%Y/2+..



And it is easy to see that these “exponentiated operators” obey our normal expectations for
exponentiated numbers. e.g.since exp(-A)=1-A+ A2/2+...

exp(-A) exp A= (1+A-A+ A —A*A+..)=1

It is easy to see therefore that (exp[*i A])T = exp[FiA] for as long as A is hermitian, we only need to
take the complex conjugate of i. And thus we have the required UtU = 1.

For problem 1.28 you want to do an expansion like this, and simply apply the following commutation
relation [x,p,] =ih which we will prove early next week. Purely algebraic problem you can already do
using these simple algebraic relations. (another hint—start with finding what [x,p,] = ih implies for

[ px")

B) The Translation and Momentum Operators

In Sakurai 1.6 we see the first of several instances of introducing important operators through the role
they play in very fundamental Transformation Operators 7 that we discussed in the last section.

How fundamental? These Transformation Operators will always correspond to some symmetry of
space-time itself!

In this case we will introduce the momentum operator = through the fundamental transformation of
Space translation:

Comments: Notice that in choosing our definition of base kets | x> we considered any no certain
situation, like in the case of spin, where we had the results of the SG experiment in mind. Thus as is
implied by their simple labels they should somehow be dependent only on the properties of space
itself, not e.g. of any particular energy configuration or Hamiltonian.

As we can move around in space, we expect there to be a 2 unitary transf. operator that can take us
from one location’s ket |x;> to another | x>

In ket space this is a rotation of (Q how many? 90) degrees in 1 special direction. In terms of the real
space we can consider this a >translation:

if Xo-X, = a (some constant)
then we will call such a translation transformation operator T;, so that we have
|x2> = [x1+a> =T;, |x1>

Suppose we consider a T which does the exact same translation operation for any value of x: T >
T(a), not just |x1> > |x2>.

If this is the case, besides automatically needing this to be a Unitary operator (as all such transformation
operators must)



THT=1
we expect (require!) this T to follow all our intuitions about translations in space:
1. Successive translations: T(a)T(b)|x> = T(a+b)|x>
2.) Inverse same as opposite direction translation T(-a) = T*(a) = Tt(a)
3) If the translation a = 0 it should become the identity operator lim,,T(a) = 1
Especially because of 1 we should immediately think of exponentiation : 2°z°= z***

And indeed the other 2 requirements along conveniently with the unitary requirement all at once with
an operator of the form we discussed last time:

T(a) = exp(+ ika) where k could be ANY hermitian operator!

We will choose exp(-ika) -- reasons will be obvious

Lecture 2/2/2010

Although any operator k will satisfy the necessary properties (1,2,3 and Unitarity) we want of the
translation operator, something else special will be required of how the operator k acts on the position
kets | x> in order to actually accomplish the real ket translation we want:

|x1+a> =T(a)|x1>

All that’s required : for this however is that k must obey the following commutation relation with the x
operator:

[xk]=i

That this commutation relation works is proven in your homework (we will prove later that k o p.



That this commutation relation works is proven in your homework (we will prove later that k o< p), but
let’s mention how Sak proves it. He considers infinitesimal translations T(€)

»m

Remembering “dx’” is just a number! | prefer to use the more usual convention for such a small

number—>€
see that exp(ike) in that case can just be reduced to
T(€) = 1-ike

since we can ignore any term of order in epsilon of € ? or higher in comparison to € itself. This is
extremely convenient—any time we see a term of € 2 or higher we can simply cancel it immediately.

Further, we see that our posited commutation relation [x,k] =i will imply that
[xkl=i =2 [xT(e)]= €
Q why?
Using these we apply T(€) to |x’> and operate on it with the position operator
X (T(€) |x">) = (T(e)x + [x,T(€)]) | x>
imagine if [x,T(€)] = €
= (T(e)x + €| x’>
but to this we can add any term « €” without penalty=> do so, in the form of ike?|x'>
=~ x'T( €) + e+ ike® |x’> = (x+€) [X'> +iek [x'>
=x'T(€) +€(1 +ike)| x>
= (x'+€ ) T(€)| x>
Notice that it is such a manipulation that justifies line Sakurai 1.6.24:
[T(€),x] |X'>=€ |x+€> =€ |x>

Not some kind of Taylor expansion of |x+€> : One cannot Taylor expand one basis state in terms of
others!!!

