Problem Set #2 Physics 728 Spring 2012

1) Derive the solution for the s-wave scattering phase shift in the low energy limit for an attractive

square well potential (V(r) =-|Vo| forr < Rand V(r)=0 r>R).
herel meanttotal, elastic,andinelasticcrosssection
2) Derive expressions for the partial wave sums of the total, absorptive/inelastic cross sections (s) in

terms of the Partial Wave Scattering Matrix Elements S,and associated magnitudes 7,and phase shifts.

3) From B & D: Do Problem 12 below. Additionally, under what conditions for the values of the phase
shifts will these terms dominate the angular distribution of the phase shifts?

4) Either do B &D Problem 11 below, (ignore the statement about “single §, phase shift” and ignore
spin considerations), or pick any number > 3 of non-zero phase shifts for any /values (need not be for
just s,p, or d waves) and use the macro provided on the web site to plot the angular distribution (feel
free to plot as do/d(cosf) ).

5) Read the first paper “Justification for ...” in the attached pages (excluding APPENDIX), as well as the

4

first 4 pages of the second paper “Application of ...”. Answer the following questions:

a) How does Eq (2) in the first paper for the phase shift compare to the conditions we described
for minima and maxima for a given phase shift?

b) Explain/Derive Equations (3),(4), and (5), in the first including the limits on the sum over |
values, and the relation between the 7, discussed there and the 7, used in class/B&D/Vogt.

c) Relate figure 5 of the first paper to Figure 1 of the second paper.

(11)If both/ = 0 and I = 1 waves contribute to n-p scatiening, evaluate
the scattering angle dependence of the differential elastic scattering cross
section in the simplifying assumption of a single 8; phase shift. Plot the
expected cross section as a function of scattering angle assuming 3o = 45°
and §; = 30°.

(12) Suppose that in an elastic scattering experiment between two structureless
particles the center-of-mass differential cross section may be represented by

do

—— = A+ BP1(cos@) + CPy{cos@) = -- .
io 1 2(

Express the coefficients A, B and € in terms of the phase shifis &;.

From Bertulani and Danielewicz, Introduction to Nuclear Reactions
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Abstract—The simple nuclear Ramsauer model has been
tions for more than four decades but has not been widely

model calculation with the
tions are shown 1o validare the yse
in the neutron energy region of 6
energy dependence of the neutron total cross section.

I. INTRODUCTION

The nuclear Ramsauer mode} was proposed by Law-
son' more than 40 Yragoas a way of understanding vari-
ations in neutron total cross sections. Peterson? applied
this model in detail and was able to fit guantitatively a
large number of neutron total cross sections in the 6- to
60-MeV energy region. Although successful in describ-
ing many experimental results, the foundations of the
model seemed so unrealistic that it was nat widely used.
As applied by Peterson,” it utilized the assumption that
the scattering phase shifts were all equal, independent of
angular momentum. This was equivalent to assuming that
the nucleus looked like a right circular cylinder, i.e., a
“slug model,” with the beam incident along the symme-
try axis. Intuitively, this seemed unrealistic. Franco® used
the Glauber® approximation and evaluated the Ram-
sauer model by integrating over realistic path lengths as
a function of impact parameter for a spherical geometry.

‘Franco® demonstrated that the assumption of equal phase
shifts was not required but that only the average value of
the phase shifts as a function of angular momentum / for
a given energy needed to vary slowly with energy. How-
ever, because his model did not include refraction at the
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of this simple nuclear
10 60 MeV. This mode! yields g simple formula for parameterizing the

used successfully ro Jit neutron total cross sec-
used becatise the foundations of the mode! seem
inclusion of refraction and optical model calcula-
Ramsauer model for neutron total ¢€ross sections

nuclear surface, these calculations actually yield poor fits
to the oscillations in the data.

- More recently, the Ramsauer model was extended to
include neutron Spin-spin interactions,’ and subsequently
an isospin dependent interaction was added.® With this
latter extension, the model was able to fit neutron total
Cross sections to a few percent and to fit the differences
in total cross sections for adjacent isotopes.

The purpose of this paper is to demonstrate the phys-
ical basis for the success of this simple Ramsauer model
and to show that the deficiencies in previous Glauber cal-
culations were due to the neglect of refraction for neu-
tron energies of 6 to 60 MeV.

We begin by reviewing the basis of the nuclear Ram-
sauer model and by showing how well it fits experimen-
tal data. We then extend the Glauber model to include
refraction, and we show that the average path in nuclear

‘matter closely approximates 2R. We present the results

of optical model caiculations that kj ghlight the similari-
ties and differences between the simple Ramsauer model
and realistic calculations. We also discuss potential ad-
vantages of this simple model for simulating large quan-
tities of nuclear data for applications, A preliminary report
of this analysis has been presented in Ref, 7.

IL REVIEW OF RAMSAUER MODEL

The basic picture of the nuclear Ramsaver effect® in
neutron total cross sections is shown schematically in
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Fig. 1. A neutron wave is incident on a nucleus repre-
sented by a square well potential of radius R. Interfer-
ence between the part of the wave that has traversed the
nucleus and the part that has gone around causes oscil-
lations in the total cross section.

The first application of a Ramsauer-type model was
by Lawson' in 1953. He calculated the phase shift asso-
ciated with the passage of a neutron through a siab of
nuclear material with a real attractive potential V, which
was small compared with the neutron energy. From this
he deduced those energies at which the neutron total cross
section would be a maximum, i.e., phase shifted by odd
multiples of 7. He concluded that the agreement with
data was as good as could be expected given the crude-
ness of the calculation. ‘

Peterson” evaluated the equivalent phase shift for a
spherical geometry and obtained

4 .
B = ?n (kin - kout)R ’ (1)

where 4(R/3) is the average chord length through a sphere;
n is a number somewhat larger than 1, allowing for the
path length increase inside the nucleus due to refraction
effects; and k,, and k,,,, are the neutron wave numbers
corresponding to Fig. 1. As already shown by Lawson,’
the condition for a maximum cross section is maximum
destructive interference between the two wave compo-
nents; i.e., :

4n
18 = m3_ R(kin - kaur) =mi ,

m=135,...,0dd . (2)

kout ’ I I
——

Fig. 1. Schematic representation of the Ramsauer pro-
Cess. A neutron wave is incident on the nucleus represented by
4 square well potential of radius R. Interference between the
Partof the wave that has traversed the nucleus and the part that

has gone around canses oscillations in the neutron total cross
Section. .
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Peterson? evaluated this phase shift using optical poten-
tials then available to determine the index of refraction
n, and his comparison with the existing low-energy neu-
tron data is shown in Fig. 2. Peterson? also showed
that the total neutron cross sections could be split into
two components. The nonelastic cross section was well
described by the black nucleus approximation

One = (R + ), (3}

where A is the reduced neutron wavelength, and the elas-
tic cross section oscillated about this value because of
the Ramsauer-type interference. No detailed comparison
of total cross sections was attemnpted because the model
was thought to be too crude compared with optical model
calculations that were available.

