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NOTE ON GENERALIZED COMMUTATIVE
RINGS

By S. K. JAIN and P. K. MENON
[Received December 14, 1967]

BerLuvce-HersteiN-JAIN have defined [1] a ring B to be a
generalized commutative ring (written as g.c. ring) if given a, be R
there exist positive integers m = m(a, b), n = n(a, b) such that
(ab)™ = (ba)*. A multiplicative semi-group § will be said to have
H-property if given a,b €8 there exists a positive integer
n = n(a, b) such that a"b = ba®. In this note we provide an -
alternative proof to prove that the commutator ideal of a g.ec.
ring is nil. The lemma which we prove below has an independent
interest also. It follows from the lemma that if G is a multipli-
cative group in which for each a, b € @, (ab)™*® = (ba)™®» where
mi{a, b) and n(a, b) are positive integers then G has H-property.
We assume for convenience that the ring R has unity.

LevMma. Let & be a multiplicative group. Let fora, b € & there
exist positive tntegers m, n, r and s depending on a and b such that
ab™a~! = b" and ba™b~! = a*. Then there exists a positive integer A
such that ab* = ba’

Proor. If b is of finite order then the result is obvious. So let
b be not of finite order. Then if 4™ = b*, for positive integers m
and n, we must have m = n. We have by hypothesis ab™a~! = b*.
By induction we get a’d™a~" = 6" for all positive integers r.
We write for convenience

a’b™a T =b"." - (1)
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Consider the collection of all ordered pairs (my, n;) satisfying (1).
Let z(r) and y(r) be the smallest positive integers among m,’s and
7’8 respectively. We claim a’6*"a=" = ", For, let

@b =T = by ()
WHFa = by, (3)

Raise (2) both sides by z and (3) by z(r). This would make left
hand sides equal. Thus the right hand sides #* and p@=0 gre
also equal. This by our remark in the beginning implies yz =
y(r). z(r). Since z(r) < z and y(r) < y, we must have z(r) = x and
y(r) = y. Therefore, we have

a'b*Ma=" = b for each positive integer r. (4)
Suppose we have also

_ arbla=T = b+, (5)
Then (4) and (5) yield 8% = p="_This means Ay(r) = ux(r). So we

obtain that for a given positive integer 7, if the relation (5) is true,
then the ratio A is constant and equals @
© y(r)
Now, if s is another positive integer,
ar-{—sbz(r)z(e)a—r-l — (ar+abz(r)a—r—a)x(c)
= (a".a".0%" a7 a7 = (gt ) g —ey=e)

= (a‘.b’(').a")”(’” = py@ur)
Therefore, by the remark just made before,
z(r)z(s) _ (r + )
yryls)  yir )
If we set f(r) = ;—E:—;, then f(r + 8) = f(r)f(s).
This gives f(r) =[f(1)7. So that if we can prove f(r) =1, for
some 7, then f(r) = 1 for each r.

In particular we would have for » = 1, the relation abf®) = g,
So we now proceed to show J{r) =1 for some r. So far we have not
used our second hypothesis
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b.av7! = o2, (6)
(Note that r and s are some fixed positive integers satisfying this
relation.) We conjugate (4) by b and rewrite it as ba’.b=165"p g p~1
= 0", We use (6) to obtain a?t*™g—* = @, Also a6V — pur.
Hence we obtain an integer A such that a*b*Pa=* — p). Raise
this both sides by z(}), we get a*6=*Ng=1 — (= The left hand
side is BvV=0_ Thyg prAzt) — pz=N) | But this implies z(A) = y(A).
Hence f(A) = 1. This completes the proof.

TaeorEM. Let Rbea gc. ring. Let a, b € R. If a and each b*,
where k is a positive wnteger, are quasi-regular then there exists g
positive integer n = n(a, b), such that ab® = bra.

Proor. If b is nilpotent then the result is obvious. So let & be
not nilpotent. Then if 4™ = b", for positive integers m and n, we
must have m =n. For, otherwise, let m > n. Then b*(1 — bm—n)
= 0. Since 6™~" is q.r., we get 6" = 0, a contradiction. Let z —
b(1 —a)"1,y = (1 — a)b. By hypothesis we have (after a little
simplification) integers m, n, such that (1—a)p™(1 — a)~! =p,

This is same as (1) in the lemma, with (1—a) in place of @. Since
(1 — a) has an inverse the argument in the lemma yields

(1— ay®" (1 —a)~" = pv® . (A)
and we want to prove 2(r) = y(r) for some r. Again by hypothesis
we have integers r and s, such that

(1—=08)(1 —a)(1—5)"! = (1—ay. (B)
Multiply the equation (A) on the right by (1 — 4)~! and on the left

by (1 —b). Then we get

(L—8)(1 — @) (1 — b)~10%(1 — )(1 — a)=r(1 — b)~! = putr),
Applying the equation (B), we obtain (1 — ayo™ (1 — a)™* = P,
But this yields as in the lemma that there exists a positive integer
A, such that (1 — )b = paV(] _ g).
Hence (1 — a)6=® = p=t)(] — a), which gives ad* = p=(g,
This completes the proof.
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CororLarY 1. If R is g.c. division ring then R has the H-property.

Proor. If a or some power of b is identity then trivially there
exists a positive integer n such that ab* = b"a. In case neither
a nor any power of b is identity then both a and each power of
is quasi-regular. Thus the theorem would give the result.

CoroLraRY 2. If R is g.c. division ring then R is a field.

Follows from Corollary 1 and Herstein [2].

CoroLLARY 3. A semi-simple g.c. ring is commutative.

The proof is usual deduction from the division ring.

CoroLLaRY 4. If R is a non-semi-simple g.c. ring then the
Jacobson radical J(R) has the H-property.

Proof follows from the theorem.

CoroLLaRY 5. If R is a g.c. ring having no non-zero nil tdeals,
then R is commutative.

Proor. J(R) as a ring in its own right also has no non-zero nil
ideals. Thus by Corollary 4 and Herstein [2], J(R) is commutative.
Since B/J(R)is also a g.c. ring and is semi-simple, it is commutative
by Corollary 3. Let a,be J(R) and x, y € R. Then (az)(by) =
(by)ax). This yields (b(az))y = (a(by))z, so that ab(zy — yx) = 0.
This means J%(R).C(R)=0, where C(R) is a commutator ideal.
Since R/J(R) is commutative, C(R) c J(R). Thus we get
C3(R) = 0. Hence C(R) = 0. So R is commutative.

CoROLLARY 6. If Risa g.c. ring then the commutator ideal of R
18 nal. '
The proof is now obvious.

ReMARE. We point out that the proof of the main result in [1],
namely, the commutator ideal of a g.c. ring is nil, can also be
shortened. The Theorem 3 therein proves that in a g.c. ring if
1— ab, 1 — ba, and 1— a have inverses then there exists a positive
integer n such that a® — b = ba®. This shows then a g.c. division
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ring has H-property and hence the theorem 1 in [1] does not need
& separate argument.
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