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Throughout, M denotes a module over a ring R. Recall that a projective cover of
M ois an epic 70 P — M with P projective and ker 7 small in P (to be defined below).
Although projective covers have earned their important role as the dual of the injective
hull, they have one major disadvantage — they need not exist. This difficulty motivates
one to drop “projective” from the term “projective cover”; and the object of this paper
is to study what can be said in this more general situation. Accordingly, we recall the

following definition.

DEFINITION 1: A submodule K of M is small or superfluous, if K+N < M forall N < M

{where < means * proper submodule”). We denote the relation “K is a small submodule

of M "by K & M. A superfluous cover is an epic 7: M' — M with ker 7 small in M’; the

cover 1s proper if kern # 0. M will be called auto-covering if it has no proper superfluous
cover. A superfluous cover m: M' — M is called a projective (resp. flat) cover if M' is
projective (resp. flat). A superfluous cover m: M’ — M is maximal if M’ is auto-covering.
[t is well-known that projective modules are auto-covering. Thus, any projective cover
s maximal.
Among other questions, we shall address the fciiowing:

1. Need every M have a flat cover?
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[

A flat module with a projective cover is itself projective and thus is auto-
covering. Is it true in general that flat modules are autocovering?

3. Do maximal superfluous covers necessarily exist for an arbitrary module?
4. For which rings do all (f.g.) modules have maximal superfluous covers?

5. Which modules are auto-covering?

6. What properties do autocovering modules share with projective modules?

The answer to questions 1,2 and 3 is “No.” Concerning question 4, our main result,
Theorem 3.7, is that for many semilocal rings, a maximal superfluous cover must be a
projective cover. Thus, while in many familiar cases maximal superfluous covers provide
the full theory of projective covers, they also yield a theory in those cases where projective
covers fail to exist. Regarding question 5, we shall study superfluous covers of cyclic mod-
ules. Intrinsic characterizations of auto-covering cyclic modules are given in Example 1.6
and throughout §2. In particular, we show that cyclic lat modules over commutative rings
are auto-covering. Also, in §4 we study superfluous covers of modules over a Dedekind
domain. We see that injective modules play a key role in that study. We show that every
torsion free module over a Dedekind domain is auto-covering. Concerning question 6, our
results include the fact that finite direct sums of autocovering modules are autocovering

(Lemma 3.1.).

§1. Basic results about superfluous covers.

Let us start by collecting facts about small submodules. Write K « M to denote K
is small in M. Basic references include Anderson-Fuller [1] and Rowen [8]. Given a module
M, define Rad(M) to be the intersection of all proper maximal submodules of M. (We take
Rad(M) = M if M has no proper maximal submodules.) Then Rad(M) is also the sum of
all small submodules of M; however, Rad(M) itself need not be small, in general, but is
small when M is finitely generated. We write “f.g.” for “finitely generated,” and “Jac” for

the Jacobson radical of a ring. We recall some well known facts about small submodules.

REMARK 1.0: (i) If K « N and N is a submodule of M then K « M. (Indeed if

K+L=Mthen K+(LNN)= N, implying N=LNN,so K CLNNCL,andL=M.)
(ii) If P is a projective R-module then Rad(P) = Jac(R)P.



312

SUPERFLUOUS COVERS 1662

REMARK 1.1.
Then N/K is small in M /K iff for any submodule N' of M for which N + N' = M

one also has K + N' = M.

REMARK 1.2: Let K < N < M. If N/K is small in M/K then N is contained in the
intersection N of those maximal submodules of M which contain K. (Indeed, N/K =

Rad(M/K).)

REMARK 1.3: The following trick enables one to pass from cyclic modules to f.g. mod-
ules: If NV is an R-module generated by n elements then N(*) is a cyclic Myp(R)-module;

furthermore, ' <« N as R-modules iff K(" « N(™) a5 M, (R)-modules.