To make detailed cross-section comparisons, we be-
gin with the assumption of a slug model; i.e., the nucleus
1s assumed to be a right circular cylinder with the beam
incident along the symmetry axis. The 0O-deg scattering
amplitude is given by

f(0deg) = 2—;- %(2! + {1 —e™) | 4)

Because all path lengths are equal, we can assume
7, is a constant independent of /. Summming over ! from
I =0 to kR, we obtain

SOdeg) = TR ac®), ()

where we have replaced n, by —ilna + 5. Using the
optical theorem we obtain -

or =27(R+ )1 - acos ) , {6)

where the average behavior of the tota] cross section is.
described by o, =2ar(R + X)? (the black nucleus ap-
proximation), and the effect of the interference or Ram-
sauer effect is reflected in the (1 — & cos 8) term. Here B
is still the phase change in passing through the nucleus,
and «, which is <1, represents the absorption of the in-
cident wave. :
Franco® was the first to attempt a theoretical eval-
uation of the Ramsauer model. Using the Glauber ap-
proximation, which totally neglects refraction by the
nucleus, he was able to show that Eq. (2) is too restric-
tive and, in general, not correct. He showed that what
was required was that the average value of the real part
of ™ be a maximum (or minimum} and that, in gen-
eral, the phase 8 was not an integer multiple of 7. He
also explicitly included the absorption process. Using
the unmodified Glauber calculations (valid only at high
energies) gave poor agreement with the data. By includ-
ing a modified version more suitable to low neutron en-
ergies, he was able to achieve very good agreement with
the location of the maxima and minima in the neutron
cross sections. However, the low-energy structure in the
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Fig. 2. The experimental maxima and minima in the neutron total cross sections are shown compared with the predictions of

a simple Ramsauer model. (This is taken from Fig. 1 of Ref. 3.)

total cross sections was largely washed out, and no quan-
titative agreement was achieved. This is not surprising;
detailed agreement was not the expected goal of this
effort but rather a qualitative understanding of the un-
derlying processes. More recently the interference prop-
erties of the nuclear Ramsauer effect were used by Gould
et al.’ to elucidate the differences between the real and
imaginary parts of the two-body spin-dependent force.
Following Gould et al.’s work,” Anderson and Grimes®
extended the Ramsauer model to ioclude isospin. In
addition, they attempted to describe precision total
neutron cross sections using this model. In Fig. 3 we
reproduced the comparison of the "“°Ce total cross
section measured by Camarda, Phillips, and White® and
the Ramsauer model used in Ref. 6. Because Anderson
and Grimes used the radius R taken from Peterson,” it is
clear that with a small adjustment in this value, the data
could have been fit at the 1 to 2% accuracy level. At
that time, this level of agreement was considered fortu-
itous given the crude model, but it prompted our cur-
rent investigation.
1

T

III. REFRACTION

In an attempt to get information about the impor-
tance of refraction, we investigate the simplest semiclas-

- sical model. We treat the refraction process of a wave
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Fig. 3. The quantity o/24(R + A)? is plotted versus the
square root of the neutron bombarding energy. (R is taken from
Ref. 2 as 1.35A"7. The data are from Ref. 8. The phenomeno- .
logical fit, from Ref. 6, is shown as the solid curve.) .

incident on a uniform spherical potential. Furthermore,
at each impact parameter, we treat the refraction process
as if the ray of the projectile were bent by a plane of
uniform nuclear matter tangent to the nuclear surface.

VOL. 130 NOV. 1998
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This leads to some minor inconsistencies but is still ex-
pected to give meaningful results. The ray then is as-
sumed to travel in a straight line until it reaches the surface
from inside. Reflections from inside the nuclear surface
are ignored, assuming that the probability current in these
rays is absorbed after reflection.

Matching the outside incident-plus-reflected wave of
wave number & to the inside transmitted wave of (com-
plex) wave number X gives a transmitted amplitude of

2Ak
T @

L L
where A is the amplitude of the incident plane wave and
k, and K, are the normal components of the respective
wave numbers outside and inside the nucleus (as a func-
tion of impact parameter).

As shown in the Appendix, we can determine the di-
rection of the transmitted ray where it emerges from the
nucleus and thereby find the length of the chord of pas-
sage through the nucleus to be

R 8)
T 1+m?l R R’

where R is the nuclear radius, b is the impact parameter,
and m is the slope of the transmitted ray. Table I gives
the length of the chord divided by the nuclear radius of
the path through the nucleus as a function of impact pa-
rameter b and energy E. It is clear from the table that
below 100 MeV refraction effects are very large. In the
lower portion of this energy range, the nuclear-transit
chord length is a large fraction of the nuciear diameter
for all impact parameters up to the nuclear radius. This is
in striking contrast to the Glauber model, for which the
chord length I, = 24 R* — b? goes to zero at impact pa-
rameter b = R. Because of the slow falloff of /_as a func-
tion of b, the phase shift of the refracted wave (see
Appendix),

B = (K- kiR, , ©)

TABLE 1
Ratio of Chord Length to Radius

b/R | 1 MeV | 10 MeV | 20 MeV | 40 MeV 100 MeV

0 2.00 2.00 2.00 2.00 2.0

02 | 1.909 1.993 1.987 1.979 1.966
04 | 1.997 1.973 1.949 1.916 1.862
06 { 1.993 1.936 1.884 1.806 1.673
08 | 1.987 1.884 1.789 1.639 1.366
L0 | 1.9%0 1.816 1.658 1.396 0.816

e
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TABLE T
Ratio of Phase Shift to Radius

E=1|E=10 | E=201{ E=40 | E=100
b/R | MeV MeV MeV MeV MeV

0 2.678 1.920 1.543 1.097 0.418
0.2 | 2.683 1.922 1.541 1.09¢ 0411
04 | 2.701 1.933 1.537 1.070 0.392
06 | 2734 1.958 1.537 1.040 0.357
0.8 | 2797 | 2.026 1.565 1.012 0.302
1.0 | 3.023 2473 1.995 1.314 0.326

is nearly independent of b for each energy, as can be scen
from Table II. These calculations were for the large nu-
cleus lead and will be discussed further in Sec. IV.