Q: Why? (operators OK, not orthogonal kets)

So we have what we set out to get—

X(T(€)|x’>) = (x'+€) T(e)|x’> thatis, T(€)|x’> is an eigenket of the operator x, with eigenvalue (x’+€).



Thus it must be what we call the ket |x’+€ > or at least proportional to it. (ie T(€)|x> = const *|x+€>)
Apparently following Sakurai we will choose this constant to be 1 (remember we already said these
kets have INFINITE NORM anyways). And thus

T(e)|x'> = |x'+€>

SUCH A CONCLUSION WILL BE USED MANY TIMES IN THIS COURSE—GET USED TO USING IT! : if we have
B (A|b;>) =b, (A|b;>) we will always say A|b;>must = c|b,>where cis some numerical constant.

Our translation operator does what we wanted. So you see it is just a simple algebraic relation that
allows for this.

Why k is proportional to the momentum

It turns out that we can identify k as being proportional to the momentum of the particle. To see how
this comes about, it is instructive to observe its matrix element

Look at the wave function of the state
[a/>=T(€) o> 2> <X |a'>=Py(x)=<x]| T(€) o>
<x'| T(€) o> = <xX'| T(€) |a>
(2-side Parallel)
LHS: By our properties of  T(€) = Tt(-€)
=[<xX'|TT (-€) ] |o>=<x-€|a> = Py (x-€)

Taylor expansion in €

(') — %L“D[Ir::l E . -
For RHS:
T(€) = 1-ike > T(€) = exp(-ike) = 1-ike+1/2 (ike)*+...
So we have <x’| T(€)|a>

=<x'| = 1-ike+1/2 (ike)*+...|a>

{r'|a)y — i{z’ F:|r1}-5_ !



Since this equation is actually true for all € (Taylor series exp(x+a) converges for all a!), then like our
wave mech review, we can set term by term the RHS = LHS which yields

|1 ' g -l §r
(a'|kla) = —igzale’) (= —igs(a'a))
This is a simple relation that IN WORDS says NOT that k is -id/dx’, but rather that its action of k
changes the state ket such that the
new projection is d/dx’ (old projection)

This is perhaps a fancy way of saying we do NOT say k # -id/dx’ in above expression, because <x’| k # k
<X'|

So we know what k by itself does to a ket, but to make the full identification with momentum we
consider again the general overlap expression: where

we bra- the k’ed state ( think of | > =k|a>) with another arbitrary state <B|

( = [dz’ (Bla’)(2'| k|a) = [ dz’ ¥j(2') (i 55) Yal2’)

da’ (') (—ihgs) Yalz')
Thus we see from our comparison to wave mechanics relation (=) that it is obvious that (-ii d/dx’) is
what we called the momentum operator in wave mechanics.
Note this is the wave mechanics relation you will want to use for problem 1.21.
Thus we have that
action of 'k operator (ki) in formalism 2 action of p (D, qve mecn) iN Wave mechanics
Thus by” equality of action” we can identify
h k= p = Pyer(meaning ket operator p )

Warning again: NOT that Pyet = P wavemeech = (-ift d/dx’) rather just that projection of p operation is
same.

By this logic we can see better why the constant i must appear as the proportionality constant in p « k.
It is from all of the considerations of wave mechanics, primarily the original “quantum” statement of



De Broglie: 2 /A=p/h=k
We also see that k itself should just be the wave number operator.

My main point is Sakurai first just STATES that k = p/h (and gives a reason that | do not agree with—see
below--why it makes sense from the point of view of classical mechanics) then shows that the above
action of p (< action of wave mech d/dx) is a simple result. My point is that we can borrow all of De-
Broglie’s and other wave mechanics arguments for why the i should appear at all, if we first show that
there is this operator k that has this action, and then “match up” the action with momentum from
those arguments.

Three dimensional momentum/commutation

Above was all for 1-D.

We can define a corresponding momentum operator for each of our 3-D position operators
DY, P22

pi = xi (index notation)

Because translations in perpendicular directions commute, we expect that the

pi’s also all inter commute like the xi’s.