EXAMPLE 1.4: Let us consider the special case when M = R and K is a left ideal. Let
V'K denote the intersection of all maximal left ideals containing K. By Remark 1.2, N /K
is small in R/K if N C VK. Furthermore, mimicking the usual Jacobson theory, one has
the following element-wise criterion: a € VK iff for every r in R there is s in R such that

s(l —ra}-1€ K, ie., “rais quasi invertible modulo K.”

REMARK 1.5: f M = ZRa,' and m: M' — M is a superfluous cover then taking a
set {b; ;i eI} Cc M s;ifl that 7(b;) = a; for each i, we have M' = ERb,-. (Indeed,
2 Rbi +kerr = M' so " Rb; = M'.) !
EXaMPLE 1.6: We shall now describe all superfluous covers for cyclic modules. Suppose
M = R/L, and n: M' — M is a superfluous cover. By remark 1.5, M’ is cyclic, so
M' =~ R/L’' for some L' < L. Then L/L" = kerr « R/L', which by Example 1.4 is the
case iff L C VT, ie., iff VI = VI

For example, taking L' = L? we have VI = VL' since every maximal left ideal is

prime. So, R/L? is necessarily a superfluous cover of R/L. Of course, this is proper only

when L # L?, so we have
REMARK 1.7: If R/L is auto-covering, then L = L? i.e., L is idempotent.
More generally, one gets:

REMARK 1.8: Suppose R/K is a superfluous cover of R/L. Then R/LK is a superfluous
cover of R/K, and of R/L. (Indeed, if LK is contained in a maximal left ideal L' of R
then either K C L' or L C L', implying K C L' and L C L')
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Let us answer question 1 negatively, by analyzing what happens with V-rings. Recall
[7] that Ris a left V-ring iff every module has radical 0, iff every cyclic module has radical

0.

PRrROPOSITION 1.9. The following are equivalent:
(1) R isaleft V-ring.
(2) Every cyclic R-module is auto-covering.

(3) Every f.g. R-module is auto covering.

PROOF: (1) = (3) If m: M' — M is a superfluous cover then kerm << M’ so kern = 0.
{3) = (2) Obvious.
(2) = (1) If K « M for M cyclic then M — M/K is a superfluous cover, implying
K=01

On the other hand, a ring R is von Neumann regular iff R/L is flat for each L < R, so
taking a V-ring which is not von Neumann regular, one has a non-flat auto-covering cyclic
module. Note this example must be noncommutative. In fact it cannot be a ring with
polynomial identity, cf. [2]. In the next example we see that a module can have nontrivial

covers but yet have no flat cover.

EXAMPLE 1.10: If R is Noetherian then every f.g. flat module is projective; thus, a cyclic
module without a projective cover also fails to have a flat cover. For example, if R is
a principal ideal domain (PID) then the superfluous covers of the cyclic module R/Ra
are precisely R/Rb where a|b and where b has the same prime divisors as a (so that
v Ra = VRb). But R/Rb cannot be projective for b # 0, since otherwise Rb is a summand
of R, which is impossible because R has no nontrivial idempotents.

Furthermore, since R/Ra? is always a superfluous cover of R/Ra, we see that no
proper cyclic module of a PID is auto covering. (Note this fails for principal left ideal

domains, since in fact there are PLID’s which are V-rings (cf. [3]).

REMARK 1.11: A finitely generated module M is a superfluous cover of a simple module
iff Rad(M) is maximal. (Indeed, if 7: M — § is a superfluous cover, then ker7 < Rad M,

implying Rad M = ker , since ker 7 is maximal.)
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An interesting question is whether a maximal superfluous cover (if it exists) of a mod-
ule V need be unique up to isomorphism. A stronger requirement is that any superfluous
cover must be “part” of a given maximal superfluous cover 7: M — N, in the sense that
ifa': M'" — N is any superfluous cover then there is an onto map ¢: M — M’ such that
7 = 7'p. Let us call this condition strong uniqueness. It is well-known that projective
covers are, in fact, strongly unique. We next consider uniqueness and strong uniqueness

for maximal covers of cyclic modules.

REMARK 1.12: Suppose N = R/L cyclic, and 7: M — N is a maximal superfluous cover.
Write M = R/L;. Strong uniqueness is equivalent to the condition:

If Ly C L such that vI; = VL = /I3 then Ly C L.

