H) Simple Harmonic Oscillator (SHO)
Most important problem in QM. Why?
1) One of the only practical problems that is exactly solvable.

2) because the annihilation/creation operators and algebra provide the basis for Quantum
Field Theory.

Start by first discussing these op’s:
Suppose two operators a, at who have the following commutation algebra.
[a,at]=1

(hey not very different from [x,p] = ih = and same as classical commutator!)

Then immediately we have
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which is to say if we define an Operator
N=ata
that has eigenbasis states |n,> such that
N|n,>=n,|n.>
(Let’s just call it n, the same way we call A|a>=a|a>)

Then playing same game as w/ translation operator, we have the following interesting relation

N ald = (o Moo= (Gamd aln)
M &y = | at Mo at)hd = (e al L D>



aN+[N,a]
PURELY derived because of the commutator algebra:

Which of course IMPLIES:

a|n> is eigenket w/ eigenvalue n-1

at |n> is eigenket w/ eigenvalue n+1

So if we start with any eigenstate |n> we can always “generate” a new state |n-1>
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ALWAYS for all n (we require this to be so—because we want only positive definite normalizations)

a called “annihilation” operator. it “kills” |0> and always decrements n

at called “creation” operator . it cannot “resurrect” a killed state (a"|0>) --“creation” bad
term?--but it always increments n

Actually the reason for these terms is because we think of each increment of energy N as a

excitation above some base state |0>. It is also part of general quantum thinking (e.g. including wave



mech) to think of any discrete excitation as a particle. In this case the particles would be called phonons
of the SHO.

In Quantum Field Theory (QFT) the situation is generalized for ALL REAL fields, e.g.
electromagnetic or particles. In place of our momentum states in this class | p>, we construct new basis
states that carry an “number of particles” for a given momentum—> |P>= |p>|n>. E.g.fora
propagating free electromagnetic field, n is the number of “photons” with momentum |p>. In exactly
the same way, n could be the number of electrons if the state describes electrons—and conversely
electrons are thought of as just excitations in a some global “electron field”.

Now we’ve established that N has eigenvalues that are

- chosen as integers

-and as only positive
At least most conveniently—otherwise we need new postulates...
Why is this relevant?

Of course we know the answer already for the SHO. It’s because our Hamiltonian for the SHO is can be
written in terms of the N operator only—ie with no other “non-trivial” operator. Done by forming
linear combinations of x,p that satisfy the above requirements for a,at

But before we show that...

DIGRESSION:

Neat: Note that we don’t even need to consider any Hamiltonian at all really.

The above actually works for ANY linear combination of x, p that fulfill this algebraic requirement.
Q: what’s the most trivial example, thinking of [x,p] =ih ? =2 [x,p/ih] = [x,k/i] = 1.

(using a’ so as not to confuse w/ SHO a) Thus if we can simply definea’ =x, a’t = p/ih, N’ =xp /ih

Means instead of our continuous bases, |x>,|p> we can always define a discrete basis of the operator
xp /ih

What is this operator ? |1 don’t know. It almost looks like a reasonable observable (pos*mom), but it
probably isn’t. In fact it almost looks like angular momentum is L = x x p = €;xp; but it’s o< xp;

Who cares! point is we always can define at least one operator who has a discrete eigenbasis spanning
the same Hilbert space as our |x>, | p> basis

You will note that the in this case at is not actually the hermitian conjugate of a: true, but this only
actually affects the requirement in the derivation that the states have positive integer eigenvalues of
xp/ih. Still we can think of a discrete basis of xp states.



We can fix this problem by considering Hermitian combinations of xp, x, p for our “N” ( e.g. {x,p}/2 =
xp+px / 2 is automatically Hermitian—not that that fixes this by itself). Actually we still likely need

xt ip -like combinations to fully solve this issue. But still there are many such combinations, not just the
SHO’s Hamiltonian/Number operators.

Also note there is likely some technicalities regarding which space we’re talking about since |x>, |p>we
said themselves weren’ t actually vectors of the Hilbert space.

END DIGRESSION
Point: We've gotten very far without actually even mentioning the actually Hamiltonian of the SHO.
First define it: what is SHO?
Answer: a system with the following Hamiltonian:
H=p?/2m + V(x)= p*/2m + mw %/2
(ie V(x) = x2 remember w = V(k/m) so that Force = dV/dx = -kx)
Immediately we see a2-b2 -» think of perfect square (a+b)(a-b) (remember a2+b2 =a2 - (ib)2)
Problem set: define an a,at in terms of x, p so that we can write H above in the form
H= K(ata+aat)=K(2N +1)
So H commutes with N obviously—> same eigenbasis
And K works out such that energy eigenvalues are H, = E, = Aw (n+1/2) Ground state--lowest E = hw/2

H is an observable quantity in this case obviously!

1) Using the Position/Momentum Basis in the Formalism

So we see that the first, “most important” application of using the p, x operators avoided using the |x>,
| p> basis at all! and preferred switching to a discrete basis.

Generally true for all Bound State problems in Wave Mech.

For what are the position / momentum basis states useful ?

Answer 1) Approximation Schemes



The momentum basis will be most useful for approximation schemes especially particle scattering
applications/approximations.  Exactly solvable results not usually encountered in real world.
Approximation schemes are necessary.

Notice two things about the Hamiltonian: H = p?/2m +V(x) =T + V(x)
1) Obviously with V(x) =0 The momentum basis is also the basis of the Hamiltonian.
2) We should usually be able to approximate potentials V(x) as some sort of series sum

Most obvious such expansion = V(x) =V1(x) + V2 (x)+... like Taylor expansion where other later terms
are relatively smaller and smaller, so we can drop them.

Separable Potentials

But we can also do expansions of a kind that is more convenient towards using a particular set of basis
states:

Following the idea of making a general operator out of ket-bra outer products (e.g. we said in it’s own
eigenbasis an operator A has the form 5 a, |a,><a,|) it can be useful to approximate using arbitrary
potentials in the form

V= [gohy <

Where ,g,f can be some state, which can of course be written as linear combinations of basis states,
possibly momentum kets |p> or position kets |x> and A is some number.

Potentials are called separable if they can be written as a combination of such terms (e.g. most
commonly a discrete sum )

Vsep = 2kn | k>A n<n|
I think that word is used because it acts on each combination of basis states ”separately.”
A convenient choice for these could be the momentum basis states

[dpdp”  [p>Ap<p’|

Why ? Because then the entire Hamiltonian including the p2/2m operator (sometimes called T) is
entirely composed of operators which act directly on | p> basis kets !!!

YESTERDAY NUCLEAR SEMINAR: EXACTLY ONE EXAMPLE!!!

DIGRESSION: Why momentum kets instead of position?



Greater question: Perfect symmetry between p, x?  PSET: The Position Operator in the |p> Basis—
also fulfills derivative relation

<p|x|oa>oc d/dp (<p|a>) = dd(p)/dp
So everything looks very symmetric.

Answer: no generally because of free Hamiltonian “preference” for p operator. p is likely the usually the
preferred basis (in lieu of exact Hamiltonian basis).

Actually for separable potentials, it is actually usually angular momentum basis states.

end DIGRESSION

Perturbation Theory:

More generally there is perturbation theory which we will not discuss this quarter. But we discussed it
during the Wave Mech review (please go back and take a look)—its generalization in the bra/ket
formalism should not be hard to imagine.

For high energy scattering problems, it is most convenient to treat the “base Hamiltonian” as
Ho= p°/2m =T

and because by assumption the T = KE is so high, treat the entire potential V(x) as a perturbation. Thus
again the base states you want to start w/ for Hy are obviously the | p> states.

The main difference between Perturbation Theory though is that PT is a full expansion of the STATES of
the full Hamiltonian, in terms of the states of the base H, not just an approximate expansion of the
potential.

Answer 2) “Artificial” Construction of States

Another reason |p>, |x> basis useful is it’s easy to construct arbitrary states using them—through the
wave functions themselves. Sometimes we may not know or care what the Hamiltonian is, but we
have a better idea how to describe the state in terms of the |x> or | p> states.

Examples:
-Suppose we know a particle is localized to some area
- Suppose we know its momentum

This is especially useful for the question of initial state.



Remember question: What is the state of the particle before it hits the SG device? Spin states may
not be determined, but there is also a momentum/position state for the atom: this we do have some
idea how it should look.

A) it has some fixed momentum. (this has to be tuned right to “see” the splitting due to spin)
within some uncertainty range

B) it has some fixed position (changing w/ time) (this is what allows us to say it is going through
the SG device)—within some uncertainty range.

This is demonstrated in this plot:
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DIGRESSSION:

CENTRAL LIMIT THEOREM (CLM): (classical thinking, not just QM) for some derived quantity
(Observable) F(a,b,c,...), (F depends on a,b,c...) no matter what the probability distributions of a, b, c,
inputs are, the probability distribution of F will always tend towards a Gaussian.

POINT: All uncertainties/experimental errors tend to be Gaussian because they are usually due to some
many microscopic inputs.



end DIGRESSION

Thus following the example set by the CLT we may reasonably assume it’s also true for x,p in SG. Thus
the following construction works very nicely to describe this situation:

Gaussian Wave Packets

So just CONJECTURE that the state initial space state for the SG looks like this:

vt < x| *”“—) \(—‘L v"‘- Q

=definite momentum eigenstate exp(ikx) “smeared” around x = 0. (by this choice we have put our x
origin @ 0)
Called a “PACKET” (group) of x states. It has a Gaussian form. (o< exp(-x%))
Has the right form for P(x) then because
P(x) = P * <a|x><x|a > o exp (—x*/d?)

We would choose d according to the box size. So we are PICKING the form of the WAVE FN first! This is
what | mean by “artificial”. Not any operator or eigenket that the state might be related to. Could |a>
be the eigenstate of some other observable? Who knows! Is it a Discrete sum over eigenstates of some
other observable? Who knows!

Actually we will show that the SHO ground state has this form.

Now the NEAT property of this state is that we already said

{z'|a} = [dp' (|} {p'|a)
"l—.'..,—l"
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which is the Fourier expansion of v (z') in eigenfunctions N e#<'/% to p. The wave function of
|a} in p-space 1s

alp) = (Pla) = [ de' (|2')(x'|a) = N [ de’ eIy, ()

i.e. the Fourier transform 1s contained in the Dirac formalism.



DIGRESSION: Remembering Properties of the Fourier Transform (FT): The FT of a Gaussian form, is
another Gaussian form.

FT(Gaus(x)) = Gaus(p)
FT(Gaus(p)) = Gaus(x)
end DIGRESSION
Thus for our artificial state |a> It's momentum wave function must also be a Gaussian in p:

Form is given in Sak. eq 1.7.42:
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Obviously this is a state with mean value p = “hk” but with some uncertainty around it.

Why? because we can just read the value off From “Wikipedia: Gaussian distribution” Gaussian of x
has form:

gy 2T 207
where 6,>=<Ax*> and p=<x>
Thus matching symbols, by inspection, <p>=hk
Our probability distribution P(p) = <a|p><p|a> o« exp( -2 (p-hk)* d? /2h?) so
<A p*> =h?/2d?