IV. OPTICAL MODEL CALCULATIONS

Peterson? was the first to compare the simple Ram-
sauer model result with optical model calculations. His
intent was to demonstrate from these optical model cal-
culations that the maxima in the neutron total cross sec-
tions came from significant contributions from a large
number of partizl waves, i.e., that it ‘was a Ramsauer-
type effect, not a single particle resonance. McVoy?
showed in detail that these maxima were due to a large
number of phase shifts passing downward through
180 deg rather than upward as in a resonance. This con-
clusion of McVoy® is the first statement that a large num-
ber of phase shifts have approximately the same value,
hence supporting the validity of a simple Ramsauer
model. With the inclusion of refraction in our diffrac-
tion model, the results suggest that in a Glauber calcu-
lation the nucleus behaves more like a right cylinder
than a sphere, which also partially justifies our simple
Ramsauer model. .

We now make detailed comparisons with optical
model calculations. The potential used is that of Rapa-
port, Kulkarni, and Finlay.'” We want a large variation
in / to see if 7, can be replaced by a constant, so we
choose a large nucleus lead. To reduce the total number
of phase shifts to a tractable number for presentation,
we assigned the neutron a zero spin to eliminate the spin-
orbit splitting. The calculated e™ are shown in Fig. 4
for energies from 14 to 30 MeV. We observe that al-
though 7, is by no means independent of I, the ampli-
tudes for = 0 to 6 rotate together; i.c., they have an
average value that rotates at a relatively constant rate.
Note this is exactly Franco’s criterion for Ramsauer be-
havior; ie., Re{e™}) is periodic. The / = 7, 8, and 9

AT
2
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Fig. 4. The scattering matrix elements for neutron incident on lead are shown for several bombarding energies. The numbers
in the figure indicate the angular momentum of the various partial waves. For simplicity, the neutron spin has been set to zero.

phase shifts, which correspond to the surface, rotate much
more slowly as a function of bombarding energy. Note
that [ = 7 is about equal to kR at the edge of the nucleus
for E,, = 16 MeV and is practically stationary for neu-
tron energies from 16 to 30 MeV, while / = & and 9

rotate at about half the angular velocity of [ = 6. In
Fig. 5 we average the phase shifts shown in Fig. 4 with
partial-wave cross-section weighting to show that they
can be represented quite well by a single phase shift
rotating slowly with energy.

NUCLEAR SCIENCE AND ENGINEERING VOL. 130 NOV. 1998
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Fig. 5. The effective scattering matrix element, derived from Fig. 4, is shown as a function of neutron bombarding energy.
This is to be compared with the Ramsauer single phase shift approximation. (Please note a change in scale from Fig. 4.)

In Table IT we show the phase difference for various
neutron energies and impact parameters from our diffrac-
tion calculations for lead. Assuming that the impact pa-
rameter scales as /, we find near constancy of the phase
differences as a function of [ at a given energy, in agree-
ment with the optical calculations shown in Fig. 4.

We conclude that the Franco® criterion for Ram-
sauer oscillations is well met but that our assumption that
7, 1s constant is a statement of average value; i.e., it can
be replaced by Re(e®). In both of these cases, we ne-
glected the nuclear surface. In Ref. 6 2 surface term was
added; however, it did not improve the fit to the actual
neutron data compared with that obtained in Ref. 2. This
would seem to be the statement that the simple Ram-
sauer form has ample flexibility in fitting data by choos-
ing an appropriate energy dependence to 8.

It is commonly assumed (Ref. 11) that the strength
of the neutron absorption, i.e., the imaginary part of the

optical potential, can be estimated from the magnitude -

of the oscillations in the neutron total cross section. From
comparisons with cerium and lead calculations, we note
that the « needed to fit the neutron Cross sections using
the simple Ramsauer model is a factor of 2 to 3 smaller
than () given by optical model calculations. This is be-
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cause of appreciable cancellation resultin g from the small

but significant phase change as a function of /. It should
be noted that Glauber calculations overestimate this av-
eraging, and thus ;) is a factor of 2 too small com-

pared with the optical model estimate. We conclude that

no detailed information on the magnitude of the absorp-
tive potential can be extracted without recourse to opti-
cal model calculations.

V. CONCLUSIONS

We used a diffraction model to include the effect of
path lengthening resulting from refraction and showed
that the average effective path length of a low-energy neu-
tron passing through the nucleus is ~2R. This approxi-
mation is fairly accurate for neutron energies from 6 to
60 MeV (see Table I). This seems to account partially for
the success of the simple Ramsauer model in fitting pre-
cision neutron cross sections in this energy region. De-
tailed comparison with optical model calculations reveals
that the precision of the fits also comes from the fact that
the expectation value of the real part of the scattering
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amplitude varies slowly and smoothly with energy. Thus,
we conclude that this model may be robust in its ability
to fit neutron total cross sections accurately.

The fact that a few parameters can fit the data, e.g.,
four in Ref. 6, implies that several of the parameters used
in optical calculations are redundant. As is well known
from optical model analysis, the principal dependence of
the structure of the total cross section is on the product
VR?. Furthermore, as pointed out by Johnson, Horen, and
Mahaux,'? we must make a dispersion correction to ¥ at
low energies if we wish to fit the low-energy structure
precisely. Because this correction depends both on the
magnitude of the imaginary potential and its energy de-
pendence, the connection is sensitive to shell closures and

cannot be extrapolated for use on nearby nuclei at low

energy. Thus, the parameterization of the energy depen-
dence of B is possibly an excellent pragmatic tool for
representing cross sections where no data are available.
The parameter «, as already pointed out, is only partially
a measure of the absorptive potential but also includes
the effect of phase shift averaging over 1. The effects of
the real potential on path lengthening, i.e., refraction, tend
to make the path length much less dependent on  than in
the Glauber approach.