Clearly this condition holds if /L; N L, = VL. Although we do not see in general

why this need hold, there is one special situation where it is true.

REMARK 1.13: Suppose K < R, and R/K is a maximal superfluous cover of R/L. Then
it is strongly unique. Indeed, as in Remark 1.8, K = KLaR, and KL C K N L, so we are

done by Remark 1.12.

Projectivity plays an additional role in the theory of superfluous covers. Recall that
a module M is N-projective if for any epic g: N — N', each map h: M — N’ lifts to a
map f: M — N (ie, h=gf).

PROPOSITION 1.14. If M is N-projective then the following condition holds: For any

superfluous cover w: M' — M and every f: M' — N we have f(kerw) = 0.

PRroOOF: Consider the diagram

M —— N/f(kern)

where p: N — N/ f(kern) is the canonical map and f is given by viewing M as M'/kern
and defining f(z + ker7) = f(z) +ker=. Then f is onto, and by definition f lifts to a map
g: M — N such that pg = f. We would like g7 to equal f, since then we would be done.
To this end, consider f' = f — gr. If 2 € M then pf'(z) = pf(z) — fr(z) = 0, implying
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f'(z) € ker p = f(kert). Write f'(z) = f(k) where k € kern. Then
flla=k) = f'(z) = f'(k)=f'() - f(k) =0

so 1 — k € ker f', proving z € ker 7 + ker f', 1.e., M’ = ker 7 + ker f'. But ker7 is small in

A’ by hypothesis, so we conclude ker f' = M', i.e., f = g as desired. §

REMARK 1.16: The condition of Proposition 1.15 holds iff, for any superfluous cover
7 M' — M, eachmap f: M' — N drops down to a map F: M — N such that fr =1
{(Indeed, f can be defined via Noether’s homomorphism theorems iff kerm C ker f, t.e., iff
F(ker7) = 0.)

§2. Auto-covering cyclic modules.
Returning to example 1.7, Proposition 1.9, we are led to generalize (8, Theorem 2.1]
in an attempt to characterize auto-covering cyclic modules, also cf. Remark 1.7.
Now let us define the following properties for a left ideal L.
P1. For every simple module S, every module map ¢: L — S extends to a map
Ww:R— S, ie, =Y.
P2 If K < L and VK = VL then K = L.
THEOREM 2.1. The following are equivalent for a left ideal L :
(1) IfL' <L and VL' = VL then L' satisfles P1 (in particular, L satisfies P1).
(2) L satisfies P2.

(3) The cyclic module R/L is auto-covering.

PROOF: (1) = (2). Suppose on the contrary that K < L with VK = VL. Fixing any
ain L\ K, VCake K, > K maximal in L with respect to a ¢ K,. Let L' = K, + Ra.
Clearly, L'/ K, is simple, and VI’ = VL since VK = VL. Thus, by P1, the natural map
L' — L'/K, extends to a map R — L'/K,, which implies that the identity map on L'/K,
lifts to 2 map R/K, — L'/K,, i.e., L'/ K, is a direct summand of R/K,. Letting K'|K,
denote its complement, we see K' is a maximal left ideal of R containing K., but K' 2 L',
contrary to \/I— = \/F: = \/I7 = \/f
(2) < (3). By Example 1.6.
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(2) = (1). Asin (8, Theorem 2.1]. First note by (2) that L' = L. Given ¢: L — S, note
that ker o is a left ideal of R properly contained in L, so by (2), there is a maximal left ideal
M containing ker  which does not contain L. Then M + L = R and so R/M =~ L/MNL,
a nonzero homomorphic image of L/ keryp = S, so R/M & S canonically, and the induced
map R — S extends . [J
NoTE: Condition (1) is somewhat artificial, since in fact the only L' which exists at the
end is L itself. Thus, we would like to replace (1) by

(1) L satisﬁes P1.

COROLLARY 2.2. If L isf.g. then the conditions of Theorem 2.2 are all equivalent to (1').