NOTE THAT SAKURAI DERIVES THESE USING THE DERIVATIVE FORM OF p in sect. 1.7 = ie w/ wave
mechanics. YOU SHOULD BE COMFORTABLE DOING THAT TO... (YOU MAY WANT TO PRACTICE). E.g.
<x> =0 is easy to see: because exp(-x* )* x odd

Anyway, the conjectured form of |a> fulfills what we want expected for our SG experiment. And
actually even predicts something: based on the input requirement for the distribution of x we see what
the P(p) of p must look like!

Note about Uncertainty Relation

While we’re add it let’s read off uncertainty value for <A x2>
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W a(x)= P

P(x) = P *P <a|x><x|a > o exp (—x*/d?)
So it must be just = 0 = d*/2.
So we have
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Gaussian Wave Functions always satisfy minimum uncertainty relation.




V. Unfinished Business Regarding the Formalism

A) Direct Product Spaces/States and Entanglement

B) Implications of Measurement Postulates EPR Paradox
C) Mixed States

The notes for the above are available on the website in a pdf. Please see there. One thing | forgot to
point out in our discussion of Product Spaces was perhaps the most familiar example: the construction
of our 3-D position/momentum kets from Direct Product Kets of the 1-D kets.

Lecture 2/16/2010
Reading Assignment: (by ~2/17 [tomorrow]: Sakurai Sections 2.1-2.2)
There will be a Problem Set due next week, but negotitated to have it due Wed: (posted Wed 2/17)

In what follows below | give kind of a long winded Conceptual Intro: move forward to my scanned notes
for the short version...

VI) Time Dependence In Formalism
A) Conceptual Intro (Pictures of Pictures of Pictures)

The best way to start thinking of how time enters into our formalism is as a parameter that has no
physical significance.

In this way of thinking, the parameter t will simply label two different sets of kets AND associated
operators.

This is because time will not correspond to an operator, (ie there is no t operator and no associated |t>
basis kets) so this label is NOT like when we label kets by their eigenvalues, which is also clear because
we said the label is applied to operators themselves.

Picturing the following situation of two different operators and their associated basis.



(Forget about what time actually means for a second and just think of 2 separate new operators. For
that reason imagine for now we used “s” to label as our parameter not t)

To be concrete we could think example: two incompatible operators C and D and simply consider
B= C cos(t)+D sin (t)
(concrete example: @ t1=0 |bn> = |cn>, while at t2=m/2, |bn>= |dn>)

Postulate 0.1) Changes in the Parameter Should not Change the Hilbert Space: The only thing we will
want for this parameter at this stage is that we still have the same space for any value of the label.

This is equivalent to saying that ANY ket specified by a linear combination of |b t1>’s can also be
alternatively expanded in the |b t2> basis.
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THIS in turn means there is a unitary transformation operator that “connects” the two sets of basis
states.

UtltZ

So far everything is like when we first introduced Unitary operators, it just that we’ve introduced a
generalization of A->B operators pairs to an arbitrary set of pairs B;;—>Bs,.

POSULATE 0.2) Even though Hilbert Space is the same, for 2 different values of the parameter, the
system should change.

Otherwise, there is no point to introduce time dependence. We can consider operators or states that
are constant with time, but these will be considered special cases, and even then, there will still ALWAYS



be something about the system (some other state and/or some other operator) that is changing with
time. Note that it does not have to be a physically observable change.

Review: Two applications ofTranformation Operators so far in this class:

1) Diagonalization. Here we said we said all states should remain the same, and we use U mainly for
passive or temporary ket space rotations of the coordinate system through it's matrix elements:

<b,la> = 3 , (Unn)* <am|a>

mainly for more convenient work in matrix rep. Active Rotate>work—>but inversely Actively
rotate (transform back) at the end.

2) Space Translation=> Momentum Basis: Here we considered active ket space rotations translations,
but we :

Didn’t USE those rotated states for much.
Didn’t assign much importance to them.
They were just a means for understanding the existence of the p operator

We can think of Time Evolution as our 3™ Application of Transformation operators There is a MAJOR
CONCEPTUAL DIFFERENCE here though:

Here we POSTULATE that ACTIVE ROTATIONS must continuously occur as time progresses,

So we will want our Tranformation Operators U,;.5:, to define rotations that will actively change the
system in the Hilbert space, but WHAT active rotation it is will be continually changing.

What this DOESN’T mean for example:
Suppose state at t1 is measured so in eigenstate |b,t1>
| b, t1> =regardless of time, we could always expand |b,t1> in other basis.
ie write |o,t1> = |bn,t1>=3,<b,t1|b,t2> (exampletl=0,t2=m/2) |c>=3 <c|d>|d> (Eq1)
We are POSTULATING |at2> != |a t1> thus the expansion coeff’s of |a t2> are not the same.
(Eg 1) is not what we want (nothing happened)!

What we want is more like the ACTIVE transformation: Transformation Operator like the following:
|b,t2> = Uy, |b,t1>

E.g. if startin |b1> the system changes at t2 into some other eigenket|b,t2>



In our example for t1= 0, t2 = pi/2 this would just be U =5 |d><c]|.
Is this how quantum states evolve? No! Not always!

If we experimental observation a physical system, we do NOT find that this exact kind of
translation (1 to 1 mapping of basis states at different times) always works this way.

Only in very special case for our example (properites of C, and D) would the TIME EVOLUTION
work properly using the U =3 |d><c| form—ie directly connecting eigenstaes

INSTEAD we will POSTULATE SEVERAL MORE SPECIFIC REQUIREMENTS of the time translation
operators U so that will work how we want them to and correspond to physical experimental evidence:
- This we will call the TIME EVOLUTION OPERATOR: U;

To summarize:
1) Think of two different sets of operators/basis kets/states - different parameter t values
2) SAME ket space at different values though!

Time Evolution will correspond to some unitary operator U, that we still need to establish the
properties of. But so far we did establish one thing:

3) These transformations are ACTIVE ket transformations different from diagnonlization
transformation operators. : because we postulate CHANGE to the system.

B) Big picture (s):
It will turn out there are many ways to view this “active change” of the system:

When we find the right U; which does the transformations the way we want, we will think of two “big”
pictures, based on how Uk is applied.

1) Shrodinger: The state will change—Thurs’s examples |o,t2> = Ut|o,t1> =2 |b,t2> = U;|b,t1>

Expansion coeficients of |a> change , always stay in old (t1) basis = Shrodinger
pictures

State vector being actively moved around.
2) Heisenberg: The observables will change U; T B U, while expansion coeff’s stay the same

State vector remaining in the same place: coordinate frame moving around—but state
of the system still changed!



Comment example B = Ccost +Dsint from Th. Picture 2) only? Maybe but even if you're working in
Shro: you can still have explicit time dependent operators—we can make them. They just won’t be the
basis we want to choose to expand in: choose C or D alone to expand in.

Either picture will work because we will desribe the change to expectation values (more generally non-
diagonal matrix elements) — ie things that carry PHYSICALLY OBSERVABLE CONSEQUENCES:

<A>=<p |A Y>> =< |UTAU]|P>
(doen’t matter how you “associate” the change.)

Scanned notes from actual class (the short version of the above) below:
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Time Evolution in the Shrodinger picture:

put all time dependence in expansion coeffs
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So it does not technically act ON the c(t) however: this is kind of a deep point: even in the Shro picture
we technically do say the U is actually acting on the base kets, but apparently that action will be to
make them remain fixed with respect to the greater Hamiltonian basis.

Other requirements making this choice of the “picture”...

The unitary requirement of Ut is now just a statement of the requirement of
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As with space translation we want successive translations to



add up....
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As with space translation we might be tempted to choose a form of U since it will have these properties

again as
U:(At) = exp(iXAt) (???7?)

with any hermitian operator X since it will have these properties, however we want to allow for X to
also be time dependent, so this time we must start by defining only the infinitestimal case where we
translate over some infinitesimal time 6t.

U«(5t)
(Switch to Sakurai’s notation U{(At) = Ui(t,to) = U(to+At, to) since At = t-ty )

Then over such a small time we should reasonably be able to treat H as constant

W 43¢, ) =) — & BT

ST TR -é_fa. <ty
e Fap Rt e —tha
L . ¥ e | EA s
. It !\IOI‘kS: (ONLY FOR SUCCESIVE INFINITESIMAL TRANS

U =i = (14 L Hise) (1—de HES =0
= = Hiie ) L - c=r

=_‘_=T. | i*:‘— §e ( WT—R) = |
= =

=) .'1"4" Com . re . Gan #@;a_,,v.-:\..k-'?.{..__

S—

L == [
o an, b s 3?,, S,

Now this H is the same as H already defined and /i same as h before.

Why? First H> classical mech.: H = p2/2m + V(x) is what determines speed of evolution
/“oscilations” rates.

Think = free particle. propgates through space faster for faster H=p2/2m



- SHO H=p2/2m+1/2kx2 -> Numerical value of H for isolated system always remains constant
(Energy Conservation!). But oscillation rate indpendent of whatever that constant H value = E might be-
- > wait doesn’t work? | guess not.

Still if we want to fix x and p, if value H goes up, w must go up so then Hx w

OK through some possibly very loose, unspecified comparison to classical mechanics=> we expect our
choice of operator Q in 1-iQ dt to be related to H.

Sotry Q=kH - then we will find that k must be 1/h from matching to wave mechanics results and this
also answers why f here is the same as h for the p operator.

Lecture 2/17/2010

New Pset will be posted tonight: Due Wed 2/25.
Reading: Sak Chapt 2.1-2.2 (~today!)

Review:

Time Dependence: Think Hilbert Space H; ~constant, some combo of States/Op’s/Basis’s evolve by
operator U(t) (Time Translation operator = rotations)

Which combo of these things will change? Depends on Formal “Picture”:
So review also “Big Picture of Pictures” from yesterday:

(notes below)

Notes combined below w/ 2/19/2010 lecture: Note 2/19/2010: Read Sak 2.1-2.3 by “monday
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Lecture 2/19/2010 continued

F) Application1): Spin Precession

o o _
- S, . e e e _ o '_1“‘ - E_ B ‘-‘;‘
Ry 2 SV S 1 E = b="r =%
Ot sl bgenvedon T ;_CE
-~ f e T A o
_I_+>__-____(0} I o G
T __1_ T AR -E_,
SN = FIT").‘*.‘.[U‘QM"
Nw N . L e et 1?‘('7
ix_;_-{:') U: 20 mac T..(‘|" RV e A
2 owa Wl

Therefore to calculated Expectation Value we braket any operator with this state: for example: (I prefer
to use matrix rep to calculate this—just preference —but it also allows us to visually see interesting
connection to previous statements)
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Indeed we see a nice connection to our previous general relation for <B>!

First notice in this case ( B =Sx) the Trace of Sx (sum of diagnonal terms) is 0: that’s why there’s no
constant term!