We conclude that this simple model has sufficient
justification to motivate its application in parameteriz-
ing total cross section systematics, which avoids the com-
plexity of optical model calculations in applications over

,.\wide ranges of energy and atomic mass.

APPENDIX

We obtain the refraction angle by treating the inci-
dence of a ray at impact parameter b as though the sur-
face were a plane. A wave function of incident wave vector
k;=k, i, +k,#, plus areflected wave are matched, value
and derivative, to a transmitted wave of wave number
K, = K #, + k#, characteristic of the uniform nuclear
medium. In these expressions, 7, is the normal direction
and A, the transverse direction. The direction of the trans-
mitted current density can be calculated to be

kA, + ReK, 7
ﬁ:: | LAV (Al)

v ku2 + (REKL)Z '

so the cosine of the angle between the incident and re-
fracted ray is

. kP +k Re k|
i_..n = -
" VRN + (Re K,)?

(A2)

The inside wave number components were deter-
mined by the matching to be

k= K, (A-3)
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and

2 20V,
ReKLw_J R LS (A.4)

R? o

where u, E, V), and # are the projectile mass, projectile
energy, nuclear potential well depth, and Planck’s con-
stant divided by 2, respectively. For these calculations,
we used V;, (in mega-electron-volts) = 50—0.3E.

Using &, = (b/R)k leads to the result

ko, = =
VE+V,\R
&) V! E+%(R » (A5)

where £ is the energy and V, the (positive) depth of the
real nuclear potential. Next, we writc the equation for
the transmitted ray line in the x, y plane,

y=b—mVyR*-b*—mx , (A.6)

where x and y are the normal and transverse coordinates

and
N1 -~ (ic\i'ﬁr)z

k-7,

>

o=

(A7)

is the magnitude of the slope of the chord of the trans- °
mitted ray. Equation (A.6) and the equation for the spher-
ical nuclear surface in the reaction plane,

x> +y2=R? (A.8)
are solved simultaneously, giving the two roots
(xt,31) = (=VR* — b%b) (A.9)
and
: 1
(x5, 72) = 7 (2mb + (1 —m?)VRZ - b b(1 —m?) -

1+m

—2myRZ — 7). (A.10)

The first solution is the entry point of the ray, and the
second is the exit point. The chord length of the trans-
mitted ray in the nucleus is then the distance I_ between
these two points, which can be calculated to be

2R | mb + b?
J1+m?L R R
For b= 0, m is also 0, and Eq. (A.11) gives I.=2R, the
nuclear diameter, as expected.

The phase shift (for a forward-scattered peutron) as
an implicit function of impact parameter & is

B = (K_ ki'ﬁr)lc :

l.= (A.11)

(A.12)
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where k; and 7, are vectors in the & and X direction, re-
spectively. Equation (A.12) can be interpreted as the phase
~ of the refracted wave crossing the nucleus on the chord
of length /. minus the phase of a free-particle wave tra-
versing the horizontal component of the same chord.
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Abstract—A companion paper presented a
model to

rguments that support the applicability of a simple Ramsauer
describe neutron total cross sections. Such a model Yields a simple equation for the energy de-
pendence of the cross section of a given nucleus and also

allows extrapolation to nuclei of other A values.

Fits of the Ramsauer form to very precise total cross sections recently measured over an extended energy
range are presented. Very good fits are obtained for neutron energies between 6 and 60 MeV suggesting
that this approach will be useful for estimating cross sections in cases where experimental data are un-

available. Extension of this model to 120 MeV was only

I INTRODUCTION

The nuclear Ramsauer model for neutron total cross
sections has nearly a 50-yr history. In this model the neu-
tron total cross section has been represented as the sum
over contributions from a large number of partial waves
of differing angular momentum. In analogy with the
atomic Ramsauer analysis, the nuclear Ramsauer model
assumes the phases of the various angular momenta to
be the same, thus yielding a single average phase shift.
Lawson' and Peterson? applied such a model to the anal-
ysis of neutron total ¢ross sections. Subsequent study of
this model™~® verified that the maxima and minima in

~ meutron total cross sections are not single particle reso- -

nances but are the result of the phase shifts of a number
of partial waves varying at about the same rate with en-
ergy. Our companion paper’ studies the reasons for this
behavior in detail, looking at the optical model predic-
tions for the phase shift and examining semiclassical mod-
els for the various trajectories.

*E-mail: bauer2 @Ilnl.gov

TPermanent address: Ohio University, Department of Phys-
ics, Athens, Ohio 45701.

tPermanent Address: Oregon State University, Depart-
ment of Physics, Corvallis, Oregon 97331.
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moderately successful.

In this paper, we compare the predictions of the Ram-
sauer model with recent measurements of the total neu-
tron cross sections for a number of elements.®® These
data are highly precise (errors <2%) and span a wide
energy range. Results of a preliminary application of the
Ramsauver model in the limited energy range from 5.3 1o
60 MeV have been reported at a recent conference, *®

It should be noted that all comparisons in this paper
are based on experimental data averaged in energy bins
of width equal to 1% in energy. At low energies, the in-
trinsic resolution of the time-of-flight spectrometer was
<1%, and fine structure, corresponding to resolved res-
onances and interference between a number of reso-
nances, can be seen. Just as this fine structure does not
appear in optical model fits, it is also not included in Ram-
sauer model expansions.

. CALCULATIONS AND KFITS

In the companion paper” it is shown that for neutron
bombarding energies <100 MeV and above the reso-
nance region, the total cross section should have the form

(1)

i

1

or = 27(R + X)2(1 ~ arcos B) |
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where
R = nuclear radius
A= redﬁced Wavelength of the neutron
a = parameter with the magnitude between 0 and 1

B = angle that gives the relative phase between the
wave that passes through the nucleus and the
wave that goes around the nucleus.

The black nucleus approximation assumes that all waves
with impact parameter b < R are completely absorbed.
Inspection of the phase shift sum shows that such a sit-
uation gives an elastic cross section and an absorption
cross section of 7 {R -+ X)* each: this gives a total cross
section of 2w (R 4+ A)2 This limit is achieved if e = 0.

