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1. INTRODUCTION

A ring R is quasi-Frobenius (QF) if and only if every right R-module
is embeddable in a projective module. We call a ring R a right (left) CEP-
ring if each cyclic right (left) R-module is essentially embeddable in a pro-
jective module. Examples of right CEP-rings include QF-rings and right
uniserial rings. Indeed R is a QF-ring if and only if R is both a right
and left CEP-ring [6]. A right CEP-ring which is QF-3 1s shown to
be QF (Theorem 3.3). Semiperfect CEP-rings and rings, each of whose
homomorphic images is a right CEP-ring, are characterized in Theorems 5.2
and 6.2, respectively. The last section deals with split extensions of right
uniserial rings as examples of CEP-rings.

2. DEFINITIONS AND NOTATION

A ring R is called right (left) uniserial if and only if it has a unique finite
composition series of right (left) ideals. R is uniserial if it is both right and
left uniserial. R is known to be uniserial if and only if R is night (left)
uniserial and either right or left self-injective. A ring R is called a (right)
QF-3 ring if its injective hull as a right R-module 1s projective.

Let M and N be right (left) R-modules. M is called weakly N-injective
if for each ¢ € Hom(N, E(M)), where E(M) is an injective hull of M, there
exists a submodule X of E(M) such that ¢(N)c X >~ M. Thus, if M is
N-injective then o(N) is isomorphic to a submodule of M for each
o € Hom(N, E(M)). Clearly, every N-injective module is weakly N-injective.

J or Rad(R) will denote the Jacobson radical of R. 4 =’ B (4 ' B) will
denote that A is essential (essentially embeddable) in B. E(X) will denote
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258 JAIN AND LOPEZ-PERMOUTH

the injective hull of a module X. The right (left) annihilator of X in S will
be denoted by r.ann,(X) (Lann,(X)). We write r.Q(R) (1.Q4(R)) to denote
the right (left) classical ring of quotients of R. Utumi’s ring of right
quotients of R will be denoted by Q(R). As usual mod-R (R-mod) denotes
the category of right (left) R-modules. Throughout our paper, unless
otherwise stated, all modules are right unital and by a CEP-ring we mean
a right CEP-ring.

3. PRELIMINARY RESULTS

In this section we show that a semiperfect CEP-ring is right artinian
and that all its projective indecomposable right ideals (hence all pro-
jective indecomposable modules) are uniform (Theorem 3.2). Write
R=@ X" ,e,R, where ee,=0d,¢,1=%]_,¢, and ¢ R, l<i<n,
are indecomposable right 1deals After renumbering, if necessary, let
e, R, ..,e, R be a complete set of projective indecomposable right ideals.
Throughout this paper, unless otherwise stated, we shall represent a

semiperfect ring R as @ Y7_, e, R, where the ¢/s are as described above.

3.1. LEMMA. [/ R is a semiperfect CEP-ring and P is a projective module
then Soc(P) <’ P. Furthermore, if Q is another projective module such that
Soc(Q) =~ Soc(P) then Q =~ P.

Proof. Since R is semiperfect, we may writte R=¢, R® --- @¢,R,
where P={e,R,..,e;,R} (k<n) is an irredundant complete set of
representatives for the projective indecomposable R- modules. Let
% =1{S8,, ... Sc} be an irredundant complete set of representatives for the
simple R- modules Since every simple module S, is cyclic, S, is essentially
embeddable in some projective module P which must be indecomposable
(and hence P~e¢; R for some j). Thus we can define a function /: ¥ > &
by f(S,)=¢,R. The function f must be one-to-one, hence onto. Thus for
any 1ndecomposable projective module ¢; R, Soc(e,R) is the unique simple
essential submodule, proving the statement of the lemma for indecom-
posable projectives. Let P be an arbitrary projective module. Since R 1s
semiperfect, there exist sets A,, i=1,..,k such that P~ @ > 7_, (e; R)"‘"
Since @ Y.(Soc(e,R))*) <’ @ (e, R )49 it follows that Soc(P) =’ P.
Suppose 0 =@ T4 _, (e,R)*?) is such that Soc(Q) =~ Soc(P). Then

® T (Soc(e,R)® =@ 3 (Soc(e,R)),

and so by the Krull-Schmidt theorem there is a bijection between A4, and
B., for i=1, .., k. Therefore, P~Q. |
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CEP RINGS 259

3.2. LEMMA. A semiperfect right CEP-ring is right artinian. All projective
indecomposable right modules over a semiperfect right CEP-ring are uniform.