Second, in this case indeed all the matrix elements of B=Sx were real, so we got the cos wt!

Compare that to if we take the (still traceless) Sy (and remember that sinx = cos(x-1t/2)
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G) Heisenberg Picture

Let’s start out the way Sakurai does: If we consider both inner products and matrix elements between
states for any case (not just time —dependence) where we want to impose these type of ACTIVE
rotations, we are free to view the rotation/modifcation occuring on the operator itself instead of the
states. This is generally true not just for time dependence, but for example as Sak shows at the
beginnin of Chapt 2, the momentum/space translation operation also has this ability for dual
intepretation. Specifically what we mean is for any set of rotations, that is transformations that
preserve the inner product

<a|B> = <a|Ut U|B> (rememberingthat <a|UT isthebraof U|a>)
Then consider <a| B |B>
If we want to perform active rotations on the states, we change the matrix element:
2> <o|Ut B U|B>

but we are also free to view this as a modified (diagonal/Unitary Equivalent like) version of the operator
being braketed by unchanged states

<a| UtBU [B> = ie B >UtBU

The latter interpretation for the time U operator, is what we call the Heisenberg Picture
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This interpreation is more satisfying for comparing QM to classical mechanics, because there we like to

think of the observables changing with time. In fact one of the first things we can derive that is

important for using the Heisenberg picture is a relation that can be nicely compared to a corresponding

classical relation for the change in an observable with time:

If we choose the Heisenberg picture we can always assume at some point in time what we call the
Heisenberg operator which changes with time, and the Shro which doesn’t, are the same for that
starting moment: (we will call that t = 0 usually, so often (and in Sakurai) we will use (w/ notation
Aeisenberg = A ) that Ay(t=0) = Aspo. = A(0).
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This represents a differential equation for the operator Ay which we can solve using normal calculus
methods, exept now for expressions involving operators. This will form the main idea of using the
Heisenberg pic: instead of finding the time dep of the states and then calculating things with that, we
first find the time dependence of the operator with the Heis EOM and operate with that on contant
states to find things like expectation values=> <A(t) > which equals <A>(t)

This is best to see in an example. But first it is neat to note the close resemblance of the Heis EOM to a
classical expression for the change in observables with time. First note:

here we can just replace the 1/hi [] into the classical commutator [A,H]class ie: in classical mechanics
we have



dA/dt = [A,H]classical =dA/dqdH/dp - dH/dqg dA/dp

Why? let’s take the first term: if we assume g=> x then dH/dp is d(p2/2m)/dp = p/m and thus we have
p/m =v =dx/dt times dA/dx = (dA/dx)(dx/dt) which is just the calculus chain rule for dA/dt. And
obviously if dA/dt we called that a constant of motion in classical mechanics

OK now for the example of using and solving the Heisen EOM:
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G.2) Application 2): SHO (Time dependent) --Both Pictures and the Baker Hausdorff Lemma
Note about Heisenberg /S pictures in SHO:
Time Evolution of basis states in Heisenberg pic doesn’t apply to basis of Hamiltonian.
Question: Why? Because H always commutes w/ itself

Any problem like this-—> either picture H/S is ~equally easy to work in!
1) SHO in Shrodinger Picture
Like in wave mech: just assign a factor exp —(iExt/h) to any Hamiltonian basis state |k>.
Midterm problem 4) gives us a very typical example: go over that solution:
In shrodinger: just assign exp —(iE,t/h) to each basis state |n>

(a): () = (a|z|a) = (a*{0] + b*(1|)x(a|0) + b|1)) = a*a(0|z|0) + a*b{0|z|1) + b*a(l|z|0) +
b*b{1]z|1). Using x = ‘/%(a-—i- a') and aln) = /njn — 1), af|n) = vn +1|n + 1) one
obtains (r) = \/% (a*h + b*a) = \/%a.m,_ where in the last step the normalisa-
tion condition |a|* + |b/* = 1 has been used together with a,b real since a complex phase
does not affect the following. Maximum of {z) is then obtained by d{z)/da = 0 giving
a = 1/v/2 (maximum since d*(z)/da’> < 0 for a = 1/y/2), and then b = 1/y/2. Hence
(7Y pmar = /B 2mw for |a) = (|0) + [1))/v/2 (up to an overall phase factor).

(b): Applying the time evolution operator e~ /" and using e~ "H/%|n) = e—win+l/2t )
one gets |a,t) = e ot = 0) = e HVR(0) + 1)) /V2 = (e “2|0) + e 32 1)) /2

as the state vector for ¢ = 0 in the Schrodinger picture. The expectation value is then
(o tlafa,t) = 1/V2(e? (0]+e™2(1])z(e|0) +e~*/2|1)) //2 = ({0]]0) +e*(0f|1)+
et {1|x|0) + (1|z|1})/2 = ... (again using = ~ a +at asin (a)) ... = \/h/2mw coswt.

Thanks to http://www.isv.uu.se/thep/courses/QM/051028-solutions.pdf

My version a=sins, b =coss> Use

sin(2u) = 28in 1 cos u

2) SHO in H picture

Sakurai: time evolution of operator in Heisenberg picture



Shrodinger picture is nice because we can use the a/at operators in place of x/p and not worry about
their time evolution.

It turns out same is true for H picture—see why:

General method: Solve for x(t) and p(t) operators in terms of x(t=0) and p(t=0) operators (only those
operators and some functions of t.) t=0 operators = a,at

Most direct method—form Ay =UT A(0)U = UT A; U. Book also uses method of :

a) evaluating d( a,at ) w/ Heisenberg EOM b) = Erhenfest thereom dpy/dt=-mw 2 x, dx,/dt=
p/m solve for x(t) given initial conditions x(0)/p(0)

e.g. day/dt=[ay,H] /ih =iwa 2 a=a(0)e(iwt)

This was demonstrated in class one gets similar equation for at and the only subtle part is that you
should expand the exponential in time to get the solution in Sakurai:

exp(iw t) = cosw t +isin wt. Then add the expresions for a(t) and at (t) collecting the terms equal to
cos and sin: you get

Xu(t) = x(0)cosw t + p(0)/mw sinw t

Alternative Method

As Sakurai explains another method within the Heisenberg picture besides solving the Heisen EOM, is to
directly evaluate the operator product UT A(0) U. E.g. let’s evaluate x;; = UT x(0)U = UT xs U directly
using Baker Hausdorf Lemma (also performed in Sak):

Ve E =¥ + (X Y]+ LN [X, Y] 4 XX Y]] 4

Actually Wikipedia calls this the Hadamard lemma (special case of the more general Baker-Hausdorf)
We will always call it the Baker-Hausdorf lemma:

Baker Hausdorf lemma will be used several times in this course/book so useful to study it.
DIGRESSION:

PS: e”e® = e*® only when A,B commute.

Did Prakash Go over this? Yes



Third term in expansion see Prakash’s notes. Solved by visual inspection. but to prove it’s true for all
terms:

General formula if A,B don’t commute (Wikipedia: Baker-Campbell-Hausdorf Lemma):

The Zassenhaus formula [edit]

Arelated combinatoric expansion, useful in dual applications is

JXHY) X Y BV BRG] F (Y] XX Y] XYY YY)

where all exponents of order larger than f are likewise nested commutators.

Apparently e“e® = e**Bel/2(AE]

is generally as far as one usually has to go because typically
[[A,B],A] =[[A,B],B] =0
END DIGRESSION:
(obviously the Baker Hausdorff is related to the Zassenhaus)
Setting this thereom up for our relation we see

Sakurai 2.3.48
Then we note from Sak 1.9 relations (obviously very important)

[x, G(p] =ih dG/dp [p,F(x)] =-ih dF/dx (on board already)
SHO A) [H,x(0)] = -ih p(0)/m B) [H,p(0)] = ihmw 2

We can evaluate each of these comutators.

First apply B for every appearance of [H,x(0)]

Now for all remaining commutators apply [H,p(0)]
Now repeat infinity times..
You see what happens Even powers end up as « x(0) odd powers end up o p(0)
So we get
Sak. 2.3.50

Remembering trig relations (put on board before lecture)
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Xu(t) = x(0)cosw t + p(0)/mw sinw t

OK great—we have the operator from 2 methods both in the H picture.
What do we do with this solutions?

Well now we can e.g. calculate expectation values.

First it is obvious that <n|x,p|n> = equals 0. TIME INDEPENDENT (symmetry argument.)
The only states which oscillate are linear combinations of the | n> states.
Example reapply to Midterm problem:
1/V2 (<O +<1] (xu(t)) |[0>+]1>)
diagonal terms obviously cancel because for above reason
% (<0] x cos wt + p/mw sinwt | 1> + <1]| xcoswt + p/mw sinwt |0>

1/2coswt[ <0|x|1>+<1|x]|0> ] + 1/2mw sinwt2 [<1|p|0>+<0|p|1>]

Use x= %o (a+at /2) > p=a-at/2x.i

also, now one of either a or at terms always vanish from inner product orthog when we expand each
X,p operator

1/2coswt[ <0|x0a/2|1> + <1|xpat /2\0> ] + 1/2mw sinwt2 [ <1|at/2ix,|0>+ <0]|-a/2ix0]|1>]
A\

1/2coswt[ <0|x0a/2|1> + <1|xpat /2\0> ] + 1/2mw sinwt2 [1/2ixy <1]|1>-1/2ix,<0|0> ]

ie the second term goes to 0



1/2coswt[ <0|xpa/2 | 1> + <1|xeat /2\0>——+—4 2mwsiawt2 1 2ig<tHE—4H 2i%<0| 0> |

-- forgeting constants « cosw t !

We can see elements of our general expression here again: remember the matrix representations (in

the n basis)of x, a and at from the problem set problem:

(tJl 0 0 0 - 0
10 V20 0o - -

¢ 1o V2o
T2 00 \.r’ﬁ (l ‘v’q

A —
00 0 Vi

this is x (it was also easy to guess that the a, at operator’s MR should be the elements of X just above
(a) and below (at )the diagonal) with all other elements 0. Thusx « a+at. Butthe point again is
notice all fo these operators have 0’s along the diagonal. And again we end up with a plain cosw t

where iw = E1-EO
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Finishing up Heisenberg Picture (H. Picture) implications

Heisenberg Picture:
-1) Operators change with time.

-2) States remain constant

What does 2) mean?

Heisenberg Picture:
-1) Operators change with time.
-2) States remain constant (expansion coefficients remain constant)

-3) Eigenvalues remain constant

|a,t>= UT |a>related to deeper property of BOTH pictures: What is it?

Property (postulate?) for BOTH pictures—> Related to Measurement Postulates
Eigenvalues Remain Constant!!!