More generally, the « reflects not only the absorp-
tion but also the averaging of various phase shifts to pro-
duce an equivalent average phase shift. This makes «
significantly less than would be estimated by calculating
the absorption in passing through the nucleus.

In Ref. 7 it is shown that a semiclassical neutron ray
with impact parameter b with respect to a spherical tar-
get nucleus of radius R refracts along a chord /. inside

the nucleus and suffers a phase shift with respect to a

free neutron wave of ‘
B = lc(Kin - kom'ﬁ:) . (2)

In Eq. (2) K}, and k,,, are the inside and outside wave
numbers, respectively, and 7, is a unit vector in the di-
rection of the transmitted ray. Numerical calculations
shown in Table I of Ref. 7 show that this phase shift is
nearly a constant as a function of impact parameter b and,
therefore, approximately equal to the value at b =0, giv-
ing for all b,

ﬁ:’ ZR(Kianour) = ?(ZR)(VV'FE— \[E) )

(3)

where m is the neutron mass, £ is Planck’s constant di-
vided by 27, and R = ry,A'/3,

In the nonrelativistic approximation, the phase angle
B takes the form

B =cA*.(Na+BE — JE) . 4)

The nuclear radius R in Eq. (3) has been explicitly
included in ¢ A'/? in Eq. (4). The quantity a corresponds
to our optical potential V, and b includes the effects of
the nonlocal energy correction. The quantities a, b, and ¢
are the three fitting parameters to be determined [see
Eq. (6) and subsequent text].

ILA. Reduction of o to Dimensionless Units

The single most important criterion for the useful-
ness of the fiiting process is the ability to scale over as
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wide a range of nuclei, from light nuclei to the heaviest
ones, and over as wide a range of energy as the model
permits without adding numerous corrections. The large
number of data points for each nucleus and the large num-
ber of nuclei for which experimental data are available
made it possible to constrain the number of parameters
easily. Although the most recent sets of precision data
(Finlay et al.® and Dietrich et al.®) are available over an
energy range from 6 to 600 MeV, we shall limit our ini-
tial fits for total cross sections o to an energy range from
6 to 60 MeV. As the first step we “reduce” the ex-
perimental cross sections to dimensionless quantities by
dividing them by 27r(R + 4)?, i.c., the black nucleus ap-
proximation. This defines the reduced o, as

Or

G',E.'m ={l—wcosB) . 3)

We determine r, so that the normalized cross sec-

tions oscillate about unity because the Ramsauer model

predicts that this quantity will be 1 — « cos 8. Examples
of plots of &, as a function of ¥ E are presented in Fig. 1.
The values of ry for a wide range of nuclei have been
derived from the plots of the type shown in Fig. 1 (o, to
oscillate about unity). These values of r, are plotted as a
function of A'> in Fig. 2. It is to be noted that for the

heavier nuclei, r, is fairly constant about the valug of -

1.37 £+ 0.01. However, as we move toward lighter nu-
clei, r,y tends to increase monotonically toward higher val-
ues, approaching 1.45 for mass 40 {the lightest nucleus
fitted by this procedure). These values can be expressed
in form R = r,A'? + 0.6 with r, = 1.27 fm, which is
quite consistent with the normal optical model radius of
1.27A"7 and a surface thickness of 0.6 fm.

The deviation of r; from its nominal value for tho-
rium and uranium (the heaviest nuclei fitted by this pro-
cedure} is explained by their static deformation. Since
we are using a spherical model, the average cross section
for the known deformation of these nuclei implies a 3 to
4% larger cross section than their spherical equivalent.
Thus, in the cross-section reduction process, we expect
ry to be 1.5 to 2% larger than neighboring spherical nuclei.

Table 1 summarizes the clements for which the nu-
clear total cross sections have been fitted in this investi-
gation, together with the atomic numbers Z, the atomic
mass A, and the radius r, determined by the cross-section
reduction process.

ILB. Fits with Basic Ramsauer Model

Inspection of plots of the type presented in Fig. 1
permits us to determine the quantity a. The magnitude of
a is determined by the size of the oscillation of the re-
duced cross section about unity. It is found that for es-
sentially the whole range of nuclei fitted, & is constant
within ~10%. The average value of & is near 0.115 for
the nuciei shown in Fig. 1. There is a slight tendency for

i
£




350

BAUER et al.

Ph

1.1

1.0

0.9

0.8 ;

1.1

1.0

orf2n (R + %)2

0.9

0.8 i

1.1

1.0

0.9

0.8k l I |

! l | I

1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0
vE (MeV172)

9.0

Fig. 1. Reduced neutron total cross section or /2 (R + X)? defined in Eq. (3) plotted against the square root of the neutron
bombarding energy E for the energy range from 6 to 60 MeV. The reduced cross section oscillating about unity determines r, =

R/A'”, and the amplitude of the oscillation determines .

« to increase to ~(.13 for the lighter nuclei and to de-
crease to ~—0.10 for the heavy nuclei. Figure 3 displays
this general behavior as a function of atomic mass A. For
a global approach for the energy range from 6 to 60 MeV,
we recommend ¢ = 0.18 — 0.013 A3, or the value of
0.115 * 0.01 may be preferred.

If @ is assumed to be due to just the absorption of the
i _ning wave, then we would expect a strong variation

of o with the nuclear radius. However, the averaging-out
effect of the phases tends to mask any such variation,
which implies that the averaging effect is dominant,

In our first analysis reported in Ref. 10, we found
that B scales as A'* as expected. Now we seek a univer-
sal form for B/A'/?. The parameter B has its energy de-
pendence constrained by the crossing points of the reduced
cross section, for which cos 8 = 0, and by the maxima

NUCLEAR SCIENCE AND ENGINEERING
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Fig. 2. Plotof ry and atomic mass A as determined from the reduction of the neutron cross sections from 6 to 60 MeV so that i
o, oscillates about unity [see Eg. (3)]. o i

TABLE 1
Variation of the Nuclear Radius ,A'/> as a Function of Atomic Number Z and Atomic Mass A
Atomic Number Nuclear Mass o

