Three Practice Problems for ~Midterm Material for Practice for the Final

Physics 611

- 1. In a one-dimensional problem, consider a particle subject to potential energy V(x) = -fx, where f is a positive constant. For what physical problems might this potential be relevant?
- (a) Ehrenfest's theorem: Determine the time derivatives of the expectation values of the position x and the momentum p of the particle.
- (b) Integrate the equations you obtain part (a); compare with the classical motion.
- (c) Show that $\langle (\Delta p^2) \rangle = \langle p^2 \rangle \langle p \rangle^2$ does not vary over time. Useful relation: [AB, C] = A[B, C] + [A, C]B.

2.

Two Hermitian operators anticommute:

$${A,B} = AB + BA = 0.$$

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove or illustrate your assertion. Hint: Examining $\langle a'' | \{A, B\} | a' \rangle$ will be helpful.

3.

The observable A has eigenstates $|1\rangle$ and $|2\rangle$ and the hamiltonian operator is $H = C(|1\rangle\langle 2| + |2\rangle\langle 1|)$, where C is a constant.

- (a) Derive the energy eigenstates and their eigenvalues.
- (b) For a system in state $|1\rangle$ at t=0, find the state vector (in Schrödinger picture) for t>0 and the corresponding probability for it to be in state $|2\rangle$.
- (c) What physical situation can this describe? What is then A, H and C?