
1

MODIFICATIONS OF RATE.FOR

Tingyue Gu
gu@ohio.edu

Explanation for the one-dimensional concentration array u. 

In the top section of the source code:

mnelemb = maximum number of finite element set by the programmer. In the input date file,
nelement value must be smaller than this maximum value. 

mnc = maximum number of interior collocation point. In the input date file, nc value must be
smaller than this maximum value. 

mnsp= maximum number of species. In the input date file, nsp value must be smaller than this
maximum value. 

mnndb=maximum. number of nodes used to discretize the z-axis for the bulk-fluid phase.
 mnndb=2*mnelemb+1        (because quadratic elements are used)

mnnt=maximum number of nodes 

nndb=2*nelemb+1= actual number of finite element nodes used to discretize the z-axis for the
bulk-fluid phase. #1 node is at z=0 (column inlet).

nc=actual number of interior collocation points. The exterior collocation point (at r=1, or R=Rp)
is collocation point number nc+1. 

nnt=nndb+2*nndb*nc= total actual number of concentration (in the bulk-fluid phase and in the
macropore fluid) points for a component. For each finite element node, there are nc number of
concentration points in macropore fluid. The cpi and c*

pi values at the exterior collocation point,
i.e.,  (cpi)nc+1 and (c*

pi)nc+1 values, are not included in 2*nndb*nc.  They are calculated in the code
using Eq. 3-30 on p. 15 (in my book) and Eq. 3-17 on p. 11.  Obviously, (cpi)nc+1 and (c*

pi)nc+1
values are not included in array u.

In the main program, a one-dimensional array u is used to combine cbi, cpi and c*
pi values. At each

integration time point (for the ODE solver/integretor, i.e. DVODE), there is a new array of u. It
is desirable to have different multidimensional matrices for cbi, cpi and c*

pi values to make the code
more transparent and easier to manage. However, these matrices cannot be passed to subroutines
via their arguments unless  their dimensions are fixed and declared explicitly (using numbers) in
the main program.   Since RATE.FOR allows for different nelement, nc values, etc. in the input
data, these matrices cannot have fixed dimensions. To solve this problem, a one-dimensional
array u is used to cover cbi, cpi and c*

pi values. Array u always has a size of mntt (=mnsp*mnnt)
number of values. Based on input data, ntt (=nsp*nnt) number of values in array u are actually
useful. The rest of space in u are filled with zero. This one-dimensional array u with a fixed



2

dimension (mnnt) is easily passed to subroutines. Once it is read by a subroutine, it is
decomposed to give  cbi, cpi and c*

pi values in multidimensional arrays. The first few active lines of
code in subroutine fcn perform this job. 

Array u is divided into Component 1, Component 2, Component 3, .... Each component’s section
is subdivided into three subsections: cbi values first, then cpi values, then c*

pi values. In array u,
each component takes up nnt (=nndb+2*nndb*nc) number of values. Among them, there are
nndb number of cbi values, nndb*nc number of cpi values and nndb*nc number of c*

pi values. The
actual space occupied by cbi, cpi and c*

pi values for nsp number of components is ntt=nsp*nnt. The
rest of the space (mntt minus ntt) in array u is filled with zero.

In the main program, array u is initialized so that all of its values are set to zero first. This means
that initially, the column is free of any binding species. If your column initially is not “empty,”
you need to assign cbi, cpi, c*

pi values to array u based on its internal structure. 

Examples of u values:
u(1) =  cbi value at column inlet for component 1
u(2*nnt+1)=cbi value at column inlet for component 3.  (2*nnt for the first two components.)
u(nndb) = cbi value at column exit for component 1. 
u(nnt+nndb) = cbi value at column exit for component 2. 
u(nndb+1) = cpi value for component 1 at column inlet for the first component. And it is at the
first interior collocation point, the one next to r=1 (the particle surface). 
u(nndb+nndb*nc+1)=c*

pi corresponding to the u(nndb+1) = cpi value. In u(nndb+nndb*nc+1), 
nndb takes care of all =cbi values, nndb*nc takes care of all cpi values. 