Element Z A . (Frex)
Calcium 20 40 1.455 £ 0.005
Titanium 22 _ 48 1.430
Vanadium 23 51 . 1.415
Chromium 24 52 1.430
Manganese 25 55 1.400
Iron 26 56 1415
Cobalt 27 59 1.420
Nickel 28 60 1.405
Copper 29 64 1.420
Yitrium 39 89 1.415
Molybdenum 42 98 1.405
Indium 49 115 1.395
Tin 50 120 1.385
Tantalum 73 181 1.375
Tungsten : 74 184 1.382
Gold 79 197 1.377
Mercury 80 200 - ' 1.373
Lead 82 : 208 1.375
Bismuth 83 209 1.375
Thorium 90 232 1.295 .
Uranjum 92 238 1.382 /
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Fig. 3. Amplitude e plotted against atomic mass A as determined from the amplitude of the oscillations of the reduced cross
sections such as plotted in Fig. 1. The shaded area indicates the region @ = 0.115 = 0.01.

and minima, for which cos 8= —1 and +1, respectively.
To investigate the systematic dependence of the three fit-
iting parameters a, b, and c [Eq. (4)] and to develop a
universal form for 8, we first examine the variation of B

with energy for nuclei over a wide range of A values. |

Because 8 represents a phase shift, it is expected that 8
would be proportional to the nuclear radius. If the Ram-
sauer formula is to provide a fit to the total cross-section

. data, B/R should show a universal curve as a function of
E;ie., plots of B/A'”? as a function of energy should fall
on a universal curve that is independent of A.

Figure 4 illustrates the results of this analysis. The B
values plotted were derived from the crossovers and
maxima/minima of the reduced cross sections for six nu-
clei ranging from vanadium to uranium. The values of
B/A'"? as a function of energy can be seen to lie on one
universal curve. Equation (4) gives

L T EE - B ._ (6)

In Fig. 4 we show a fit to this curve using standard
optical model potentials and also a least-squares fit, where

a, b, and ¢ were allowed to vary. The standard optical -

model parameterization fails in two ways. First, the en-
ergy dependence of the optical potential depth is usually
expressed as V; — 0.3E, where the energy-dependent term
1s a correction for the nonlocality of the real nuclear po-
tential. For nominal values of V,. this implies that the

NUCLEAR SCIENCE AND ENGINEERING

optical potential goes to zero at ~150 MeV, while mea-
surements indicate this zero is at much higher energies,
i.e., at ~250 MeV. Second, there is an additional contri-
bution to the optical potential’at low energies as a result
of dispersion corrections. Thus, standard optical param-
eters do not have enough “curvature” at low energies and
a wrong slope at high energies as shown in Fig. 4,
Although the parameterization is not unique, the sim-
ple form given in Eq. (6) provides a reasonable fit over

- the energy range from ~6 to 60 MeV, which is good to

within ~1 to 2% for our least-squares parameters. These
parameters are listed in Table I1. The errors associated
with the parameters are to be considered only as quali-
tative in nature; we found that the fitting parameters were
highly correlated. This is similar to the VR ambiguity
found in optical model fits to neutron angular distribu-
tions. Figure 5 presents a sample of six targets ranging
from calcium to lead using Eq. (6) and the global param-
eters listed in column 2 of Table II. Note that these are
not fits to the cross-section data but are Cross sections
predicted by fitting the 8/A'/? data of Fig. 4.

U.C. Fits with Extended Ramsauer Model

Inspection of the fits to thereduced cross-section data
show a tendency for 8 to vary somewhat differently with
£ than given by the form of Eq. (6). Empirically we find
that addition of a term proportional to the square of
Eg. (6} gives an improved representation of the cross

VOL. 130 NOV. 1998
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Fig. 4. Plot of phase shift 8/4'/> as a function of the Square root of the neutron bombarding energy E for achieving a
universal fit for the three fitting parameters 4, b, and ¢ in Eq. (6). The solid curve is  fit to the data; the dashed curve uses standard
optical model parameters listed in Table II. The data points are derived from the energy values at the maxima, minima, and
ordinate crossings at o /27 (R + X)2 = 1 of the measurements in Refs. 8 and 9 as plotted in Fig. 1. :

TABLE HI

Values of the Three Fitting Parameters a, b, and ¢ Obtained
from Fitting the Universal Form of B Given in Eq. (6)*

Value Value
Parameter | First Global Fit | Standard Optical Model

350205 : 45.0

a
b (.80 = 0.01 0.70
c 0.62 = 0.01 0.56

*The values listed are used in the “first” global fit to the
data from 6 to 60 MeV using the basic Ramsauer model and
also standard optical model parameters.

sections. This square term is introduced to compensate
for an increased curvature at low energies. However, this
change adds one additional parameter (k) to the expres-
ston for B3, giving

a7 = o (aF BE V) + KT T BE— VET
| (7)

A deviation from Eq. (6) is not really surprising. In
the first place, the energy dependence of the potential

NUCLEAR SCIENCE AND ENGINEERING VOL. 130 NOV. 1998

" need not be strictly linear. Second, the approximations

leading from the partial wave expansion of the scattering
amplitude to the three parameters R, @, and 3 in Eq. (1)
are not expected to be very accurate. Third, neither shell
effects nor deformation have been included. The form of
Eq. (7) is motivated partially by the energy dependence
of the deviation in 8 obtained from data (see Sec. IL.B)
as function of energy from Eq. (6) but also by an attempt
to increase B at Jow energies to match the dispersion cor-
rection to the optical potential known as the Fermi sur-
face anomaly.

Figure 6 shows the comparisons of the cross sec-
tions obtained from Eq. (7) with the data. The param-
eters used in this comparison are listed in Table II1, column
2. Excellent agreement is obtained within ~1.5% for nu-
clet heavier than copper. Somewhat larger discrepancies,
2.5 t0 3%, are obtained for the nuclei with masses be-
tween calcium and copper. The fact that the deviations
are so small is quite remarkable given that the fits are
based on so few parameters.