ProoOF: Obviously (1) = (1'). Conversely, if L is {.g. then any submodule of L is contained
in a maximal submodule of L, so using this submodule instead of K, (and L itself instead
of L') enables us to prove (1') = (2), exactly as in the proof of (1) = (2) of Theorem 2.1.
d

If we are willing to view all cyclic preimages of R/L at once, our results become

somewhat sharper.

CoroLLaRY 2.3. The following are equivalent, for an arbitrary left ideal L of R :

(1) Every left ideal L' < L satisfies PI;
(2) Every left ideal L' < L satisfies P2;
(3) R/L'is auto-covering for every L' < L;
(4) L' =L forevery L' < L.
If any of these conditions hold then:

(5) Every left ideal L' < L is idempotent.

PRrROOF: (1) = (2) = (3) = (1) by Theorem 2.1.

(3) & (4) by Example 1.6.

(3) = (5) by Remark 1.7. O
REMARK 2.4: We examine (5) a bit closer, as in [8, lemma 2.3(c)]. Suppose the principal
left ideal Ra < L is idempotent. Then a € RaRa, so a = ba for some b € RaR. In
particular, if a € L < R then b € L. By [5,Exercise 13, p. 271], this proves that if La R

and Ra is idempotent for all a in L then R/L is flat as right R-module.

316



317

1670 JAIN, LOPEZ-PERMOUTH, AND ROWEN

Accordingly, we say L < R is talf if for all e in L there is b in L such that a = ba.

(Thus, L a« R is talf iff R/L is flat as a right module.)

PROPOSITION 2.5. If L < R is talf and K 4 R is contained in L, such that R/K is a

superfluous cover of R/L, then K = L.

PROOF: Passing to R/K, we may assume that K = 0. Thus, L C Jac(R/K). Hence for
any a € L we have a = ba for some b in Jac(R/K), so (1 — b)~! exists in R/K and
a=(1-b)"Ya—ba)=0.

In particular, if R is commutative then every flat cyclic module is auto-covering. This
fails for non-commutative rings. For example, a regular ring which is not a V-ring will
have (flat) cyclic modules which are not autocovering, in light of Proposition 1.8. fi

An interesting question is whether every flat module over a commutative ring needs
to be auto-covering. One can reduce this question rather easily to f.g. modules. Also, one
may ask if all cyclic flat modules over a PI ring must be autocovering (By [2], every von
Neumann regular Pl-ring is a V-ring, so the counterexamples in §1 are not applicable).

Another application of this line of reasoning is
PROPOSITION 2.6. Suppose R is comnmutative. Then conditions (1)-(5) of Theorem 2.3
are equivalent, and each is equivalent to

(6) For every ideal I « R contained in L, the module R/I is flat.

PrROOF: We have the cycle of implications proved in Theorem 2.3.
(6) = (3) by Proposition 2.5, taking I = L.

(5) = (6) by Remark 2.4. O

Let us return to the noncommutative case.

ProrosrTion 2.7. If R/K is a superfluous cover of R/L and L is talf then a € Ka for all

ainL.

PROOF: Write a = ba for bin L. Then b € VI = VK, so, by Example 1.4, there is ¢ such
that ¢(1 —b) —1€ K. But —{¢(1 —b)—1)a=—c(a—ba)—a=a,s0a € Ka. 1

One would like to conclude that @ € K; one situation in which this must be the case

1s when a € Z(R).
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COROLLARY 2.8. If I < R is generated by central elements and R/I is flat then R/I is

auto-covering, I < R, and

§3. Maximal coverings.

Having established criteria for modules to be auto-covering, we still would like to know
when a module can have a maximal cover, i.e., a cover which is auto-covering. Although
we saw that maximal covers do not necessarily exist (e.g. for a cyclic module over a PID),
there are some strong positive results. Of course, V-rings have maximal covers since every
module is auto covering. On the other hand every projective cover is a maximal cover, so
modules over perfect rings (and f.g. mocules over semiperfect rings) have maximal covers.
The main object of this section is to show that over many semilocal rings, the maximal
covers of finitely generated modules are precisely the projective covers. Let us start with
some general facts.