As a matter of fact, concentrations of any component anywhere in the column (in the bulk-fluid,
in the particle’s macropore fluid, or in the stationary phase) at any time can be printed out.
However, the values are too numerous. The current printout statements in the source code only
prints out dimensionless effluent concentration profiles. They can be rewritten to print out any
concentration values at any time of the chromatographic operation. 

If the RATE.FOR Fortran source code you have does not contain an option to print out
concentration profiles in the column bulk-phase at difference z-axis positions at different time,
you can insert the following lines 

print*, 'Dimensionless bulk-phase concentrations inside column'
print*, 'at different z-axis positions for dimensionless time t='
write(*,1003) tend
print*, '   z, c1, c2, c3, c4'

do 104 i = 1, nndb
write (*, 1003) float(i-1)/float(nndb-1), u(i),

     #u(nnt+i), u(2*nnt+i), u(3*nnt+i)
104 continue

goto 100

right before 
if(nsp.eq.1) write(*,1003) tend,u(nndb)
if(nsp.eq.2) write(*,1003) tend,u(nndb),u(nnt+nndb)
if(nsp.eq.3) write(*,1003)tend,u(nndb),u(nnt+nndb),u(2*nnt+nndb)



3

Isotherm Section (Subroutine getdgdc) in the Source Code

If a different isotherm other than Langmuir isotherm (p. 11) or the stoichiometric ion-exchange
isotherm (Eq. 3-19 on p. 12. Correction: last C0j should be C0i.), subroutine getdgdc (c, dgdc,
nsp)
needs to be modified. This subroutine calculates Mgi/Mcpj values for given cp values for each
component. In the subroutine, sf=1 for Langmuir isotherm. sf=0 for the stoichiometric ion-
exchange isotherm.

gi=(1!gp)c*
pi + gpcpi in which c*

pi carries the isotherm expression. Or, we can write,

g
a c

b c C
ci p

i pi

n pn n
n

nsp p pi= −
+

+

=
∑

( )1
1 0

1

ε ε

For i…j,
∂
∂

ε
g
c

a c
b Ci

pj
p i pi

j j= −
−

+
+( )

( )
1

1
00

2Σ

For i=j,

    where G is the summation term in the gi

∂
∂

ε ε
g
c

a a c b Ci

pj
p

i i pi j j
p= −

⋅ ⋅ + −

+
+( )

( )
( )

1
1 1

1
0

2

Σ

Σ
expression above. 

In the subroutine, cf(j) is the maximum feed concentration of component j. It is the same as C0j.
ssum=G. epsip=gp. consta(i) = ai, constb(j)=bj for the Langmuir isotherm.

If you have a different isotherm, follow this example to write down Mgi/Mcpj expressions for i…j
and i=j situations and then change the subroutine accordingly. You must fully understand how
Langmuir isotherm is implemented in the subroutine first before you start modifying it. If this
section is coded wrong, the dimensionless effluent concentration profiles calculated will not
satisfy “mass balance” meaning the dimensionless area under a peak is not equal to its Jimp
value. You can download a small windows program in my chromatography web page to
calculate peak areas from raw data generated from RATE.EXE. If the peak areas always satisfy
mass balance, chances are your modification of the subroutine is right. The utility calculates
peak areas one peak at a time. For multicomponent data, you need to use Excel to generate time-
concentration files for individual components. 