11.D. Inclusion of Isospin

Section [I.C pointed out that the quality of fits for
nuclei lighter than copper was not as good as that for
heavier nuclei. The form of the cross section for these
lighter nuclei is such that it can be fit with a Rainsauer

R ——
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Fig. 5. First global fits of the basic Ramsauer model to the neutron cross sections from 6 to 60 MeV using Eq. (6) and the

parameters for a, b, and ¢ listed in Table IL

model, but the parameters needed differ somewhat from
those obtained from the global fits to the heavier auclel.
One facet of the physics that has not been included to
this point is the dependence of the potential on isospin.
The lightest nuclei in the group studied here have isospin
as small as 0, while the heaviest nuclei have isospin =20,
Since the isospin potential produces about a 5-MeV dif-
ference for these heavy nuclei, it needs to be included
explicitly. Because of the large number of heavy nuclei
among the group fitted, our global parameterization with-
out isospin included will be biased toward values of the
potential that are appropriate for large values of isospin.

We therefore carried out a search for parameters to
express B in terms of nuclear potential that has a con-
ventional isospin dependent term of [ (N — Z)/A]V,, where

NUCLEAR SCIENCE AND ENGINEERING

N — Z is the neutron excess and V| 1s the isospin po-
tential (V; ~ 24 MeV). The number we obtained for v,
from the fit is 21 MeV compared with the known value
of 24 MeV. We use 24 MeV rather than introducing a new
parameter. No effort was made to investigate the appro-
priateness of including isospin in a or R. This choice was
made because the poor quality of fits for the light nuclei
showed characteristics consistent with inappropriate en-
ergy dependence of 8 but did not show evidence of R or
a values inconsistent with the systematics established by
the heavier nuclei.

Figure 7 shows the results of these fits for lead, gold,
tin, copper, titanium, and calcium. Note that the inclu-
sion of an isospin term in the potential resulted in an im-
provement of the quality of fits for copper and the lighter

VOL. 130 NOV. 1998
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Fig. 6. Refined global fits of the extended Ramsauer model to the neutron cross sections from 6 to 60 MeV using Eq. (7) and
the parameters for a, b, ¢, and k" listed in Table III, column 2.
7 TABLE 111
Values. of Three Fitting Parameters a, b, ¢, and k' Used for the Refined Global Fit, Using the Extended Ramsauer Model [Eq. (7)],
and Modifications to Inciude Corrections for Isospin Used for the Corrected Global Fit* to the Data from 6 to 60 MeV
Parameter , Values Used for Refined Global Fit Values Used for Comrected Global Fit
) N—~Z
a . 38005 43 —24 e
2(N—=Z)\®
b 0.85 £ 0.01 - 105-035{1— — ]
' ‘[
¢ 046 £ 0.01 046 £ 0.01 ;
K 0.070 £ 0.002 . 0.070 £ 0.002 5
*See Sec. [1.D. ' ‘}7
-

*The correct isospin dependence yields a much smaller correction, i.e., 1.00 —-022{(1 — (N — Z)/24).
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Fig. 7. Corrected global fits of the extended Ramsauer model (corrected for 1s0spin) to the neutron cross sections from 6to
60 MeV using Eq. (7) and the parameters for a, b, ¢, and k' listed in Table 1, column 3.

nuclei, but did not cause the quality of fits to deteriorate
for the heavier nuclei. Calcium is a special case with iso-
spin equal to zero; the isospin correction improved the
fit, but it is not quite as good as for the heavier nuclei.
~This is really not surprising because for calcium at 10
MeV, we only have three partial waves in our sum (see
Ref. 7). We now have a parameterization that depends
OnE, A, N, and Z. It is quite impressive that this yields a
formula that appears to be capable of representing the
total neutron cross section for nuclej between calcium
and uranium over the energy range of 6 to 60 MeV within
2%.

NUCLEAR SCIENCE ;&ND ENGINEERING

ILE. Possible Extension to Higher Energies

The excellent data sets®® extending to 600 MeV sug-
gested to us that these fitting procedures be tried over the
range of 6 to 600 MeV. Initial examination of the data
over this range and a preliminary effort to follow the fit-
ting procedure used below 60 MeV indicated that the en-
ergy dependence and magnitudeé of the cross sections
could still be expressed in the form of Eq. (1). It became
immediately clear, however, that the price for doing so
was to introduce some energy dependence to both R and
. In addition, the 8 energy dependence appears to be

VOL. 130 NOV. 1998
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more complicated than was applied for the 6- to 60-MeV
range. An extension to 120 MeV did secem feasible.

Because we are extending our calculations to ~100
MeV, we can no longer use the simple nonrelativistic de-
scription. At low energies, the relativistic correction can
be expanded as a linear function of energy, and it repre-
sents a small shift along the energy axis. At higher ener-
gies, however, this leads to more complicated-looking
equations but to no additional parameters. Thus, Eq. (6)
in its relativistic form becomes

BIAY? = ¢ (\fa TEE- 1+ %;%E)
E
—JE- J1+ P~ ) : (8)

The quantities a, b, ¢, and A"? are the same as used
in Egs. (4) and (6) and were described earlier. The ex-
pression in the parentheses represents the relativistic form
of the momentum-energy transformation, where mc” is
the rest mass of the neutron.

- We recall that we added a square term to Eq. (6) to
compensate for an increased curvature at low energies
(see Sec. ILC). Instead of adding the square term, we
propose to use an alternate form that gives comparable
results in fitting the data but eliminates the parameter k'.
This newly proposed form comes from fitting the varia-
tion of the chord length of the path of the neutron inside
the nucleus as discussed in Ref. 7. Fitting the length vari-
ations given in Table I of Ref. 7 yields a correction factor
of (1 — 0.02VE) to be added to Eq. (8). It is to be noted
that the introduction of this factor is a change in the av-
erage phase, not a change in normalization. Thus, in its
relativistic form and with a chord length correction, the
angle 8 becomes

B/AY3 = (1~ 0.02VE)

xC-(\!a+bE- |/1+(i-ibTE)
2mc
- VE. /”z,f&)' ©)

The expression in the first set of parentheses on the right
of Eq. (9) is the correction for the chord length variation,
while the expression in the second set of parentheses, as
pointed out earlier, represents the relativistic form of the
momentum-energy transformation.

In our attempt to extend the application of the sim-
ple Ramsauer model, as given in Eq. (9), we plan to use
the three fitting parameters a, b, and ¢ as close as possi-
ble to those of the original globat fit (listed in Table II).
In this extension to 120 MeV, however, it becomes obvi-
ous that for the {1 — @ cos B8) dependence to reproduce
the experimental data, the values for boih &K and o can no
longer be kept constant over the whole energy range. The
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following slow energy dependence is imposed on the two
parameters:

= (1 - H‘“[E)rocAI/} (10)

and
a, = (1~ vVE)a, , (11)
where
r,, @, = new energy-dependent values (o be used

for the extended range

r,., &. = constants slightly larger than the ry and
used in the fitting for the limited range from
6 to 60 MeV

i, v = constants of the order of 0.01.