[xi,xj] = [pi, pj] =0 and also that

We already specified the commutation relation for each xi,pi - pair, but for the same reason, that
translations in perp directions commute, we also expect that

[xi, pj] =ik &;
Digression:

Definition 1: since all [pi,pj]’s inter-commute, and these are the called ‘generators’ of the group of
translation transformations in 3-D, we say that group is an “Abelian” group.

Definition 2: See in group theory when you have a group of transformations which can generally be
written exp(iA) then Ais called the generator of the that group.

More generally, (though not really accurate to do so) “Abelian” usually implies that any sort of
commutation relation holds, while “non-Abelian” will imply some sort of non-commutation.

QCD, the quantum field theory of the strong interaction is a “non-Abelian theory”



Lecture 2/2/09
Review
reading assignment Sak 2.3 up to time dev of the oscillator.
Question : True/False in the bra ket formalism is the operator p is -ih d/dx?
For example, in Sak. 1.29 the relation: Sak 1.29 [p,F(x)] = dF/dx or [x,G(p) ]
- you may remember from wave mech: [introduce “test function” p,avemech = ihd/dx]
The action of p => ihd/dx NOT pket = ihd/dx
continuint from last time we said:
[xi,xj] = [pi, pj] =0

We already specified the commutation relation for each xi,pi - pair, but for the same reason, that
translations in perp directions commute, we also expect that

[xi, pj] =ih &;

Relations to Classical Mechanics /Commutators
Sakurai tries to justify k = p/h as a “trick of language”

generator <-- > generating function

4

The language makes sense especially in this case for because somehow in this case p/h is “responsible
for the translation action.

But | do not think Sakurai’s analogy to the classical mechanics “Generating Function” is very intuitive.
See my comment in the optional reading. Just because they share the same root word “generate “
they are not very alike.

Contrived: means not something that would happens natural: but artificially prepared.

Comment: Often authors try in this way to point out similarities between Quantum and Classical
mechanics as if to “it had to be that way” or “one can actually derive” Quantum Mechanics from
Classical Mechanics” (?). But this is not really the case.

It wasn’t by observing these classical expressions and then magically forming the “quantum” equivalent
and they saw it worked. No itis the other way around. We had to construct the quantum theory and
all it’s weird conceptual implications first, with only very loose relations to classical mechanical
concepts. (for example one loose relation that was used is to “insert” i ‘s in a way that in the limit of &



- 0 we recover classical behavior -- already mentioned in the review). But in general, this kind
“searching through” classical relations for analogies came afterwards.

Point: Often (~50%?) analogies to classical: “artificial”/not rigorous/not useful
Exceptions:

1) Usually though, such analogies are at least useful for remembering one (e.g. the classical) if
you already remember the other (e.g. the quantum).

2) HOWEVER: One relation to classical mechanics that is worth mentioning is that there is
indeed a similarity btw/of the classical mechanical “commutator” defined as

[A;B]classical = dA/dq dB/dP - dB/dq dA/dp

Which indeed plays many analogous roles to our what we will use our commutators for in Quantum
(and we will see more).

Thus obviously the classical commutator is indeed
[Xi:pj]classical =6 ij

The reason that the classical commutator will seem to have so many similarities is exactly because its
algebraic properties--it has the ->same algebra as the commutator.

3-D Momentum Operator: Gradient ---------

Another nice feature of the exponential form of our translation operator is it handles the 3-D
translations automatically as a dot-product.

Review: Thus if we want to make the vector translation in the direction €” .
€ = (€1, €2,€3)
we need/want the product of three orthogonal translation operators

_ipi€1 _ip2€p _ip1€1
e h e h e h

because we can think of 3-D translation as 3 successive translations in each directions—further we must
be able to rearrange the order of the translations freely since that is how real translations work--now we
see why we must have [pi,pj] = 0.

But this can be nicely written as

=exp (-ip-€/h)



We can go through the same proof as before for each component separately (T(€”)~1+ip - €/h)
and prove that the matrix element <x” ‘|pjla > = 9; <x”” |a>.
Thus now three operators implied by<x| p” |a> = ih V <x~ |a>

Things follow straight forwardly in 3-D: e.g. Problem 1.29 3-D: point of this problem: 3-D.