Proof. Since each cyclic R-module is essentially embeddable in a
projective module, it folows from Lemma 3.1 that each cyclic R-module has
nonzero socle. Thus R is left perfect. Furthermore, since J(R)/(J(R))? is
completely reducible and hence embeddable in Soc(R™), for some m,
J(R)/(J(R))? is finitely generated and so R is right artinian [1, p. 322). The
statement concerning indecomposable projectives was proved in the course
of the proof of Lemma 3.1. It is stated here for future reference. |

As a consequence of the above results we obtain the following charac-
terization of QF-rings.

3.3. THEOREM. For an arbitrary ring R, the following are equivalent:
(1) Ris QF.
(2) R is CEP and QF - 3.
(3) Every cyclic R module has a projective injective hull.
Proof. The implications (1)= (3)=(2) are clear. To prove (2)= (1),

let E(R) be projective. Then E(R) and R are projective modules with
isomorphic socles and therefore, by Lemma 3.1, E(R) = R. |

4. WEAK RELATIVE INJECTIVITY

Let M and N be R-modules. Recall that M is weakly N injective if and
only if for every 0 e Hom(N, E(M)) there exists X = E(M) such that X ~ M
and o(N)c X.

4.1. PROPOSITION. The following statements are equivalent:

(1) M is weakly N-injective.

(1) For every submodule L of N and every monomorphism

o: N/L —» E(M), there exists X  E(M) such that X ~ M and ¢(N/L) < X.
(1) For every submodule L of N, M is weakly N/L-injective.

Proof. The proof folows immediately from the definition of weak
relative injectivity. |

For the special case M =N=R we have the following useful charac-
terization.
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260 JAIN AND LOPEZ-PERMOUTH

4.2. PROPOSITION. R is weakly R-injective if and only if for all a€ E(R)
there exists an element be E(R) such that r.anng(b)=0 and ae bR.

Proof. Let o: R— E(R) be the homomorphism defined by o(r)=ar,
re R. Then aR=g(R) is contained in a submodule X of E(R) which
is isomorphic to R via ¢:R—-X. Let b=¢(l), Then aebR and

ranng(b)=0. 1|

Weak relative injectivity is closed under finite direct sums (Lemma 4.3)
but the direct summands of a weakly injective module need not be weakly
injective (see Example 4.4(d)).

The following lemma is immediate but we record it for the sake of
reference.

43 LEMMA. If L and M are weakly N-injective modules, then L® M s
weakly N-injective.

Proof. Straightforward. |

4.4. ExampLEs. (a) Every right Ore-domain R is weakly R-injective.

Since E(R)=r1.Q,(R) is a division ring, the statement follows from
Proposition 4.2.

(b) Every prime (right and left) noetherian ring is weakly R-injective.

Here E(Rz)=1.04(R)=Q. So if g€ E(R) then there exists an essential
left ideal K such that Kg < R. But since K contains a unit in @, it follows
by Proposition 4.2 that R is weakly R-injective.

(c) A Boolean ring R is weakly R-injective if and only if it is
injective. For, if R is Boolean then E(R) = Q(R) is again a Boolean ring. So
if R is weakly R-injective and g€ Q(R), there exists a regular element
b e Q(R) such that g€ bR. But since the oniy regular element in a Boolean
ring is 1, we conclude R= Q(R).

In particular, the ring R of all finite or cofinite sets of natural numbers
under the usual Boolean operations is not weakly R-injective.

We now give an example that a direct summand of a weakly R-injective
module need not be weakly R-injective.

(d) Let R=(! %), where F is a field. We show that R is weakly

0o F
R-injective but e,, R is not weakly R-injective, where e,; = (o 9).