This was obviously true in the Shro picture

But may not have be obvious thinking of very general picture before for cases like the Heisenberg
picture where we want the operator to change

BO) v B

oy, [6,.. ) | [,

r

w Ud(At) = @_J

Ug(t2-t1)




Thus even in Heisenberg picture we want transformations such that
B(t2) |b1,t2> =b1|b1,t2> where eigenvalue by(t,) = b1(ty)
Implications for H picture:

Thus state kets in H picture evolve oppositely — Prakash notes

General explicit outer product rep. of any operator should look like this:



see separate handout:

Summary of Pictures from H/S pictures
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ah 2wy = - Rl R
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Question: is there another “picture” that doesn’t shove all the time dependence one way or the other?
Answer: Yes: Interaction Picture is Mixture of the two.

RESTATEMENT of SOME THOUGHTS expressed in slides already:
in Heisenberg Picture base kets evolve “backwards” to S picture state ket evolution

|a,t>= >=UT |a>



Motivated yesterday by requring that matrix elements <a|a>(t >0) in H picture> matches (= to) <a|a>
in S picture.

Because Shro pic: <a|a>(t >0) =<a|U(t) |a> in H picture> =<a, t=0| U(t)|a>, so convenient solution
if we sayin H picture

(Ja)a=<at]la> = <a, t=0|U |a> Thus<a,t| =<a|U = |a,t>=U" |a>
Now why would we want this quantity to match?
Because it is indeed related to something physical:
The Transition Amplitude —> Probability to be in new eigenket. PHYSICALLY OBSERVABLE!
It should automatically independent of picture = GOOD!!!!
More general form for Transition Amp.:
Take <a,t=0| =<b| some general eigenket, doesn’t need to be from same basis |a>
In either picture: <b|U(t)|a> Transition Amplitude is time dependent

(in H picture it means <b,t=t,| == some fixed time t,

Very Important Side Point: Now there conceptual difference between
|a>=|a> @ t=0 and the base ket itself |a>.

In Shrodinger |a> does not evolve, but in both pictures |a> can (in general) even when it starts as|a> =
|a>. Thatis even when |a, t=0> = |a> in Shro picture, d|a>/dt = 0.

Original measurement postulate not met? No it’s not!—remember “immediately afterwards” was
specified for measurement postulate.

In general “Quantum Decoherence” can cause original |a> = |a> to change in to other states
Only remains constant (“stationary”)

1) if A commutes with Hamiltonian

2) AND if Hamiltonian remains constant!!!

Thus important point: things change, even when the situation is seemingly static with time (H is
constant.)






1) Further points about the SHO: Coherent States

The SHO ground state is also Gaussian: this is easy to derive using our requirement that the annihilation

operator annihilates the |0> state.
<X | aate>» =0
) b | oS> =0
V22 G kv 2| 0>

Incidentally we can use this wave function to derive all the others’ states...
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Interesting : Min Uncert. Relation easier to derive for this case: purely work in ket operators.

H

e.g. integrals not necessary:

operator x> = h/2mw(a2 + at 2 + N + aat)

<0|x2]0> only last term doesn’t vanish-2> x2 = h/2mw

Solve Heisenberg EOM for a, at obtained solutions.
a(t) = a(0) exp(-iw t) ,at (t) =at (0) exp(iwt)

We discussed the Baker Hausdorf Lemma



eXYe ™ =Y+ [X,Y]+ %[X, X, Y]] + %[X, X, (X, Y]+ - -

for evaluating Ut AU =exp(iHt/h) A exp(-iHt/h) directly.

Another good application is related to the Coherent states discussed in Sakurai.
Should have familiarity of these after this course...

For midterm/ prob set you solved Sak. 2.18a: Follow Solutions handed out--:

Main crux: one can derive the following relation, just as for x,p simply because of the commutation
relations.

_df(a)
[a, flat )] =25
Thus proof is just like on midterm—other problem set

Thus the coherent state

- ﬁuli- )\;-"-
¢ £ 1ah

is an eigenstate of the a operator.

Note some of the remarkable properties of coherent states elucidated on the following slides:



A Cepliteisnr

— —— . — - - .ﬂ. :h‘:h\-l H
Eoml Ry N “*3 = Toenta” e MR e
I - —_ '._a:"-'-l'
'k - s ——
-_..--.:_-.. +-.'H. — — . 1——— —
WYSTRT AT IS sy dat
e i w T e ———
o ", o -
— ] q'_""\-"-\.ll.!:' | H.‘I'-\-_Elf:'l‘i. "\‘_‘"'\-‘I-If.';l ~ 1|'""|':'
[ [ —
== n
—————— H T A —
_————— —_— [ a, He — II..-"I-\,IIIE.- —_—
= "-’"*"t?‘ih"-h“}_ﬁ el e
hS L
N 3 N Ly )
=v .2 = . 0k ‘.:F*-'-""-E-'F .
- i | & D
= === ‘-j'f AT L& LU
‘-,-ﬂ_h,_' .:1'J
——-—---.- = IH ;_’-
|.-'_'I . - gy | —
RS W S ~
— o — J _ — .
e T P = T b n
r



2 j_h--""--— E.at::.:i’lg_fh. .
W A ' oy .
I?-_. L | o — ‘.ET LN [:}.,\ A N
’ [ 19 b ! .
| - _— I'l':'"
b I,.. ':. o
— i J ko | RN
ol PR
- .
—_— —
- . | b-.h}
B -
. -, ~ L _,r".a;_
| _ r - -FE
e - _F.\"\. _
.. I". Y : e
. & I -.II
' - i | |
- . __." \
e P B0 I, e
.. L
3 L, - - —
T w - F'. IH
. Fl“hh:*l - II_H."' . e -
-"'\.\_:.:l.--h.-i - l.b::-l.\-“'t _ .
o= - T‘ ' =V = R
L _'-I L I _ ]
Il.lllh:-l -HJ .II i ﬁ.-m_i'l: L. "-.-"Il-.m B

Be

Y e ﬂ\_}
IﬁF- -'.-l.-'\--\_rf.l—"l"_

[

s

Pl

b

b T w2y
| -
afcillotar  gua g oa i



i
7

[
'-.,\_I:i L

T v ."-l'a.-'-:-"E-w.H:';:“-

b
.? e PR o
e T A 7 T

—_——

B o Cmm
e ththﬁ:u' RS

- - Y r'.__.'r-I-J‘ ‘E:-"-!:h _
R I:"' £ ‘-'—::I ! |II ..'5"'~.I'_'-"|)
- A,
= e pNE N
2.
':I'J = l:f'-.-'l——lt_:'.'

s - .{.ﬂ«.'ll' _.".|_ L '
= AT "._U
E-‘J- :Ir H:-"'I-I . 'I_-H"
R R
) e |
. PEEETE SR TS
= 3 &= &~ R |
. >, Y
._'_l_ g o .I - & _'.I'J.\‘I-'-H .
— - 2 Ty W oy k)
=~ n - A Ao
_ '.Il-l-"-.. _'ﬁ'-\..:'-t

= t,}‘x{i \-:-:

- . — ™

':."H'I"“:l""“?'ﬂ-;"‘-— i T‘_:"'J"E' Panc Bl VU NENCA | PN LU - P
el dee frae S0e ST @a, A4 slra
L R T L"ﬂ*—é—'—r".t#'il‘q-;? [fie



Above time evolution of Coherent State
Use the last property listed in book without proof: (also problem 2.18e) :
Sakurai Problem 2.11: Other use of Baker Hausdorf Lemma

Coherent states: Sakurai Problem 2.11 Important: it also turns out that we can write the coherent

state as a spacial translation of the SHO ground state: ie apply the operator e from our discussion of

momentum: You will show this on your problem set. But assuming it is true

Sak 2.11: Find time dependence of <x> for the state |a> = exp(-ipa/hi)|0> where p = ps is the
(constant) momentum operator in the Shrodinger picture
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SLIGHTLY DIFFERENT IN-CLASS VERSION afterwards
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Interpretation if Im V is non-zero
[pdV=N,dN/dt-KimV dV = Integral J-dA
Cross section ~ dN/dt missing

oxXImV

2 Classes of Problems to Review/Introduce from Wave Mech
1) Review: Simple 1-D Constant Potentials

Comments: a) you won’t be expected to do problems like this, but if you don’t
remember you should refresh your memory look at Liboff. b) We will discuss qualitative
features only and quote results only:

2) Delta Fn Potential Problems.

Free Particle: V=0, H=p*/2m
Solution: = A exp(+ikx-wt) Ex=h’k’/2m

Half free particle on a constant potential “step” (region of constant potential V)
Remembering our 6 (x) definition> V(x) = Vy0(x)

Vo

Solution in the right hand region is

¢ = A exp(-k x) with Ex = Vo — h’*/2m

when E <V,

Scattering: Typically we set this up as a scattering problem of waves entering (“incident”) from the left,
“reflecting” back to the left and choose a single direction for the Right Hand Region, as being
“transmitted” to the right:

A-> 1, B/A>R C/A> T



This comes from the idea that we will think of some current density j as being associate with these
three, incident, refected, and transmitted, parts:

E.g. we can calculate some Jj,c, for Winc(x) = el
= a/2mi (L*dy /dx - g dd*/dx) 2> h/2mi (exp[-ikx])(ik exp[ikx]) = A k/m

Thus the current density j isec k and if this was more than 1-D, the direction of j = direction of k (nothing
would really change — except the d/dx = V) In 1-D direction is same as sign.

Rest of problem is just solving for T or R by imposing the “matching conditions”. This is the key.
See Liboff 7.6 Remembering that sinh x = e*—e™/2
Note that we often are interested in something called the transmission coefficient

|] trans |

Teoeft = Vincl
inc

which is simply the ratio of the probability that gets transmitted: this is directly interpretable as the
probability for a single particle approaching from the left to be transmitted to right. Typically we are
imagining a case where the potential is such that the large positive x behavior of the potential is
constant (often 0—ie we end up with a free particle again, and we are describing the transmission
through some “barrier” region).

Thus as above we would typically want a wave function in the large x+ region of the form { = Texp(+ikx)
following the convention described above for the letter used for the amplitudes of the wave functions.

In this case thus Teeerr ¢ | T2

HOWEVER: note that Tcoeff # |T|2 in fact evaluating the j’s for the free particle solutions (w/ U inc
amplitude convention A=1)

Teoefs = ITl 2 ktrans/kinc

Other points

This matching of solutions is important for demonstrating the bound state solutions: they are the
reason the bound state solution has discrete energies in the simple potential well problem:

Bound State Example: Liboff: Finite Potential Well Chapter 8.

Talked about Bound State example: horribly complicated solutions but yet still demonstrative.



The basics of these type of Wave Mech problems: bound state and scattering type problems should be
remembered. Application of them now to 1 special kind of potential:

Wave Mechnanics: 6 fn Potential Problems (often explored in 611 type courses)
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Solving &6 fn potential problems always is similar:
Same problem as a scattering example: 6 fn

Only difference is if we want to treat this as a scattering problem, we consider E > 0, then on either side,
0 we want plane wave solutions.