(For a listing, see Table TV.) The small correction factors
are necessary: g will cause the reduced cross section to
oscillate about unity, even as we approach higher ener-
gies, and v will correct for the “damping” of the oscilla-
tions of the normalized cross section at higher neutron
energies. The small magnitude allows us to ignore the
relativistic correction to the energy in these expressions.

The fact that r, should decrease with increasing en-
ergy is clear because at energies ~250 MeV, the nuclear
radins should approach the nuclear matter radius as the
nuclear potential goes to zero. With o we expect an in-
crease due to the reduction of transit time in the nucleus,
but this may be overcompensated by the cancellation of
the various phases.

Using Eq. (9) and the global fitting parameters a,
b, ¢, , and ¥ as listed in Table IV, we obtain the fits
shown in Fig. 8. Inspecting the results for this extended

TABLE IV

Values of the Three Fitting Parameters a, b, and ¢
Obtained from Fitting the Universal Form of 8 Given
in Eq. (9) and Factors p and » for the Energy
Dependences of R and « as Given
in Egs. (10} and (11}, Respectively*

Parameter Value
a 37.5 £ 0.5
b 0.80 = 0.01*
c 0.61 £0.01
M~ 0.008
v 0.010

*The values listed are used in the global fit to the data
from 6 to 120 MeV using the basic Ramsaoer model, in rela-
tivistic form and including 2 chord length correction.

*The values a and b for the light nuclei have been cor-
rected for isospin; i.e., for copper the respective values are 40.0
and 0.75.




BAUER et al.

0.8 i }

Ji
41
—_
o
——

op/2x (R + x}2

12.0

VE (MeV17?)

Fig. 8. Global fits of the basic Ramsauer model (in relativistic form and including a chord length correction) to the neutron
cross sections from 6 to 120 MeV using Egs. (9), (10), and (11) and the parameters for a, b, ¢, p, and » listed in Table IV,

energy range, we can conclude that the simple Ram-
sauer using global fitting parameters is stifl applicable,
and it provides good fits to the total cross sections for
energies from 6 'to 120 MeV to an accuracy of 2 to 5%
for the heavier nuclei and to ~10% for the lighter nu-
clet (copper and below). However, to achieve these fits,
a small energy dependence had to be imposed on the
nuclear radius and on the amplitude of the oscillations

NUCLEAR SCIENCE AND ENGINEERING

of the reduced cross section. To obtain a better fit to
the light nuclei, we had to give up our goal of achiev-
ing a universal curve for 8/4'/>. It would require at the
very least a variation of our ¢ parameter with A.

It is challenging to extend our study to energies be-
yond 150 MeV. This broader region not only includes the
pion threshold but also spans the energy at which the nu-
clear potential changes from attractive 1o repuisive; thus,
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additional complexity in the form of the energy variation -

of the parameters will not be surprising. We are in the
process of an extensive study of the form of the param-
eterization for the Ramsauer expansion over the range
from 60 to 600 MeV, which will be reported in a separate
publication, as well as exploring Glauber calculations™""!
that should be more valid in the multibundred mega-
electron-volt energy region.

- IIL. CONCLUSIONS

Applying a simple Ramsauer model permits us to fit
total neutron cross sections over a wide range of nuclei,
covering the heaviest nuclei, such as thorium and ura-
nium, down to light nuclei, such as titantum and cal-
cium. Very good fits have been obtained using simple
equations based on parameters with straightforward phys-
ical interpretations plus a small number of fitting param-
eters. For the energy range from 6 to 60 MeV, agreement
between the Ramsauer model and the experimental data
has been of the order of I to 1.5%, using refined global
fits with all parameters kept constant ovet the whole en-
ergy range. ,

All the plots shown in Figs. 1 and 5 through & pre-
sented the reduced neutron cross section compared with

= 359 7, .

energy with the intent to emphasize any discrepancy be-
tween experimental data and our model calculations.
However, to display the high quality of our fitting rou- o
tine and to better appreciate our model’s usefulness ir Wi
describing neutron data, we present an example of our -
results in Fig. 9, where we chose to display the total cross
section and energy, comparing the actual measured cross
section and our model calculation. The excellent agree-
ment between experiment and our model calculations is
obvious. :

The quality of the fit to the data at the higher ener-
gies (~100 MeV and above), however, has been foundto
deteriorate compared with the high quality achieved for
the energy range from 6 to 60 MeV. Some improvement
was provided by using relativistic kinematics. In addi-
‘tion, the need was found to introduce an energy depen-
dence of the parameters R and a in the Ramsauer model.
More detailed study of these energy dependences and the ©
possibility of a modified energy dependence of B will be
required to obtain optimal fits with the modelup to 600
MeV as well as comparisons with Glauber model calcu-
lations to assess their usefulness.

In summary, we propose the Ramsauver model to be
an excellent tool for fitting available neutron data and
for estimating neutron total cross sections where no ex-
perimental data are available. Very good predictions with - -
an accuracy of 1 to 1.5% can be expected in the energy “#-
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Fig. 9. Comparison of the measured total neutron cross sections for lead from 6 to 60 MeV with the refined global fit ob-

T

tained by the extended Ramsauer model using Eq. (7) and the parameters for a, b, ¢, and k" lisied in Table I, column 2. The
experimental data and fitting parameters are identical to those of Fig. 6a.
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range up to 60 MeV, using the refined global fits dis-
cussed in this paper. The quality of fit is sufficiently good
to suggest that these systematics could be used to predict
’ to,t,al-:ﬁcutron Cross sections for elements that are not avail-
able as well as providing a convenient parameterization
for those cross sections that have been measured in sit-
uations where a formula is more convenient than a large
file of experimental data points. In addition, Camardg 12
suggested that the Ramsauer model might also provide
predictions of angular distributions where no experimen-
tal data exist. Preliminary results for predicted angular
distributions compared with ¢xperimental data appear en-
couraging. Further work in this area is in progress.
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