Proof. Here E(R)= (% £). So let ¢=({ ;)€ E(R). By Proposition 4.2,
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CEP RINGS 261

we need to show that there exists an invertible element g’ € E(R) such that
g'q € R. Without loss of generality, we may assume ¢ # 0. Choose

(
(” (», if a#0
—C a

()1>, if a=0.
L\l 0

Then ¢’ is invertible in E(R) and g¢'qe R.

To show e,,R is not weakly R-injective, we consider the R-
homomorphism ¢: R = E(e,, R) = (% %) given by a(y )= (] 3). Clearly, o
is onto. So o(R)=(% %) is not embeddable in e,, R. Hence e, R is not
weakly R-injective. |

g =<

We conclude this section with an important lemma.

4.5. LEMMA. Let R be a right artinian ring, and let M and N be finitely
generated R-modules. If M is weakly N-injective, N is weakly M-injective,
and Soc(M) ~ Soc(N), then M ~ N.

Proof. Consider the embedding
o: Soc(M) — E(N)

induced by the isomorphism between Soc(M) and Soc(N). Now o can be
extended to é: M — E(N) which is again a monomorphism. Since N is
weakly M-injective, 6(M)<c X, X~ N; and so M 1s embeddable in N.
Similarly, N is embeddable in M. Because M and N are finitely generated
modules over a right artinian ring, it follows that M >~ N. |

5. CEP-RINGS

In this section we characterize the class of CEP-rings. We start with a
key lemma.

5.1. LEMMA. Let R be a right artinian ring such that all indecomposable
projective R-modules are uniform and weakly R-injective. Then

(1) every simple R-module is isomorphic to the socle of an indecom-
posable projective module,

(i1) every simple R-module is embeddable in Soc(R), and

(i) if P and Q are projective modules with Soc(P) =~ Soc(Q) then
P~Q.
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262 JAIN AND LOPEZ-PERMOUTH

Proof. Write R=@ Y.7_, e;R as a direct sum of indecomposable right
ideals, where 2= {e,R, ..,e,R} (k<n) is an irredundant complete set
of representatives for the projective indecomposable modules. Let
S.=Soc(e,R). Clearly ¢;R ~¢,R implies S, =~ S,. By Lemma 4.5 if S;,= S,
then e,R ~e;R. Since & = fSl, S5, .., S} 1s an irredundant set of 51mple
R- modu]es contammg k = |2| members & must be a complete set of
representatives.

This proves (i) and (ii), and also (iii) when P and Q are indecomposable.

In general,

((’iR)(B')-

(e,R)“ and Q=@

LU

1
%L
||'[\/]»

{

So Soc(P) =~ Soc(Q) yields |4,| =|B,|, proving P=Q. |

52. THEOREM. A semiperfect ring R is CEP if and only if the following
hold:

(i) R is right artinian,
(ii) every indecomposable projective module is uniform, and

(iii) Every indecomposable projective module is weakly R-injective.

Proof. Let R be a semiperfect CEP-ring. Then R satisfies (1) and (1)
(Theorem 3.2). Let ¢R be an indecomposable projective. By (i1), Soc(eR)
is simple. Let o: R/I— E(eR) be a monomorphism. Then Soc(R/I)=
Soc(E(eR)) = Soc(eR). Since R is a CEP-ring, R/Ic’ P, for some projective
module P. Therefore Soc(P) =~ Soc(R/I) ~ Soc(eR). Hence, by Lemma 3.1,
P ~ ¢R and so there exists a map ¢: R/I - ¢R which embeds R/I essentially
in eR. Then, there exists é: eR — eR which embeds R/I essentially in eR.
Then, there exists ¢: eR — E(eR) such that 6o =o0. Clearly, 6 1s one-to-
one. Let X =4(eR). Then o(R/I)= X and X =~eR. Conversely, assume R
satisfies (1)—(i11). Write R @ Y"_, ¢;R as a direct sum of indecomposable
right ideals, where # = {e R, .., ¢, R} (k<n)isan irredundant complete set
of representatives for the pI‘OJCCthC mdecomposable R-modules. Let / be a
right ideal of R. Now by Lemma 5.1(i), Soc(R/l) = @ Xi_, (Soc(e;R))",
n=0,i=1i ..,k