End review: Now Discuss S(x) WKB Approximation

Intro of S(x)
Remember from complex analysis we can represent any complex number z in 2 ways
z=x+iy = re® (r=v(x2+y2))
where x, y, r, ¢ are real
This can also be done for any complex function w(z) = w (x,y) = u(x,y) + i v(x,y)
r(x,y)ei¢(x’y)
> P (xt) =Vp(x,t) €™ vp =v(Re*(P)-Im
Prakash’s notes Reminder of Classical Mech: see supplemental notes...
Derivation of the Hamilton Jacobi Equation
A Aweted) |- A vi) + ALY

o 2% _

Point no one remembers Hamilton Jacobi Eq. from classical mechanics. Just remember that there is
another relation to classical mechanics here.

Reminder: Hamiltonian’s Principle Function :
Not equal to the Hamiltonian: --- Related to the actionS= [Ldt=[(T-V)dt

Hamilton-Jacobi Equation Non-linear Differential Equation: not very easy to solve. So is it really useful?
Not likely often—Lagrangian Mechanics is obviously preferred (that is what you learn). However, it
provides this link for Wave Optics and also link for QM.

WKB or Semi Classical Approximation:
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224 Chapter 7 Additional One-Dimensional problems. Bound and Unhound States

The kinetic energy decreases by V and is given by

2.2
Bk _ oy

7 ﬁ In terms of ka, (7.118) appears as
L/K Vs

£ o = —ka'e  inregion it (7,126,

q ¢ LO Writing ¢r for the sclution 10 (7.117) and ¢n for the solution to (7.120]. e
obtains

@:Aeikl,\: +B€—-ik1x

g = C + De i i

Since the term De~iF2% (together with the tim: .dependent factor e~ 147 rep
sents a wave emanating from the right (x = +00 in Fig. 7.18), and there isw
such wave, we may conclude that D = . The interpretation of the remaining A
B, and C terms is given in (7.112). To repeat, A exp(ik1x) represents the incidest
wave, B exp(~ik1x), the reflected wave; and C explikzx), the transnitted wae

1t is important at this time to realize that ¢y and ¢ (with D = 0) represend
single solution to the Schrodinger equation for all x, for the potential curve o
picted in Fig. 7.18. Since any wavefunction and its first derivative are contin
(see Section 3.3), at the point x = 0 where ¢ and ¢n join it is required that

@1(0y = pul)
3 ) [y
e ~ 2 o
axﬂm(@) 3x en(®

These equalities give the relations

A+ B=C
AN
ko
A#B_EIC

golving for C/A and B/ A, one obtains

cC _ 2 B__l—kg/k} Tk
AT 1+k/k A L+ke/h
Substituting these values into (7.114) gives
kel T
a2
C’avﬁ‘[l-{—(kg/kl)} ('oq_”‘l-!-kl/ 1
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Lecture 3/5/2010

The WKB approximation finds a set of approximate solutions to ANY potential problem based on the
above starting point, proportional to  1/Vk(x) exp (xi [ k(x) dx) where k(x) = V(2m(E-V(x))/A

Two methods of deriving: Note we will not derive in detail: NO ONE EVER REMEMBERS THIS

in particular the “connection process” is always cloudy: so ignore if so! It’s OK if you can’t derive why—
people just use the formulas:

Main Points | expect you to learn / remember

-1) Using the WKB approx: (most important)
how to construct WKB Wave Fn.
how to use formulas
above for both Bound State and Scattering problem:s.
2) When the WKB Wave Fn should be accurate (almost as important)
condition for applicability
3) How the matching procedure works (less important)
What it means to match. e.g. What is matched?
What function for what region : why Airy Functions (= Bessel Functions order 1/3) ?
How matching affects “Main” WKB Wave Functions?
How this leads to E formula for Bound States.
4) Details of Derivation? (Not very important)

You don’t need to be able to reproduce derivation




Main Points of WKB Approx:

1) Wave Fn’s themselves: For any shape of potential, (scattering / or bound state situation) above

form approximates the wave function.

Like plane wave solution If E>V

Constant Potential Solution: ~ Aexpi(x kx) h2k2/2m=E-V -
2> WKB: 1/vk(x) exp+i[k(x)dx k=v[2m(E-=V(x))/h]
Andif V<E

Constant Potential Solution: ~ A expi(x kx) h2k2/2m-=V-E 2> 1/vk(x) exp+ [k (x) dx K=v2m[(V(x)
—E)/h]

Just like for plane wave solutions... except for the factor of 1/vk

2) Arbitrary Bound State Potential Problems: Most importantly, for any problem like this:

It yields a formula for the discreteness of the energy spectrum of bound states:

Wy _ |
C VomeE =(rp)m®

»y




”n ¢

x1 and x2 are called the “turning points

Examples: See Liboff

,VD{

Finite potential well -- remember how ugly finding the energy spectrum looked? Transcendental
equations to find the energy spectrum.

Now it’s really easy:

For WKB x1=0, x2 =L (turning points), V(x)=0! (between the turning points)

Now | fOLw/Zm(E —V(x)dx = fOLVZmE dx = \V2mEL

This is the left hand side of the prescription:
P .
'S V) =(hP)TR

To get the energies just set this equal to (n+1/2)nth and solve for E
= (n+1/2)’7* h*/2mL?

Particle in a box the same!!!

Book gives another example.

V(x)=mg|x|  V(2m(E-mgx) Easy integrall!l (~u*”du)

Performance of the calculation is shown in Sakurai for the odd solutions. Great—even for lowest

energy values...

We shall see that it’s performance for low values of the energy in these cases is seemingly a lucky
accident, however usually works! Always yields accuracy for higher values of n.



SHO: V(x) = 1/2w’x’

V(2m(E-mw?x?) = a [V (1 — xmw /2a)
a=V(2mE)

introduce variable u = cos u = xmw /2a
Exact result!

Ewko = hw (n+1/2) = EsHo exact

3) Arbitrary Scattering barriers—of the type:

X4 X
For such problems, use scattering set —up :: Solutions:

Forx<x;: 1/vk(x) exp(if k(x) dx) + R /Vk(x) exp(-if k(x) dx)

Forx>x, : T /Vk(x) exp(if k(x) dx) (don’t allow leftward moving solution in this region)

Then, probability to tunnel through such barrier from left: assuming T is amplitude of the transmission
wave function coefficient to the right, WKB leads to another universal formla (independent of actual
form of V(x))

Teoeff = €XP —2 f;lz)c(x) dx

where k(x) = 1/A V(V(x) — E). Again, exact same type of integral, different use...this is the probability for
the wave function to tunnel through the barrier.



One of the most important applications: nuclear decay — see Liboff (we will do a problem with this on
last pset).




Method 1) In Sakurai : Ignore terms in the differential equation of order i and higher.
Then assume
1) separable solution. W =f(x)g(t) = ™" =vp (x) ™™™
2) Borrow from constant potential solutions exp(ikx) k2 = 2m(E-V,)/h
W(x) = k(x)/h = [ V(2mE-V(x)) /h
(book: above 2 steps: Guess these because of H-J-E method: but who remembers that!)
Details: because of continuity equation there must be 1/vk factor

U~ 1/V(k) exp( i [V(2mE-V(x)) /h)

Method 2) More common derivation Again assume separable solutions of form

First we assume the basic form { = Aexp(iS(x)/h )

-ih d’S/dx’ + (dS/dx)’ = 4m’=\[E — V (x) (0.1)
The crux is to expand the solution around h itself.
[Taylor series expansion:  f(x-Xo) = f(Xo) + (X-Xo)f'(Xo) + (x-x0)?/2 (f(x0)) + ... ]

S = So(x) + A Sa(x) + h?/2 Sy(x)+...
Simple substitution of expansion into (0.1) and grouping all terms to the LHS we get an equation
Fo+ A Fy(X) + A2 Fy(X) .... =0

where Fy = (dSe/dx)*-4m? (E-V(x)) 2= 0 for example.

The key is that every term in this series must vanish independently. Thus we can set each term =0;
Fo=0 = dSo/dx=k(x) (w/k(x) given above.)

If we collect the terms propto h, examining the next equation F,(x) = 0, we find we get a solution for
S1(x) o< In(1/Vk(x)) which means our total solution ignoring all higher terms will have also a 1/v(k(x)
factor.



This gives better motivation for trying the solutions of this type.
Lot’s of equations:

Very Easy to get lost in all the math — lose sight of the usefulness of the WKB

because it’s easy to lose sight of the main result e.g. which equation is the useful one
Strategy:

Point out main result: forget about derivation! Then we can go back and point out in a very high level
discuss where the derivation comes from:

Details:

1) Review: where does the wave fn come from?
1/2m (dS/dx)? + V = dS/dt > assumed form S(x,t) = W(x)-Et (>from separable W assumption)
1/2m(dS/dx)> +V(x) =E = dS/dx =vV(2m(E- V(x)) : S(Xeny) = W(x) =k [*k(x) dx

(Sakurai’s W(x) is just my [ k(x) dx * h)

2) Where does the 1/vk come from?

This comes 1 of 2 sources: -- see above “more common derivation”: look at the next higher order term
(in h) in the equation, those proportional to i (now careful also to expand our exponential solution
exp(iS(x)/h in terms of i as well) we find a second order term needed for S(x) = In(1/V(k)) which when
exponentiated yields the 1/v(k).

Sakurai also derives it from the continuity equation, defining the first requirement to use: we want a
stationary state solution --- means time evolution has “settled down” and we will only treat time
independent potentials V(x) # V(x,t)

Since this is the case dp /dt = 0, and thus from the continuity eq:
dp/dt+V j=0-2> V(pVS/m)=0-> 1-D - d(p dS/dx)/dx =0
thus
p dS/dx = constant

if S(x) = hf k(x) dx then dS/dx = hk(x) 2 p hk(x) = constant



so
p « const/ k(x) =2 Y =vpeiS(x,t)/h > o 1/Vk
3) Validity:

We ignored terms of i and higher to get the above Hamilton-Jacobi version of the Shro equation:
Actually we ignored the term

xh VS« |VS|?
this is what allowed us to derive the solution in the first case. Under our solution choice this equates to
or hd®W/dx* « (dW/dx)*> = d2k(x)/dx2 « (dk(x)/dx)2
So what this translates to, given the following derivatives:
dS/dx =k(x) /h
d?s/dx? = dk(x)/dx = v(2m) d(V(E-V(x))/dx = 1/h ¥ 1 /v (E-V(x)) dV/dx

is the following:

o~ o - __-“.F“[a:sbffes @us)©

What does this condition mean physically?
Remember de Broglie relation: A=h/p 2> A2n =h/p =
Regroup
dV/dx * wavelength = A Vover1wave = A (E-V)over 1 wave K |E-V| value of function E-V(x)
or A (E-V) / (E-V) < 1 (small number)

So it just says what one might have guessed: we want the relative change of the function E-V(x) to be
small over 1 wavelength. This implies a slowly varying V(x) in order for this approximation to work.
Slowly varying with respect to the wavelength of the wave function—that is over one wavelength, the
relative change in the potential (actually the difference function E-V(x)) should be small.



Note: breaks down at turning points!!