Went over in class:

The Momentum Basis

Now that we’ve introduced the p operator, and derived a way to represent 2 its effects on a position
basis kets. (Wave Mech)

For the formalism, it is more appropriate to discuss the momentum operator as we have every other
operator so far: in terms of its own eigenkets. Indeed we can write one

Dwvnamical vanable p «— operator p. Basis p|lp') = p/|p"}

it is a continuous ket also

Vector |a) = [dp' [p'}{P'|a) J(#|a)|*dp’ = probability p € ¢/, ¢’ + dp

Wave function in momentum space $,(p') = {¢'|a)

since <p| o> is expansion parameter it automatically implies probability.

Take projection on to | x> basis:

(z'a) = [dp {='|p} {p'|a)
o,
1-
Two ways to view :

1) wave function of p operator eigenket (actually “eigenfunction” —defined later...)

2) * interpreted as transformation "matrix" from |r'}-basis to |p')-basis



...our transformation matrix element, remember: was Umn = <am|U|an> = <am|bn>

“Continuous Eigenvalue Analysis:” (find matrix element numbers: <x|p>)

Since {¢'|p|p") = p'{2'|p"} and, using eq. (3], the LHS can be written —iﬁ.& {r'|p") and one obtains
the very simple first order differential equation

—ihgh ('|p') = ¢ (='|P)
with the solution {z'|p"} = N exp (ip'c'/R), where N = 1/+/2xh from the normalisation condition.

This 15 the plane wave obtained without solving a second order Schrodinger equation!
Our expansion can be written:

Yule) = N [ dpf /%7
which is the Fourier expansion of o {z') in eigenfunctions N e®*/® to p. The wave function of
|} in p-space 1s
bo(p) = (Pla) = [dr (p'|2){z|a) = N [de’ e Ry, (o)

i.e. the Fourler transform 1s contained in the Dirac formalism.

== = end of lecture 2/2/09




Lecture 2/3/09

Midterm: Mon 2/16 Not sure if in class or in evening — maybe start early in class?

The Hamiltonian Operator, Eigenfunctions, and Discrete Eigenfunctions

In our formalism with the introduced Wave functions already, where do eigenfunctions themselves
generally fit in? Remember these were a (key part of wave mechanics.)

In general if we have another operator like p, and we take the wave function of an eigenket of that
operator, we will call this a special kind of wave function: an eigenfunction

For p:

T’ | p"
‘h—.\’.—ﬂ’

This is the eigenfunction of |p’>.

However, we remember that usually in wave mechanics we have a discrete set of eigenfunction
solutions. How does this fit in our formalism?

The main point comes from the beginning of Sak .1.7. We assume that in our bra ket formalism that
the same space the contin. kets span (the cont. ket space) can also be spanned by a set of discrete kets:

Discrete set is complete. (Note: Remember discussion of |€> (|x>,|p>) not being members of the
Hilbert space themselves, only their eigendifferentials are—[x [ |x>dx ] (see Messiah)—it is that space
[the eigendifferential space] that we are talking about, that is also spanned by the Discrete set).

Thus we can expand a single basis ket |x> as some sum over some other discrete observable A
[x>=73 |a><a|x>
Most important example-- Define Hamiltonian operator
H=p2/2m + V(x)
(same form as classical mech energy -- same as our wave mechanics)
But now however note that these operators can also be interpreted as our ket operators p and x.
le we do not imply h2 d/dx2 + V(x).

Thus if H eigenvals are discrete, eigenkets/eigenfunctions of H are discrete



Concrete example: Particle in the box:
With our knowledge of the wave mechanics solution (pset #2 : Sak 1.21), we know that

H has a complete basis of eigenkets |h,>.
where hn = En = i 2 n2/(2m a2).
Thus we can expand any arbitrary state |a> in terms of this basis

=3 |h,><h,| o>

By taking the projection of this expansion on the position basis ket | x>
We see that this is just an expansion of § =5 ¢, uUn(x)
where ¢, is still just the number <h,|a> and u(x) is what we call the eigenfunction u,(x) = <x|hn>.

Q: How did we know that there was this discrete set of eigenvalues /states? EXPERIMENT: the same
as for the SG experiment!

With wave mechanics we can derive that this discrete basis of kets exists and know what the
eigenvalues are

thus = from this standpoint, wave mechanics is actually generally more powerful than our formalism.
(It however requires advanced calculus.)