Let P= 6—) Sk_ (e;R)". Since Soc(P) = Soc(E(P)), the above
isomorphism between Soc(R/I) and P S %_, (Soc(e;R))" = Soc(P) may be
looked upon as an essential embedding ¢: Soc(R/I) — E(P). Extend ¢ to
é: R/I - E(P). Clearly, ¢ is also one-to-one. Now by (iii), P is weakly
R-injective. So P is also R/I-injective (Proposition 4.1). Therefore, there
exists X< E(P) such that X~ P and @(R/I)cX. Now X>@(R/)>
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(Soc(R I = Soc(L(P)). Therefore, A" < E(P) and Soc(X)=Soc(E(P)). It
follows then X2 @(R 11> Soc(X). and so @R 1) =’ X as desired. i

53 Remark. Note that the condition (iii) in Theorem 4.2 may not be
weakened to the more appealing condition "R is weakly R-injective” since
weak relative injectivity is not inherited by direct summands. Example
4.4(d) provides a ring R sausfving (1) and (it) which is weakly R-injective
but which is not a CEP-ring.

6 RinGs WHOsE FviRY HOMOMORPHIC IMAGE 1S A CEP-RING

In this section we characterize rings R satisfving the property that every
homomorphic image of R is a CEP-ring. These rings turn out to be
preciselv those semiperfect nings R for which every cvche R-module 1s
embeddable essentially in a direct summand of R [7]. The fact that R 1s
semiperfect follows as below. Since R N 1s a CEP-ring. where N i1s the
prime radical of R. every right idcal of R'A1s an annihilator right ideal and
hence R is semiperfect [3. p. 204, Exercise 24.3(d)].

6.1. LEMMA. Let R be a ring such that evervy homomorphic image is a
CEP-ring. Then every indecomposable projective R-module s uniserial and
all its composition factors are isomorphic to one another.

Proof. Let m be a positive integer. Let P(m) denote the statement that
for any ring R each of whose homomorphic images 1s d CEP-ring. and for
anv indecomposable projective R-module P of composition length m, the
following are true:

(1) P 1s unisenal, and
(ii) the composition factors of P are isomorphic to onc another.

We proceed inductively to show that P(m) is truc for all m. P(1) 1s clearly
true. Let us assume that P(m) holds for some m. Let R be a ring each of
whose homomorphic images is a CEP-ring and let P be a projective
indecomposable R-module of composition length m+1. Since R 13
semiperfect. we may write R=¢,R® --- @e¢, R. where for some 1<n.
P~¢,R~¢ R~ - ~¢,R and ¢, R % ¢,R whenever j>1. Let [¢,R]=
¢,R® ---@c¢,R. and let I=Soc([e¢,R])=Socle, RY® --- @ Socle, R).
Then, if we define S= R

¢, R ¢, R

S~—— — @ - ———0®¢ R® ... :
Soc((',R)@ Soc((',R)@("' ® DR (1

21



264 JAIN AND LOPEZ-PERMOUTH

is a direct sum of indecomposable projective S-modules (Proposition 27.4
[17). Since (e, R)/(Soc(e,R)) 1s an indecomposable projective S-module
with composition length m and S is a ring each of whose homomorphic
images is a CEP-ring, it follows by P(m) that (e, R)/(Soc(e, R)) is uniserial
as an S-module (and equivalently as an R-module). Because Soc(e, R) is
simple, we obtain that e, R is uniserial. Also, by P(m), all composition
factors of (¢, R)/(Soc(e, R)) are isomorphic to one another as S-modules
and hence as R-modules. To complete our proof of P(m+ 1), we need
only to show that Soc(e, R/Soc(e, R)) ~ Soc(e, R). Let k be the number
of distinct isomorphism classes of R- (or S-) simple modules. We
know Soc(e,R+ --- +e¢,R) contains exactly k —1 nonisomorphic simple
modules. Thus, by (1), the missing simple S-module Soc(e, R) must be
embeddable in Soc(e, R/Soc(e,R)® --- ®e,R/Soc(e,R)) (Lemma 5.1(i1)).
Hence, Soc(e,R) ~ Soc(e,R/Soc(e,R)). This proves P(m+1) and
concludes our induction. |

For convenience, we shall say that a right unisertal module M 1is
homogeneous 1f all of its composition factors are isomorphic to one

another.