Changing Column Feed Profiles



4

This program allows you have any feed profiles (concentration time courses). However, you
need to express them in the subroutine fcn (nttttt, t, u, uprime). The existing relevant section is
shown below.

c  apply NBC. c2=-1  in flux=c1*U+c2   at node #1   !!!
c  no need to restore afb later, cuz, afb is set 0 at start
c  BTW, c1 was already applied to akb in subr. bulk
c  if #ns species' feed is zero, no change here, goto do 233

if(cf(ns).eq.0.0d0) goto 233

if(index.eq.1) afb(1) = afb(1) + (+1.0d0) 
if(index.eq.2) then

if(t.le.timp)  afb(1) = afb(1) + 1.0d0  
endif

c --- elution again, but the mobile phase #nsp is absorbable
if(index.eq.6) then

if(ns.eq.nsp) afb(1) = afb(1) + 1.0d0
if(ns.lt.nsp.and.t.le.timp)  afb(1) = afb(1) + 1.0d0  

elseif(index.eq.7) then
if(ns.eq.nsp.and.t.gt.timp) afb(1) = afb(1) + 1.0d0
if(ns.lt.nsp.and.t.le.timp)  afb(1) = afb(1) + 1.0d0  

endif

c  --- displacement.
c the last species #nsp is the displacer

if (index.eq.3.and.nsp.gt.1) then
if(ns.eq.nsp) afb(1) = afb(1) + 1.0d0

endif

c  --- BT then shift to displ.
if(index.eq.4.or.index.eq.5) then
    if(nsp.gt.1) then

if(t.le.tshift.and.ns.ne.nsp) afb(1) = afb(1) + 1.0d0
if(t.gt.tshift.and.ns.eq.nsp) afb(1) = afb(1) +1.0d0

    elseif(nsp.eq.1) then
if(t.le.tshift) afb(1) = afb(1) + 1.0d0

    endif
endif

The feed profiles must be written in dimensionless concentration form (as a function of
dimensionless time which is t in the code section above). In the code section above, the
dimensionless feed concentration of a component is either 0 or 1. We are talking about only step
changes (rectangular pulses) here. If the feed concentration is 0, nothing needs to be done. If it is
1, afb(1) value increases by 1. The afb array is a one-dimensional array in the finite element
discretization of z-axis for the bulk-fluid phase PDE. afb(1) is the afb value at the column inlet
because the #1 finite element node is at the column inlet. 

Example:
You want to have a dimensionless concentration profile for component 2 (ns=2) like this,
Cf2(J)/C02 =a1 +a2@(J!Jimp) +a3@(J!Jimp)2 +a4@(J!Jimp)3 +a5@exp[a6@(J!Jimp)]
between dimensionless time frame st1 < J< st2, and Cf2(J)/C02 =0, other  otherwise. You can use
index=8 in the input data file to signal this. a1,...,a6, st1, st2 values must be in the input data file
and be read by the main program and passed to subroutine fcn. You can use something like this
to pass the values:



5

common /gradient/ a1, a2, a3, a4, a5, a6, st1, st2

You need to add the following lines in the code section above.

c -- nonlinear feed profile for component 2. Index=8
if(ns.eq.2.and.t.gt.st1.and.t.lt.st2)  then
tt = t -timp
afb(1) = afb(1) + a1 + a2*tt + a3*tt*tt+ a4*tt*tt*tt + a5*dexp(a6*tt)

The code statement “(index.eq.8.and.ns.eq.2.and.t.gt.st1.and.t.lt.st2)”  means
the component number is 2, and st1 < J< st2 for operation index 8. 

No action needs to be taken when the dimensionless feed concentration for component 2,
(Cf2(J)/C02, is 0. 

Compilation Using Microsoft FORTRAN PowerStation V.4.0 (Windows 95)
The following message will be generated:

--------------------Configuration: rate - Win32 Debug--------------------
Compiling Fortran...
C:\Temp1\rate.for
C:\Temp1\rate.for(568): warning FOR4269: unused dummy argument RPAR
C:\Temp1\rate.for(568): warning FOR4269: unused dummy argument NTTTTT
C:\Temp1\rate.for(568): warning FOR4269: unused dummy argument IPAR
C:\Temp1\rate.for(3705): warning FOR4269: unused dummy argument VSAV
C:\Temp1\rate.for(4251): warning FOR4269: unused dummy argument IDUM
C:\Temp1\rate.for(4319): warning FOR4269: unused dummy argument NERR
C:\Temp1\rate.for : warning FOR4227: argument RTOL (number 7) in reference to
procedure DVODE from procedure main incorrect: is not an array
C:\Temp1\rate.for : warning FOR4227: argument ATOL (number 8) in reference to
procedure DVODE from procedure main incorrect: is not an array
C:\Temp1\rate.for : warning FOR4227: argument JAC (number 16) in reference to
procedure DVODE from procedure main incorrect: has the wrong data type
C:\Temp1\rate.for : warning FOR4227: argument RPAR (number 18) in reference to
procedure DVODE from procedure main incorrect: is not an array
C:\Temp1\rate.for : warning FOR4227: argument IPAR (number 19) in reference to
procedure DVODE from procedure main incorrect: is not an array
C:\Temp1\rate.for : warning FOR4227: argument MSG (number 1) in reference to
procedure XERRWD from procedure DVODE incorrect: is not an array
C:\Temp1\rate.for : warning FOR4227: argument MSG (number 1) in reference to
procedure XERRWD from procedure DVINDY incorrect: is not an array
Linking...
rate.exe - 0 error(s), 13 warning(s)

All these warnings are harmless. They refer to undeclared arrays or unused variables used in the
ODE solve, DVODE. I did not bother to correct them. 

Compilation Using Microsoft FORTRAN PowerStation V.1.0a (Windows 3.1)
The following message will be generated:

Initializing...
Compiling...
Microsoft (R) FORTRAN PowerStation Optimizing Compiler Version 1.0
Copyright (c) Microsoft Corp 1984-1993. All rights reserved.



6

C:\TEMP1\RATE.FOR
C:\TEMP1\RATE.FOR(568) : warning F4202: FCN : formal argument NTTTTT : never
used
C:\TEMP1\RATE.FOR(568) : warning F4202: FCN : formal argument RPAR : never
used
C:\TEMP1\RATE.FOR(568) : warning F4202: FCN : formal argument IPAR : never
used
C:\TEMP1\RATE.FOR(1919) : warning F4016: DVODE : formal argument JAC : type
mismatch
C:\TEMP1\RATE.FOR(3705) : warning F4202: DVNLSD : formal argument VSAV : never
used
C:\TEMP1\RATE.FOR(3705) : warning F4202: DVNLSD : formal argument PDUM : never
used
C:\TEMP1\RATE.FOR(4251) : warning F4202: D1MACH : formal argument IDUM : never
used
C:\TEMP1\RATE.FOR(4319) : warning F4202: XERRWD : formal argument NERR : never
used
Linking...
Microsoft (R) 32-Bit Executable Linker Version 1.0F
Copyright (C) Microsoft Corp 1992-93. All rights reserved.

-machine:i386 -base:0x00010000 -subsystem:console -entry:mainCRTStartup
-debug:full -debugtype:cv
RATE.OBJ
-out:RATE.EXE
libf.lib
libc.lib
kernel32.lib
ntdll.lib
Binding...
bindmsf2: MSOFT1 -- Copyright (C) 1986-93 Phar Lap Software, Inc.

Replacing .EXE stub in application: RATE.EXE with one
from file: C:\F32\BIN\bindmsf2.exe.

INPUT FILES:
    C:\F32\BIN\bindmsf2.exe (stub .EXE at offset 47599) (16512 bytes)
    RATE.EXE (409528 bytes)

OUTPUT FILE:
    RATE.exe                       (426552 bytes)
Microsoft (R) FORTRAN PowerStation (MS-DOS) Fix for Windows 95
Copyright (C) Microsoft Corp. 1995.  All Rights reserved.

RATE.EXE -- Fixed.
RATE.EXE - 0 error(s), 8 warning(s)

(Nov. 1999)