However remember formalism already includes Wave mechanics through the relation.
<x|p|a> = ihd/dx <x|a >

Also: it may not be impossible to derive these eigenstates strictly within the formalism however,
meaning without having to resort to wave mechanics. -> strictly algebraically based only on
commutator algebra. We can do this in some cases. (In all cases? Who knows? We do have an lot of
freedom in how we may define the Hamiltonian with ket operators.

For the case of the simple harmonic oscillator in this weeks pset, you will see that we can derive what
the eigenvalues are (and thus define the kets) purely algebraically using the operators themselves, just
assuming only that they do have some ket. (ie using ket’s formalism only)

Simple Harmonic Oscillator (SHO)
Most important problem in QM. Why?

1) One of the only practical problems that is exactly solvable.



2) because the annihilation/creation operators and algebra provide the basis for Quantum
Field Theory.

Start by first discussing these op’s:
Suppose two operators a, at who have the following commutation algebra.
[a,at]=1

(hey not very different from [x,p] = ih = and same as classical commutator!)

Then immediately we have

Tot dla = —a = L& en, «

which is to say if we define an Operator
N=ata
that has eigenbasis states |n,> such that
N|n,>=n,|n.>
(Let’s just call it n, the same way we call A|a>=a|a>)

Then playing same game as w/ translation operator, we have the following interesting relation

W oa iy = (o M=) Ry=(amd 2l
M &0y = | Catm s ab)n> = (g aF AR>S

aN+[N,a]
PURELY derived because of the commutator algebra:

Which of course IMPLIES:



a|n> is eigenket w/ eigenvalue n-1

at |n> is eigenket w/ eigenvalue n+1

So if we start with any eigenstate |n> we can always “generate” a new state |n-1>

o-lwy = Cpln=
Tl pre @U..._..pr o €y e“'&ﬂfm—l-t_

mE L eln) = Lonlaly > o

ALWAYS for all n (we require this to be so—because we want only positive definite normalizations)

a called “annihilation” operator. it “kills” |0> and always decrements n

at called “creation” operator . it cannot “resurrect” a killed state (a"|0>) --“creation” bad
term?--but it always increments n

Actually the reason for these terms is because we think of each increment of energy N as a
excitation above some base state |0>. It is also part of general quantum thinking (e.g. including wave

mech) to think of any discrete excitation as a particle. In this case the particles would be called phonons
of the SHO.

In Quantum Field Theory (QFT) the situation is generalized for ALL REAL fields, e.g.
electromagnetic or particles. In place of our momentum states in this class | p>, we construct new basis
states that carry an “number of particles” for a given momentum—> |P>= |p>|n>. E.g.fora
propagating free electromagnetic field, n is the number of “photons” with momentum |p>. In exactly



the same way, n could be the number of electrons if the state describes electrons—and conversely
electrons are thought of as just excitations in a some global “electron field”.

Now we’ve established that N has eigenvalues that are

- chosen as integers

-and as only positive
At least most conveniently—otherwise we need new postulates...
Why is this relevant?

Of course we know the answer already for the SHO. It’s because our Hamiltonian for the SHO is can be
written in terms of the N operator only—ie with no other “non-trivial” operator. Done by forming
linear combinations of x,p that satisfy the above requirements for a,at

But before we show that...

DIGRESSION:

Neat: Note that we don’t even need to consider any Hamiltonian at all really.

The above actually works for ANY linear combination of x, p that fulfill this algebraic requirement.
Q: what’s the most trivial example, thinking of [x,p] =ih ? = [x,p/ih] = [x,k/i] =1.

(using a’ so as not to confuse w/ SHO a) Thus if we can simply define a’ =x, a’t = p/ih, N’ =xp /ih

Means instead of our continuous bases, |x>,|p> we can always define a discrete basis of the operator
xp /ih

What is this operator ? |1 don’t know. It almost looks like a reasonable observable (pos*mom), but it
probably isn’t. In fact it almost looks like angular momentum is L = x x p = €jxip; but it’s o< xip;

Who cares! point is we always can define at least one operator who has a discrete eigenbasis spanning
the same Hilbert space as our |x>, | p> basis

END DIGRESSION
OK so now back to the SHO. (FINALLY!)
First define it: what is SHO?
Answer: a system with the following Hamiltonian:
H=p?/2m + V(x)= p*/2m + mw */2

(ie V(x) = x2 remember w = V(k/m) so that Force = dV/dx = -kx)



Immediately we see a2-b2 -» think of perfect square (a+b)(a-b) (remember a2+b2 =a2 - (ib)2)
Problem set: define an a,at in terms of x, p so that we can write H above in the form
H= K(ata+aat)=K(2N +1)
So H commutes with N obviously—> same eigenbasis
And K works out such that energy eigenvalues are H, = E, = Aw (n+1/2) Ground state--lowest E = hw/2

H is an observable quantity in this case obviously!