6.2. Theorem. For a ring R, the following are equivalent:

(1) Every homomorphic image of R is a CEP-ring.
(11) R is of one of the following types:
(a) a right uniserial ring,
(b) an nxn matrix ring over a right self-injective right uniserial
ring, n> 1, or
() a direct sum of rings of types (a) or (b).
(i) Every cyclic R-module is essentially embeddable in a direct
summand of R, and R is semiperfect.

(iv) Every ring homomorphic image S of R has the property that each
cvelic S-module is essentially embeddable in a direct summand of S.

Proof. The equivalence of (1), (ii1) and (1v) is shown in [7]. Trivially,
(iv) implies (1). We now proceed to show that (1) implies (i1). By Lemma
51, R=@® X!_, e,R, where each ¢, R is a homogeneous uniserial module.
Let 0: ¢,R — ¢, R be a nonzero homomorphism. Then e,R/ker g 5 ¢, R and
so ¢;R and e;R have a common composition factor. But since both ¢, R and
e, R are homogeneous, e;R/e,J ~e,;R/e;J, yielding e, R ~ e, R. This implies
that we can rewrite R=[¢,R]® --- ®[e,R] as a direct sum of ideals
[e,R], where [e,R] =& >, e,R, where the sum runs over all s such that
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CEP RINGS 265

e,R~e,R Then, R~ P Y%_, M, (e;Re;), where n, is the number of direct
summands in [e;R]. Since e,R is uniserial, e,Re, is a right uniserial ring.
If n;> 1, then it can be shown that e;Re; is a right self-injective ring (see

Lemma 6.3), completing the proof. |

We prove below that if an nxn, n>1, matrix ring R over a right
uniserial ring S is a CEP-ring then S is right self-injective. The argument
used here is the same as the argument used to prove a similar result for
rings R each of whose cyclic R-modules is essentially embeddable in a direct
summand of R [7]. We give the proof here for the sake of completeness.

6.3. LEMMA. [If R is the nxn matrix ring over a right uniserial ring S
with n> 1, and R is a CEP-ring, then S must be right self-injective.

Proof. The S-module S" corresponds to the R-module R under the
category 1somorphism - ® x Re,,: mod-R — mod-S.

Since R 1s a CEP-ring, every quotient of S” is embeddable in $™, for
some positive integer m. Let us write Rad(S)=xS=J. Assume that S is
not right self-injective. Then, there exists an element se S, s¢J, satisfying
xs¢Sx. Let N=(x, —xs5,0,0,..,0)S<S" We claim that (S”)/N is not
embeddable in §™, for any m. Let é,=e,+ N, i=1, 2, where e, = (1, 0, ..., 0)
and e,=(0,1,0,..,0). Then ¢,S and &,S are both isomorphic to S.
Also, e, Sne,S=¢,xS=¢e,xS. If y:S"/N—> S™ were an embedding of
S"/N into 8™, with y(é,)=(a,, a,, .., a,,) and Y(&,)=(b,, b,, ..., b,,), then
there must exist /,j such that a, and b, are invertible. However,
(e, x)=(a,x,a,x, .., a,x), and Y(é,xs)=(b,xs, byxs, .. b, xs). This
implies that a,x = b,xs and therefore b ' a,x = xs, contradicting our choice
of 5. Therefore, our assumption that S is not right self-injective does not

hold. |

7. EXAMPLES

In this section we provide examples to illustrate the concepts developed
in this paper.

7.1. ExAMPLE. Our first example is a local CEP-ring which is neither
right uniserial nor quasi-Frobenius. This also provides us with an example
of a CEP-ring not all of whose homomorphic images are CEP-rings.