And it’s not just the validity statement that breaks down: you can see that the wave function also
becomes infinite... (except maybe for sin() linear combination).

Solution?....this is where the matching procedure comes in.
Matching procedure:

Make linear approximation to potential in turning point region. Then differential equation (Shro—>H-J-
E) becomes exactly solvable. Solutions are Airy Functions (Ai(x))

These are explained in a page from Liboff. Key points: Ai(turning point) #0 !!!!
See scannned notes below:

Just explain graphically

See Liboff Section on Airy fn’s.

Method: see drawing.

tips 1) memorize picture qualitatively....






Points:

1) Asymtotic behavior of the Airy function explains for the cos ( + pi/4) the pi/4 and the two and the A
=B

This type of matching is what is meant by the “-” ‘s in Sak. (eq.2.4.41-42). Different than 1-D exact
solution matching between regions (continuity, etc...)

Seemingly amazing agreement (?) in form of special functions to WKB forms. --- has roots in
doing the problem as a complex integral —no reference to Airy functions necessary. (footnote in Sak).

Review : Matching procedure: finding yet another approximate form for the wave fn in the turning
point vicinity (approximation to the approximation!) Points about these airy fn solutions:

1) one could use it as the wave fn instead of the WKB forms in this region (but our main
uses haven’t really involved using the wave fn’s themselves.)

2) Q: why not use it everywhere instead of the WKB solutions? : because linear approx
doesn’t hold every where. See plot in Liboff—very far away from turning point, phase of oscillation
messed up for the Special Airy Function solution.

3) Primary use is just using it’s asymptotic behavior to constrain the relations between
the WKB solution amplitutdes, phase factor. (the match)

Turning points also imply constraints on validity of (when to trust) the wave fn’s themselves: you want
to have many wavelenghts away from the turning points ideally to trust it.

Note in below scans, | reverted to not including the & in the definition of k(x)= so k(x) = V(2m(E-V(x)) in
below









Lecture 3/8/2010

T)lfu? m?ﬂﬁ:"‘f" ; . e

o 3
be."‘.:?.-@d::_'-‘._g_&: b x"'-i:: ok Y = et ) X ‘{E.\> _ T S e
- i r
= 0/1‘_’ <0 v\ /-"N
Fos in. er.’a.?ﬁ—':/ e e
T ) R ST -~ Tl o Y- ¢ - e‘r-a P

W (x'e we) it *romscbon  smplifudlt & go
Fron st 4o se't!

Trtkorpresermns -
cre D= (x axtli X4 <okl
o ¥ (H;{,{) -a.gcf.ﬂk L{(x-"tff w4+ ) L{-‘n,_('bc’ff)
ke iﬂﬁp,ﬁ?m L oo ?«__;,i—.fm v Spaene £t

K depends on the Hamiltonian (or alternatively we will see, the Lagrangian) really means it
depends on V(x)

Go directly to a result which we can derive later:

For V(x) = 0, the free particle propagator K. has the following nasty form:

37,

) <z
J 3 . ha
' ( -———-—k(‘ )*')

' T, T 2 "-—(K'J{‘ ;ﬁ‘i

{1 — —_———
— 1 —
U gx el = (o) cCt-t )
This is derived in Sak.
So let’s look at Sak. Problem 2.23

V(x) =\ & (x) suddenly turned off. 2> A=0 @ t =0 - find wave function for t>0.



Free particle after t =0 so can use Ksee given above.

From last week we know what t=0 wave function looks like: (& (x) ) solution: ~ Ae™* (k' ~v2m E/h for x>
0; Ae™ forx<0.)

So to get the wave function for t > 0 (and let’s restrict ourselves to the contribution from x > 0)
Y(x,t) = fjooo dx'P(x’,t = 0)Kpree (x,t,x',0)

(% gl pp—k'xr ' 0 4 14 K'x '

=J, dx'Ae Kpree(x,t,x",0) + [ dx'Ae™ ™ Krpoe(x,t,x',0)

=2 [ dx'Ae ™% Kppoo(x,t,%',0)

Insert into our nasty form we get - Y (x,t) =

: “frmd:) )3"'1

i Ky

o o)y ° 4

—_— g (=
() fa C't'-"l-'-
(note now I've reversed x,x’ = replace every x with x’ and vice versa (we are integrating over x’)

OK we got back a nasty integral. It is probably doable by “completing the square” (see later when we
actually derive nasty propagator form). When lwas in grad school, no one | knew was successful in
doing it (or motivated to anyway), and in the problem it says: “you need not evaluate the integral that
comes up”: so no one did. Point: Even Sakurai implies: this propagator method may not be a
particularly nice way of handling things analytically, but still it is functional/usable. | may not be able to
do this integral analytically, but numerically it would be quite straightforward to evaluate. (just separate
real and imaginary parts).

| would always need to go look up propagator for free particle from Sak. though.

Properties of Propagator K:

al RO xt) = axleix O = Fixy
L) UCelel, o) =0 £ << g

C—m«ujhﬂ:‘&? j" O'L.\Q.a ,@Vﬂpﬁgwlm

Implies often unstated 0 (t-t’) function. (Unstated in Sakurai) K—>K x 6 (t-t)



Remember 6 (t) = |

We discussed it before when we said 6 (x) = dO(x) /dx

c) Representation in terms of energy eigenstates.

|a,t>=U(t) |a,t=0>

o, t>=3a" |a’><a’|a>exp (iEx(t-t0)/h)

bra-ing both sides w/ <x”’ |

=<x"]| a,t>=5a <x”|a’><a’|a>exp (iEa’(t-t0)/h)

insert [ |x'><x’| here

we get

<X’ a,t>= [dx Sa’ <x’|a’><a’| x'><x’| a > exp (iEa’(t-t0)/h)
= [dx Sa’ <x”|a’><a’| x'>exp (iEa’(t-t0)/h) <xX'| a>

U (x’t) = [dx Sa’ <x”|a’><a’| x'>exp (iEa’(t-t0)/h)  P(x,t0)

= K(x",t, x’, t0)

=Sak 2.5.8 =5 a’ <x”"|a’><a’|x’> exp (iEa’(t-t0)/h) slightly different way

example:
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Exercise Finish Integral yourself. Putting the i€ in probably means evaluating it with a complex contour
integration.

d) Green’s Fn:
Note that we can write our relation from d) Sak 2.5.58
Sa <x’|a’><a’|x'>exp (iEa’(t-t0)/h
WGl e = T o wn g RS

= Ew@‘(,w ) da (e, '+)

(a > a, t'=>t0)
Example where should put 8 fn in: really should be
P B I
Z $r (K" T) W A t} gl'l'-_ro)
W (a=>a, t'>t0)
call K*

Now consider the time derivative times- ih (= the RHS of Time Dep Shro. Eq)

=-ih d/dt(K)6 (t-t0) +ih K &(t-t0)



but from property a) K(x t,x’ t) =6 (x-x") so second term becomes A &(x-x")6(t-t')

This explains the appearance of the extra delta functions in eq. 2.5.12

(H-kD¢ YW (e, xt)= -t =0 fFox

which you guys know from your Classical Electro Dynamics course: defines K as the Green’s fn. (e.g.
plug this into Green’s Theorem). This was already apparent from its use. Now we’ve defined it
formally.

e) Relation to Partition Function (not covered in lecture, so optional)

(8 = (e lelee xa) &L R
_DE::.‘H
Pmé{m_ Frerc s s = E_’: 2 . ok
= S A e L”f(:ﬁ‘”,a ":;‘E"‘))

b L’\hﬂ?hdﬁv’a‘-

Thus techniques for evaluating propagators in QM can be applicable to Statistical Mechanical
calculations. I've seen this done in “Lattice QCD” calculations for Heavy lon Physics. Remember 3 =
1/kT sot « 1/Tis something one must remember when looking at results of these calculations.

This is easily seen as shown in Sakurai:

The key was that once we pull out a factor of exp-iEt we have separted out all the time dependence of a
heisenberge basis state: |x,t>= |x>exp iEt.

Thus our expression for the propagator expressed as a sum over enery states,

K(x",t'x", 0)=5 <x'"'|a><a|x'>exp(-i(Ea-E)t/h)

if integrated over x' and with values forced to satisfy x'"'=x' then

K(x t=iB x, 0)



Then we can easily write partition function version of the probagator
K(x, t =i*t/B, x, 0)
= 5, <a| (Jdx|x><x|) |a>exp(E*B)
with middle completeness relation removed:
=5, <ala>exp(betaE) = ortho normality: <ala>=1

=3 . exp(BE) = partition function

f) Composition

(starting definition of propagator <x,t|x,t’>)

-:-x%‘!xt‘?ﬁgcfx“i”'f': .!'-c"rt”?
‘:-»-*"”ﬁ'".l'}:'t\)

=V =" (et ) (X <€)



Lecture 3/9/2010
1) Feynman Path Integral

This is another “formulation” of Quantum Mechanics based on this last idea of composition. Suppose
we visualize the composition form of the propagator K given on the previous page as an integral over
“paths” in “label space” —an x,t plane. Going from the point (x=x, t = t) to the final point (x=x’, t=t’) .
Since we are integrating over all values of x”” at t =t”” we can think of this as the sum over a bunch of
different paths as drawn. Note that here the lines themselves are artificial what we are really talking
about is 3 points for each “path” with the 2 point s on the end fixed, and the middle point varying.

M
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So =for K(x’,t’; x,t) we can actually break up evolution / propgation in arbitrary number of steps.

Do last suggestion: Applying composition property arbitrary number of times: As we increase the
number of intermediate steps, we start tracing out more and more possible paths between x,t and x’,t’.

atc...




If we do it formally N times

a4 A
. T et
X
== 4 4 I B
q’f '"_—_—__H-
‘:f: .l(.“c B

Eventually If we take the limit of N=> infinity and each time interval infinitesimally small: (t,-t,.1)/N >
0.. then each set of the actual lines that connect x,t, to x’,t’ become more and more “real” (include
more and more points) such that at N=infinity we really are talking about all arbitrary paths (in the sense
of a line integral) between x,t and x’,t’ that lie on the infinite swath of the x,t plane between t and t'.

Therefore in this case it should be clear that this represents:
Sum Over All Paths

So instead of a single integration always think of Quantum Propagation as Sum Over All Paths, which
In Quant Mech called “path integral”. (not the same as typical path/line integral, because it’s all paths).

This expression for K would look like
limN — oo ( Kyn= Jdx; Ky, J dx2 K2...f dxy Ky )
Note that for each path we are still integrating over a propagator each integration:
Kn = K(xn, t,, Xn.1, th.1) = <xn,tn|tn,tn-1>

This is an infinitesimal propagator <x,t|x+dx, t+dt>



Feynman Path Integral Method of Propagation: Simply says that it turns out that the infinitesimal
propagator is given by

exp(iS)/h where now S is the classical action

g‘ihﬁ&l = S L HRe st~ %’“ per&s
£

where

a) £ is the Lagrangian = T- V: different from the Hamiltonian H in two ways 1) the — sign in front
of V and 2) because T = p?/2m, V(x) are now classical quantities, NOT functions of the operators p and x.