Lecture 2/4/09
Reading Assignment Sakurai 2.1.

Reminder Midterm : 2/16 Info/times/format TBD.

-Yesterday introduced discussed Discrete Bases that span same space as |x>,|p> bases. (note there is
some technicality regarding which space we’re talking about since |x>, |p> we said themselves weren’ t
part of the space).

-Introduced Hamiltonian

-Two examples of 1-D Wave Mech problems framed in terms of formalism—both 1-D box/SHO—
discrete basis of Hamiltonian operator is more convenient to work with.

Using the Position/Momentum Basis in the Formalism

So we see that the first, “most important” application of using the p, x operators avoided using the |x>,
| p> basis at all! and preferred switching to a discrete basis.

Generally true for all Bound State problems in Wave Mech.

For what are the position / momentum basis states useful ?

Answer 1) Approximation Schemes

The momentum basis will be most useful for approximation schemes especially particle scattering
applications/approximations.  Exactly solvable results not usually encountered in real world.
Approximation schemes are necessary.



Notice two things about the Hamiltonian: H = p*/2m +V(x) =T + V(x)
1) Obviously with V(x) =0 The momentum basis is also the basis of the Hamiltonian.
2) We should usually be able to approximate potentials V(x) as some sort of series sum

Most obvious such expansion =2 V(x) = V1(x) + V2 (x)+... like Taylor expansion where other later terms
are relatively smaller and smaller, so we can drop them.

Separable Potentials

But we can also do expansions of a kind that is more convenient towards using a particular set of basis
states:

Following the idea of making a general operator out of ket-bra outer products (e.g. we said in it’s own
eigenbasis an operator A has the form 5 a, |a,><a,|) it can be useful to approximate using arbitrary
potentials in the form

V = | g>hg <f|

Where ,g,f can be some state, which can of course be written as linear combinations of basis states,
possibly momentum kets |p> or position kets |x> and A is some number.

Potentials are called separable if they can be written as a combination of such terms (e.g. most
commonly a discrete sum )

Vsep = 2kn | k>A (n<n|
| think that word is used because it acts on each combination of basis states ”separately.”
A convenient choice for these could be the momentum basis states

Jdpdp”  [p>Ap<p’|

Why ? Because then the entire Hamiltonian including the p2/2m operator (sometimes called T) is
entirely composed of operators which act directly on | p> basis kets !!!

YESTERDAY NUCLEAR SEMINAR: EXACTLY ONE EXAMPLE!!!
DIGRESSION: Why momentum kets instead of position?

Greater question: Perfect symmetry between p, x? PSET: The Position Operator in the | p> Basis—
also fulfills derivative relation

<p|x|a>oc d/dp (<p|a>) = dd(p)/dp

So everything looks very symmetric.



Answer: no generally because of free Hamiltonian “preference” for p operator. p is likely the usually the
preferred basis (in lieu of exact Hamiltonian basis).

Actually for separable potentials, it is actually usually angular momentum basis states.

end DIGRESSION

Perturbation Theory:

More generally there is perturbation theory which we will not discuss this quarter. But we discussed it
during the Wave Mech review (please go back and take a look)—its generalization in the bra/ket
formalism should not be hard to imagine.

For high energy scattering problems, it is most convenient to treat the “base Hamiltonian” as
Ho= p°/2m =T

and because by assumption the T = KE is so high, treat the entire potential V(x) as a perturbation. Thus
again the base states you want to start w/ for Hy are obviously the |p> states.

The main difference between Perturbation Theory though is that PT is a full expansion of the STATES of
the full Hamiltonian, in terms of the states of the base H, not just an approximate expansion of the
potential.

Answer 2) “Artificial” Construction of States

Another reason |p>, |x> basis useful is it’s easy to construct arbitrary states using them—through the
wave functions themselves. Sometimes we may not know or care what the Hamiltonian is, but we
have a better idea how to describe the state in terms of the |x> or | p> states.