Let S be a ring having only three right ideals, namely, S, J=Rad(S) =
xS and (0), which is not necessarily right self-injective [2, p. 337]. Let
R=(S, S) denote the split extension of §, ie, R={(a, b)|a, beS} with
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266 JAIN AND LOPEZ-PERMOUTH

componentwise  addition and multiplication  given by  (a. h)(c. d) =
(ac, ad + bc). The lattice of right ideals of R is

/// \\\
(J.J) K, (0.5)
AN /

N, /
SociR)=(0,J)=1(J)" =(0. v)R

where K, = (x, u) R, u¢ J. We note that

(i) R/J~(0.J) 'R
() R/(0,S)~(0,S) 'R,
)
)

(i) R/J.J)=~(J,J) 'R,

(v) R/0,J) <’ Rx R, since (0, J)=(0. X) R=r.ann,((0, 1), (x.0)).
and

(V) R/K,~K ,<c'R under the map sending 1+ K, into
(xee ', —1).

This shows that R is a CEP-ring. R is not right uniserial, and R is not right
self-injective whenever S is not right self-injective [4]. Finally. R'Soc(R) is
not a CEP-ring since it is local but not uniform.

Our next example shows that the split extension of a right uniserial ring
of composition length greater than 2 need not be 2 CEP-ring. A necessary
and sufficient condition is given for the spht extension of a right uniserial
ring of composition length 3 to be a CEP-ring.

7.2. EXaMPLE.  Let S be a right uniserial ring with Rad(S)=vS=J
such that J'=0#J°. Let R be a split extension of S as defined in Example
7.1. Notice that the ring R/(J% J*) is 1somorphic to the spht extension of
S.J° which is a right uniserial ring of composition length 2. Therefore, if A
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is a right ideal of R containing (J% J*), R/K is embeddable essentially
in R/(J?, J?) of R/(J? J*)x R/(J? J?), as shown in Example 7.1. Since
R/(J?, J*)~(J,J) <" R,R/IKs' RY for i=1 or 2, for all K containing
(J?, J?). Next suppose K does not contain (J? J2). Then we have the
following cases.

(1) For K=(0,J'), i=1,2, K=r.anng((0, 1), (X*~*,0)). So R/Kc
R x R. Further, Soc(Rx R)=(0,J" ') x (0, J" ') while Soc(R/K) contains
at least two direct summands (J'~ J)/K and (0, J'~Y/K. Therefore,
R/IKg'Rx R
(1) I K=(0, S)=r.anng(0, 1) then R/K <’ R.
(i) Let us now assume K#(0,J') (i=0,1,0r 2) and K does not
contain (J°, J*). It can be shown that K must be of the form N, or M, as
in the diagram

where N, =(x% xu)R, and M,= (x>, v)R, u and v invertible. Then
R/M .~ M, via the map which sends 1 + M_ to (x*v~!, —1). Therefore, R
1s a CEP-ring if and only if, for every invertible element u of S, the cyclic
module R/N, 1s embeddable essentially in a projective R-module. We show
next (Remark 7.3) that this is possible if and only if, for every invertible
ue S, there exist v and we S (necessarily invertible) such that xvxu = wx?.

1.3. Remark. Let S be a right uniserial ring with Rad(S)= xS =J such
that J* = (0) # J? Let R be the split extension of S. Then R is a CEP-ring
if and only if for every invertible ue S there exist invertible elements v,
we S such that xvxu = wx?

Proof. As indicated in Example 7.2 the lattice of right ideals of R is
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268 JAIN AND LOPEZ-PERMOUTH

(S, S)
K (J2% S)
(JZ, J) . (0, 5)

|
|
|
{M
|
|
|

]
f
/ | \ /
|
|
(J2, J?) {N,} 0, J)
\\ |
!

/

(0, J?)

l

(0, 0)
where

K,=(x,1)R
M,=(x*s)R
N, = (x% xu) R

u

t,s,ueS, t, s, ug¢J.