In fact this result can be derived from what we said so far: see this derivation on the next page (taken
from Verbaarshot)

b) this integral IMPLIES A PATH taken through x-t space, though not explicit in notation. In
classical mechanics there is only 1 path, (the one for which &S = 0) so no need to make it explicit
Review classical action integrals: See Sakurai p116-117 for example. In our case we must consider all
paths.

The point is that we can use this form of the propagor to derive the time evolution of the wave function
U(x,t) at any arbitrary point x given an initial starting wave function § (x,to) through the “propagation of
source” integral defined before for the propagtor, and this calculationally can be done by integrating
over all paths in x, t space through the Feynman Path Integral
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What was all this good for?

Q: OK what can we use this for ?-- A: Sakurai: for us “NOTHING analytic because in general this [ D[x]
operation (infinite number of integrals) seems impossibly unwieldy. In more advanced treatments
(quantum field theory, etc) where it will have a slighly different formulation, it can become useful.

Exceptions (ie 3 uses/implications for us)

1) (Exact) In Quantum Field Theory you’ve no doubt noticed from talks you’ve seen that the Lagrangian
seems to be what is focused on, instead of the Hamiltonian in advanced physics. This is the major if not
the only reason why.

2) (Approx) Numerical Integrations over small regions If we limit the number of N to something finite,
but still large, and also (where space which paths can go over is finite)

3) (More approx) Semi-classical approximations: However one point that Sakurai is trying to make but
does not concentrate on (he hints at) is that it’s’ good if we want to use it to make a certain
approximation -- a “semi classical” approximation!!!! -- we don’t have to deal with the sum over all
paths. ---Only the classical path contributes.

(See handout from Liboff!)
Thus in this case
propagator : [ D[x] exp i S(X)/h = [1class path €XP(iS(x)/h)
W2 we

As the handout from Liboff explains, this means we actually get the WKB solution back ! as we
approach the classical limit. (explain details) This implies two things which are major points | hope you
remember:

a) Feynman Path Integral justifies WKB and generalizes it (we could do it in 3-D too with
Feynman)

b) Going backwards, Feynman Path Integral “formulation” automatically recovers classical
mechanics, through the logic which we connected WKB->Hamilton Jacobi Equation

3) Phase changes within semi-classical approximations: Under this semiclassical approximation we
are justified to calculate approximate expressions for phase changes gained or lost when traversing
classical paths. QM amounts to phase changes added onto classical dynamics. This is what much of the
next Sakurai section 2.6 is based on, although the path integral is only mentionned explicitly for the
Aharonov-Bohm effect.



Why can we? Recall Libofff prescription
propagator : faipaths DIX] €Xp i S(X)/h 2 [1 class path €XP(iS/h)
> exp(i/h feasspatn L dt)> L=T-V > 2T—E =mv’-E
class path 6 E =0, so we can define a different action L+E
then = exp (i/h [ cass path (MV2) dt = exp (i/hf mv v dt)
=exp(i/hf p dx)

in other words ¥ 2 U wie

Review Feynman Path Integral: Not much use in elementary Quantum Mechanics
Exceptions: 1) calculating Quantum phase changes for semi-classical trajectories (today’s topic)
2 Questions remaining in my mind about Feynman Path Integral after reading Sakurai:

1) How is this a complete formulation of QM? How could we use it to solve 1-D problems? Answer:
Use the WKB approximation + other nearby paths systematically to progressively get better & better
results (like a numerical solution).

2) Feynman: Free particle propagator for infintesimal propagator K(6t)=> form still works for finite At
propagator K(A t) ? propagator (because we derived K(At) before talking about Feynman). Exactly,
how does this work out?

Answer: [D[X] K"ee = Kiee? Product/Convolution of Gaussians = Gaussian? This probably works



J) Sakurai 2.6: Feynman Applications: phase changes in QM from Potentials
1) Example: Gravity in QM.

Gravitational Potential:

H = p®/2m + mgy

Consider quantum phase changes of Y as particle propagates around square loop in this potential

U
__—_;&'2":1’“&-—‘@; L | Qi | I S
- <.\ ——
A A . S
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Suppose propagation of identical particles to D along two paths different paths ACD, ABD, examine
interference

This time REALLY USE Feynman Path Integral = w/ classical approximation —> WKB like solutions

In other words, since we’re on a 1 dimensional classical path, we can treat it like a 1-D problem.
However the path integral goes over the path in 3-D space.

e.g. bottom leg AC:

More importantly for this application, we can calculate the phase gain ¢ of each leg from this term. This
phase gain can lead to QM interference ifsuperimpose two such wave functions, just as with the last

example.

O nc= [ o prdx
x0

bsp = fx ppdx

¢ CD=0AB = [Tp,(y)dy = dv

Phase difference A = 1/h[(pl-p2)dx = (p1-p2)l/h



to get in form of Sakurai 2.6.17 :> E is constant so p,” /2m + mgl, = p:*/2m

PR 2 (R ) =P ) = =2 Q)

so Ap=— 2m?g by Ly if p1 = p2 then =2p, = de Broglie=2 i /A
[ (p1+p2)] " ° > e
2m?glyily A

hZ

same as Sakurai except Sakurai considered rotating loop such that I,=21, sind

ie if & =0, flat table top no effect

Physical Consquence of A® : You already learned in Wave Mech (see Liboff Ch. 2.5/2.6) how phase
differences cause interference effects in Quantum Mechanics. In any case where the wave function of
a system is made up of a superposition (ie the sum) of two parts OR even has a part that is, the
probability, which is the norm? of of { will have an “interference” term if those 2 parts have any
difference in phase:

Ejﬂg %«4 :. ké+%+(7Lz
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where A and B are some other real numbers and A® = ®; — ®,. The cos A O term is called an
interference term the probability represents the probability to find the particle whose wave function it
is, and thus that probability oscillates—it has minima (“destructive” interference) and maxima
(constructive interference).

In the gravity case above the intererence could be observed at least two ways for example: 1) the way |
explained in class was since the experiment described in Sakurai sent neutrons on these two
trajectories, it turns out that neutrons have funny property: they are elementary particles which are

I”

“identical” meaning there is no way to distinguish one neutron from another. This means that a system
of 2 neutrons will always need to have a “coupled” ie a single wave function if they are close enough in
space—that single wave function will include two terms that each (more or less) have the phase of each
individual neutron. In this case if we shoot two neutrons off from point A at exactly the same time over
the two separate trajectories ACD and ABD, the probability to detect either will have this interference
term. 2) even more simply than that, comparing with the double slit example of interference, one could
just allow one neutron to take either path but not measure which path—then the wave function of the
one neutron will still need the include components that are a superpostiion of going over both paths.
Thus the interference will still result. (Note that whether one sees a minima/maxima also depends the

exact lenghts of I, and |,.)

Corners of the loop: By the way another approximation that was made in the gravity example was that
whatever force/potential that caused the neutrons to bend at the corners of the square loop somehow
cancels out or can otherwise be ignored. This is probably the hardest part of the experiment—ensuring
that this happens.

Interference plotted vs 6> experimental verification of graviational effect. (Sak Fig 2.6)

I SVANAVAWASS

This result is especially important because it proves that gravity affects particles even on the quantum
scale, which is a very small scale compared to usual scale of gravity effects. Further considering that
Einsteins General Relativity describes gravity as just a modification to the geometry of space, it may
even be surprising. In any case this result must constrain any quantum theory of gravity, something that
is currently being searched for—string theory is one candidate.



2) Phases from Electromagnetic and Constant Potentials
a) Static Electric Potential and Constant Potentials

Constant E field: For the static Electric potential ¢(x) things work exactly the same as they did with
gravity above in the case of a constant electric field, for example imagine in the y direction again. Then
instead of a neutron we would want to consider a charged particle, but everything else would be exactly
the same since the potential function would be ¢(x) = Ey. Same results w/ mg replaced by E.

We can imagine more complicated potential functions ¢(x), we would just need to integrate that
function with a line integral along the trajectory.

Contant Potential. A special case of this would be ¢(x) = constant. This is just a specific example of any
constant potental V(x) = Vo everywhere. Thinking of 2 trajectories within this potential, both
trajectories will always have the same phase gain when we integrate, so there would be no phase
difference.

But it is also quite easy to imagine two regions of space with different constant values e.g.

Then if we imagine the same loop of 2 trajectories ABD and ACD we will just indeed obtain the exact
same phase difference did as for the gravity case again, but now just with V(y = BD) = mgl, replaced by
the value of the potential along the top leg BD in this casse which is V,. (We can assume the side legs
still cancel in the difference of phase. )

Sakurai chooses to treat the case of constant potentials differently and only considers phase differences
arising from the difference in time dependence due to the region of constant potential. Although we
won’t cover this in class, this is covered after this section in the notes below.



b) Full Electromagnetism: Vector Potential A (adding Magnetic Fields)
First need to introduce some properties of A and convenient way of working with it:

First part of this section is kind of a digression from the phase changes part, in that | expect you to learn
a little about the Full Electromagnetic treatement in our Quantum Formalism....

Unfortunate: 1) Electrodynamics First Semester : Hamiltonian/Lagrangian involving A not covered
yet!!!

& 2) Undergrad EM courses won’ t cover Hamiltonians—> ie this is first time you’ve seen classical H with
Al

Sakurai states form of H—where did this come from? It’s a little bit circular...
Summary of Sakurai 2.6: :

State form of H (from classical physics)=> QM commutation = < Eq.’s O.Motion> = Erhenfest >
Classical EOM

state p- eA/c is called it “kinematic” momentum

Then (surprise!) state Lagrangian (from classical physics) 2 L+e/cv - A classically w/ no justification

My strategy, and also this is how H should be derived in classical mech
First derive form of Lagrangian L from classical EOM
L > generalized momentum Lagrange Eq pgen = p+eA/c

L2 H Lagrange Definition of the Hamiltonian

Lagrangian in Classical Mech
L= 1/2mv’ - qd +q/c(v-A)

¢ is electric potential A is the vector potential where the electric field E=-V ¢ and magnetic Field B =
VxA

Why does the Lagrangian have this form?