Examples:

-Suppose we know a particle is localized to some area
- Suppose we know its momentum

This is especially useful for the question of initial state.

Remember question: What is the state of the particle before it hits the SG device? Spin states may
not be determined, but there is also a momentum/position state for the atom: this we do have some
idea how it should look.

A) it has some fixed momentum. (this has to be tuned right to “see” the splitting due to spin)
within some uncertainty range



B) it has some fixed position (changing w/ time) (this is what allows us to say it is going through
the SG device)—within some uncertainty range.

This is demonstrated in this plot:
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DIGRESSSION:

CENTRAL LIMIT THEOREM (CLM): (classical thinking, not just QM) for some derived quantity
(Observable) F(a,b,c,...), (F depends on a,b,c...) no matter what the probability distributions of a, b, c,
inputs are, the probability distribution of F will always tend towards a Gaussian.

POINT: All uncertainties/experimental errors tend to be Gaussian because they are usually due to some
many microscopic inputs.

end DIGRESSION

Thus following the example set by the CLT we may reasonably assume it’s also true for x,p in SG. Thus
the following construction works very nicely to describe this situation:



Gaussian Wave Packets

So just CONJECTURE that the state initial space state for the SG looks like this:

> — ""'"'C N — ZE,
< e . .
W o) — .-" i', v""n S

=definite momentum eigenstate exp(ikx) “smeared” around x = 0. (by this choice we have put our x
origin @ 0)

Called a “PACKET” (group) of x states. It has a Gaussian form. (o< exp(-x%))
Has the right form for P(x) then because
P(x) = P * <a|x><x|a > o exp (—x*/d?)

We would choose d according to the box size. So we are PICKING the form of the WAVE FN first! This is
what | mean by “artificial”. Not any operator or eigenket that the state might be related to. Could |o>
be the eigenstate of some other observable? Who knows! Is it a Discrete sum over eigenstates of some
other observable? Who knows!

Actually we will show that the SHO ground state has this form.

Now the NEAT property of this state is that we already said

P L [ T |
{z'|a) = [dp' {&'|p) (p'|a}
w‘l
L3
bul') = N [ dp! /5 &, ()
which is the Fourier expansion of v (z') in eigenfunctions N e#=/* to p. The wave function of

|} in p-space 18

bo(p) = (pla) = [do (p|2')(x']a) = N [ de ¥ Py, ()

i.e. the Fourler transform is contained in the Dirac formalism.

DIGRESSION: Remembering Properties of the Fourier Transform (FT): The FT of a Gaussian form, is
another Gaussian form.

FT(Gaus(x)) = Gaus(p)
FT(Gaus(p)) = Gaus(x)

end DIGRESSION



Thus for our artificial state |a> It's momentum wave function must also be a Gaussian in p:

Form is given in Sak. eq 1.7.42:

- T2
10 = (1 exp[[ERA4
= ¥
{f fe Pl Ew
Obviously this is a state with mean value p = “hk” but with some uncertainty around it.

Why? because we can just read the value off From “Wikipedia: Gaussian distribution” Gaussian of x
has form:

1 (z — p)?
o/ 27 P 20

where 6,°=<Ax*> and p=<x>

Thus matching symbols , by inspection, <p>=hk

Our probability distribution P(p) = <a|p><p|a> « exp( -2 (p-hk)* d* /2h?) so
<A p>> =h?/2d?

NOTE THAT SAKURAI DERIVES THESE USING THE DERIVATIVE FORM OF p in sect. 1.7 - ie w/ wave
mechanics. YOU SHOULD BE COMFORTABLE DOING THAT TO... (YOU MAY WANT TO PRACTICE). E.g.
<x>=0is easy to see: because exp(-x* )* x odd

Anyway, the conjectured form of |a> fulfills what we want expected for our SG experiment. And
actually even predicts something: based on the input requirement for the distribution of x we see what
the P(p) of p must look like!

Note about Uncertainty Relation

While we’re add it let’s read off uncertainty value for <A x2>

> B '“""'C N — ﬁ,
J-f ,a—"'1 .
W a(x)= V-—\. -

P(x) = P *P <a|x><x|a > o exp (- x*/d?)

So it must be just = o = d*/2.