Furthermore, as remarked towards the end of Example 7.2, R 1s a CEP-
ring if and only if R/N, is essentially embeddable in a projective module for
each invertible ue S. Now Soc(R/N,) is simple. So if R/N, were essentially
embeddable in a projective module, then P ~ R. Furthermore, the composi-
tion length of R/N_is 4. Thus R/N, ¢’ R if and only if

(i) R/N,~(J,J), (ii) R/N,~(J% S), or (iii) R/N,~K,, for some
teS, t¢J.

We first rule out the possibilities (i) and (ii). Since (J, J)(x?, 0)= (0, 0),
but (x%,0)¢ N,, it follows that R/N, # (J,J). Next, suppose that
@: R/N,— (J% S) is an isomorphism with ¢(1 + N,) = (x’a, b). Note that
a¢J, and N, =r.anng(xa, b). In particular, (x?a, b)(x?, xu)= (0, 0), which
implies b e J. This yields (R/N,) < (J?, J), a contradiction.
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We now proceed to prove that (ii1) is true if and only if there exist
invertible elements v, we S such that xvxu=wx? Assume (iii) and let
¢: R/N,— K, be an isomorphism. Let ¢(l 4 N,)=(xa, b). Since (xa, b)R
=(x,t) R, a does not belong to J. Furthermore, b¢J; for otherwise
(xa, b)) Rc (J,J). Choose v=a and w= —b. Then N, =r.anng(xv, —w)
and so (xv, —w)(x2, xu)= (0, xvxu —wx?) = (0, 0). Therefore, xvxu= wx?
as desired. Conversely, let xvxu = wx? for some invertible elements v, we S.
Then we assert N, =r.anng(xv, —w). Clearly, N, c r.anng(xv, —w). So, let
(xv, —w)(y, z)=0. Then xvy =0=xvz—wy. Now xvy=0 implies yeJ?,
and xvz=wy implies zeJ. If y=0 then zeJ? and so (y, z)e (0, J*)= N,,.
If y#0 then y = x*«, where « is invertible. Write z= x8. Then § must also
be invertible. This transforms xvz —wy =0 to xvxf — wx?a=0. Since, by
hypothesis, xvxu=wx? we obtain that xvx(f—ua)=0. Therefore,
B —ux € r.ann z(xvx) < J. Write  — ua = xy. Then y = xf = x*y + xua and so
(x, v)=(x% xu)(a, y)e N, as desired. This completes the proof. ||

We conclude by pointing out that the above remark guarantees that R
is a CEP-ring if x2S = Sx? (in particular, as is well known [4], if S is right
self-injective).

Note added in proof. (1) We have learned after the submission of this paper that P. Menal
has given an alternative proof of Theorem 3.3. in “On the Endomorphism Ring of a Free
Module,” Publ. Secc. Mat. Univ. Autonoma de Barcelona 27 (1985), 141-154. (2) We can
prove now that conditions (1) and (iii) in Theorem 5.2 imply (11).

REFERENCES

1. F. W. ANDERSON aND K. R. FULLER, “Rings and Categories of Modules,” Springer-Verlag,
New York/Heidelberg/Berlin, 1974.

2. C. FAITH, “Algebra: Rings, Modules and Categories 1,” Springer-Verlag, New York/Berlin/
Heidelberg, 1973.

3. C. FaITH, “Algebra: Rings, Modules and Categories II,” Springer-Verlag, New York/
Berlin/Heidelberg, 1976.

4. C. FaitH, Self-injective rings, Proc. Amer. Math. Soc. 77 (1979), 157-164.

5. C. FaiTH, Embedding modules in projectives: A report on a problem, in “Advances in Non-
commutative Ring Theory,” Vol. 951, Lectures Notes in Mathematics, Springer-Verlag,
New York/Berlin/Heidelberg, 1981.

6. C. FaiTH AND E. A. WALKER, Direct sum representation of injective modules, J. Algebras
5 (1967), 203-221.

7. S. K. JaIN aND S. R. LOPEZ-PERMOUTH, A generalization of the Wedderburn—Artin
theorem, Proc. Amer. Math. Soc. 106 (1987), 19-23.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

220