Start w/ Lorentz Force eq replace q w/ e suppress ¢
F=eF +q¥ xB
Remebrering also (w/ d; = d/0t) that

B -
VXE:—% ='V XatA

So rewriting the Lorentz Force, we have:

T
g

= q[- V98 A+ix(Vx A)
Remember Vector identity from e.g. Front Cover of Griffiths E&M: (or view Wikipedia)
VA-B)=AXVXB+BXVXA+(A-V)B+(B-V)A

so our equation becomes (dropping space derivatives of velocity, like dv/dx, because in the
Lagrangian/Hamiltonian formulation of classical mechanics x = v is treated as variable indpendent of x

T (A dA
= q[-V6-0,A—(7V) A+V(7-A)| = V[-qé+q7- Al —q—.

where total derivative: dA/dt= dA/dt + dA/dxdx/dt > JA/Ot+(v-V)A

So for x-component of this equation we get

d e d
—(mv +EA) =a(q¢ +qv-A)

Recall Euler-Lagrange equation, which is the main equation of Lagrangian Mechanics—it defines what
the Lagrangian is used for.:

40L oL
dt 8z Oz

looking at the equation it is clear that the choice L =1/2mv? -(gd - qv- A) will work

because
-V

WewantlL=T-V V-2 V(x) dL/dx=-d V/dx takes care of RHS



Defining “generalized momentum”: § = dL/dx =dL/dv =mv +eA/c works for LHS
Now the form of H comes from E-L equation H=3xp -L=xp -L

more on this later... in class we were confused by the fact that it appeared that putting this substitution
in led to a Hamiltonian:

H=%mv’+ed which interms of the plain old momentum p = mv: H =p?/2m +ed

Confusing for 2 reasons: Where did the vector potential go? And does this disagree with what Sakurai
defined as the Hamiltonian which was

H=1/2m(p-qA)* + e ?

Confusion about L->H-> Is generalized momentum p+A/c or p- A/c?

Generalized Momentum is indeed pgen = mv+A/c  Also called canonical momentum in Sakurai

First see weblink on webpage: proves the following: Yes: since pgen = p =mv + gA/c= pyqg+ gA/c

...copied from Wikipedia

Charged particle in an electromagnetic field [edit]

A good illustration of Hamiltonian mechanics is given by the Hamiltonian of a charged particle in an electromagnetic field. In Cartesian
coordinates (i.e. g;=x;), the Lagrangian of a non-relativistic classical particle in an electromagnetic field is (in Sl Units):

i i
where e is the electric charge of the particle (not necessarily the electron charge), ¢ is the electric scalar potential, and the 4; are the
components of the magnetic vector potential (these may be modified through a gauge transformation).

The generalized momenta may be derived by:

oL tj + eA
pj = 0 = Mj e i
('j.’l‘lj
Rearranging, we may express the velocities in terms of the momenta, as:
. pi—edy
Tj
m

If we substitute the definition of the momenta, and the definitions of the velocities in terms of the momenta, into the definition of the
Hamiltonian given above. and then simplify and rearrange, we get:

. —eAd)?
szig‘p‘i_ﬁzz% | CQD

This equation is used frequently in guantum mechanics.



Points

* Indeed the generalized mom p = mx +eA/c (+sign!)
and thus it’s true that H=1/2mx? +e¢ evenw/A
present. That doesn’t mean A has no effect however,
because now x depends on A. In fact writing it this way
just hides the dependence on A.

* Thus in Sakurai the “p” in his H is actually p !
s r\—f"‘”’cw
- e :
4= L (F=2R) +=4
* Two important points:

— P isstill the operator that generates translation, when a
magnetic potential is present: it is therefore the operator
that has the commutation relation [x,p ] = ii

— The old momentum, mx, mv, which is what Sakurai calls
mx =1t = p —eA/c now therefore has a different
commutation relation

_______________ REPEAT

f= mx +eA/c andthusit’s true that H=1/2mx* +ed even w/ A present. That doesn’t mean A has
no effect however, because now x depends on A. In fact writing it this way just hides the dependence on
A.

Two important points:

P is still the operator that generates translation, when a magnetic potential is present: it is
therefore the operator that has the commutation relation [x,§ ] =ik

The old momentum, mv, which is what Sakurai calls mx = N = —eA/c now therefore has a different

commutation relation
Quick way to see [B, x] =ih = From the Euler Lagrange equation d/dt(dL/dx) = dL/dx —>LHS

d/dt(dL/dx) = dp/dt =1/ih[H, ] =1/ih[V,p]=dL/dx=-dV/dx -> ie satisfies samerelation for any
function V(x) as previous p did. (Relations in prob Sak 1.29)



OK now that we’ve establshed that note another interesnting feature of the N operators:

= -1 Tt A =

.__._'L._';;.I-{ ML n__I;:r_Ej,;_,"Fi_h-. E&'ﬂ.. R

Be comfortable with exploiting the commutation relations of the § and N operators.

For example in clase we went over the solution of Sak Problem 2.36: Constant B field B, in the z
direction implies that [M,, MN,] = B, Since this is true, it should be easy to guess 2 different linear
combinations of INx,y we could call “a”, and “at” that will satisfy the real a and at commulaion relations
of [a,aT] =1 AND at the same time can make up the part of the Ham that include M x,y . Which is just

MP=nNx>+Ny*+Nz> (hint: think AN x* iBMy)

For now, we’ve defined the Lagrangian, so let’s finish up our last example of phase gains from the
vector EM potential A—the Aharonov-Bohm effect:

However now that we’ve introduced the form of the Lagrangian we first must note that the velocity
term causes a change to the form of the Semi-classical Feynman path integral Wave Function form

(bwee)-
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This is slightly inaccurate as the 1/vk term should also be modified, but clearly the exponential/phase
function part “splits off” this way, and we are only concerned again where with the phase. This split off
follows simply from the fact that exp (iSaction/h) = €xp(i/h [ Lo+Lmag dt ) = exp i/h [ Lo )exp(i/h [ Lmag)
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where flux is the Magnectic field flux since Curl A=B

Point : once again Quantum effect where in classical mechanics there would be no effect since there is
no magnetic (or electric) field anywhere in the classical trajectory!

Two other things

1) In class we mentionned that following Sakurai’s example we don’t necessarily have to make the semi-
classical approximation to see this phase difference--- we can just consider the full Feynman Path
Integral expression:

Janpaths D[X] expf Ldt  because even though this is over all paths, the [ A ds that comes from [ L dt for

all paths will be the same for all paths because the conservative vector field path integrals are path
independent.

This just means we can write the Feynman propagator

K = Jaii paths D[X] expf L dt = [ 4ipatns D[X] €xp J A ds where the [ A ds can now be evaluated by choosing
any single path above or below.

The phase difference § A ds = @y comes when we take the phase diff [ Aup — Adown ds



3) Constant Potential in QM - weird:

Constant (in space) Electric/Gravitational Potential causes no observable forces in classical
mechanics—no effect from value assigned to V

However but they do have observable effect in QM!
Explore this idea: consider AV = constant

Such change of these fields called a gauge change—> because in classical mech we are just redefining
the strength of the potential , and in classical mech, we say observables are symmetric in --constant
with respect to—the choice of this gauge.

Compare situation w/ and w/o a constant pot W

SVt o EoerW

VN R -G I PV SN w5 8 e

..... B Llwe et
NG 2 o Y o TR TR

~ 7 W)

OK—this is just a phase factor: when we look at the QM observable p = Y* > still no effect.

= i

To see effect, we must look at the phase difference btw 2 states in different regions of potential,
which means we need to have a change in potential between 2 regions:

To accomplish (Sakurai): have a constant potential which changes with time.
H-> H+W(t)> H + Vot

oooh : We have so far been avoiding H’s w/ explicit time dependence.
Recall from beginning of Chap. 2) — Solutions for Time Evo Operator U(t) (on board)

1) U =exp iHt/h only for for time independent H

2) U =-exp i/h [dt H(t)/h for slowly varying (and commuting) H

3) otherwise (non-commuting) U = messy = [ dt1 [ dt2 H(t) = Dyson series (like Feynman [ D[x]
Use case 2 of our solutions here: applying to a wave function 2 <x| U(t)]| a>

= <x| exp i/h Jdt (Ho(t)+W(t))/h |o >



since W(t) and HO(t) obviously commute (Q: why?) 2> we can rewrite this
<x| h expi/h [dt W(t))/h expi/h [dt (He(t)/ |a>
expi/h [dt W(t))/h <x|a, t>

so NOW we have

Before Continuing:

When applied to the Wave Functions like this, this is example of Adiabatic Approximation



Adiabatic Approximation (A.A.) (Reminder from Wave Mech)
if H(t) changes slow enough—> even if [H(t1),H(t2)] # 0” don’t worry about “messy”

If in “nth” eigenstate stays in the “nth” eigenstate. e.g. ground state remains ground state,
spin up remains spin up, even though it’s really a new state defined by the new Hamiltonian

Another example: SHO time dependent w H=p*/2m +% w (t) X*
Ground state energy changes w/time Ey=h w(t) /2

Phase gain by wave function from Time Dependence operator = exp i/k [dt (Ho(t)) so |0q>
> |Onew>expi/h [ A w(t) /2 dt

k
Our Example: time dependent Stern Gerlach Hamiltonian : E
H=e/m.cSB ..
suppose oscillating B: B 2 |B| % cos(at) + ¥ sin(at) S-'ﬁ\
H=w (S, cos(at) + Sy sin(at)) =w S -n(t)

=l

—

Obviously H at different t's do not commute e.g. [Sz(t=0), Sy(t=am /2)] o< Sx

Adiabatic Approx: says that |a> = eigentate |+> at t=0 will stay as spin up eigenket |S 'n(t)+> : as long
as (if ais small enough.) ie the - state moves slowly along with the H operator

In this case the time dependence is the following: Energy doesn’t change (E=eh B/2mc) only
eigenket direction changes so we don’t need to worry about exp i/ fdt (Ho(t)) integral > exp iE|..t/h
(constant)

Berry’s Phase’s

Actually this is not quite true. In fact because of the direction change, there is another factor that
arises from consideration of the Shrodinger eq itself HW = d/dt W (partial time derivative rhs?)

There must be a term related to the total time derivative of H, dH/dt = dH/dB dB/dt, that should arise.
B is a vector so this should be written as a gradient in “B-space” = Vg H dB/dt

As described in Sakurai Appendix: this leads to an extra phase term, that is called a “Berry’s phase.”

This phase depends on the geometry of the three components of B being a vector. These components
are parameters which H depends on . So it depends on “Geometry of the Parameter Space of B.”

If we generalize this situation to any Hamitonian that which depends on any set of parameters : we can
find that whether this extra phase arises depends the geometry of the parameter space: Hence the
alternative name Geometric Phase (it refers to the geometry of the parameter space!)



OK back to our example:

Make simple set up to test

o . S [
S - S@ . e

' Note: it is the Feynman path integral / Semi classical approximation that tells us to think of
the situation this way, with well defined classical trajectories

So we have within the cages _ _“E{ Lﬂ’f _____________ .
& - -— ¢ =
assuming identical particles \{:: =7 == "-ft.felf'lr »
wave fn interfere: i AH-— —_—t 2 - ...('P — ..
) ?F‘Q.E‘v-_;f_”“; wx X __JV: ft‘l/t' _ L_JZ_%LE ! LI
- o lj-' ¢, 4+ L f.‘f’fﬂ-l__
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Imagine if ) ’ . This should be the case at the interference region, since there V, =
V,

=2|P1|(1+ _Je’-ijl’ulﬂf'bfﬁft._}-,- —L&Ll&jrﬁh’t‘ )

x 1 - interference term

Observable effect from potential !!'!l constrast with classical situation !

First example of potential gauge
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