LEMMA 3.1, If Ny, N, are auto-covering then N1 & N, is auto-covering.

PROOF: Suppose on the contrary that m: N — N; @& Ny is a superfluous cover. Let
M, = 7#7Y(N,), and 7, be the restriction of 7 to M;. We want to show that 7, M; — N
is a superfluous cover since then, by hypothesis, 0 = kerm; and therefore, noting that
kerm C My, kerm = 0.

Thus we need to show that if K +kerm; = M; then K = M. Let o, be the projection

N, & Ny — N,, and consider the composite map
w: N L N, &N, 2N,
Clearly K C M, = kery, so we have an induced onto map ¢: N/K — Np with kerg =
l‘%l We claim that ker 3 is small in N/K. Indeed if K < L < N such that L/K +kerg =
N/K then
N=L+kero=L+M =L+ K +kerm; =L+ K +kerr = L + kerm,
so N = L and thus N/K = L/K, as claimed.

Hence & is a superfluous cover of Ny, so by hypothesis, kerg = 0, i,e, M; = K, as

desired. B

The following criterion will be used repeatedly.
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LEMMA 3.2. Suppose 7;: N; — M, are superfluous covers. Then

is a superfluous cover, which is maximal iff each m; is maximal .

Proor: Clearly, ker 7 = @ kerw; is a small submodule of & NV;. The converse follows from

Lemmea 3.1 and induction on t. §

LEMMA 3.3. Suppose R is semilocal and K, L < R. Then the natural map R/K — R/L is
a superfluous cover iff K + Jac(R) = L + Jac(R).

PROOF: By Remark 1.6, we need to show VK = VL iff K + Jac(R) = L + Jac(R). Since
K + Jec(R) C VK, it suffices to prove K + Jac(R) = VK.

Assume first R is semilocal Passing to R = R/Jac(R), it suffices to prove K = \/7,
but this is clear since R is semisimple Artinian.

On the other hand, if K, L < R then Jac(R/K) = (K + Jac(R))/K, so again VK =
K + Jac(R). O

We say R is weakly (left) semiperfect if every cyclic R-module has a maximal super-

fluous cover; weakly right perfect is defined analogously for right modules.

THEOREM 3.4. A semilocal ring R is semiperfect iff it is weakly left and right semiperfect.

PROOF: (=) Clear, since left and right semiperfect are equivalent.

(<=) We want to prove that for any idempotent @ in R = R/J there is an idempotent
e of R with & = @. First take b € Ra such that Rb = Ra with Rb minimal such, where ~
denotes the image in R/J; writing a = b and replacing b by b we may assume @ = b.
In particular, Rb = Rb? by minimality of Rb.

Next take ¢ € bR such that cR = bR with cR minimal such. As before, we may
assume @ = b = a. Then cR = ¢2R, so ¢(c)N Rc = 0 where #( ) denotes the left annihilator
(since if 0 = (r¢)c then 0 = r¢? R = rcR, implying r¢ = 0).

We claim Rc is also auto-covering. Indeed, if Rd < Rc with Rd = Rc = Rb then
writing ¢ = br, € Rbr, = Rb*r; = Rbe, we can write d = b'c for b’ in Rb, yielding
Rb = Rb'b = Rbc = Rd = Rb; thus Rb' = Rb and Rd = Rbc = Rbr; = Rc, as desired.

319
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In particular, Rc = Rc?, so ¢ = rc? for some r. Hence ¢? = cc = crc?, so

c—crc€(c)NRc=0.

Thus ¢ = cre, so rc is idempotent. But 7¢ € = rc? = ¢ and T 7e = ore = C, so the
idempotent 7¢ must equal the idempotent ¢ = @, as desired. [J

This theorem raises the question of whether weakly left semiperfect implies weakly
right semiperfect. This might be provable directly, along the lines of [4], but meanwhile

we hiave

LeEmyia 3.5. A cyclic module over a semilocal ring R has a maximal superfluous cover iff
it has a projective cover (in which case they are the same), provided R satisfies one of the

following properties:

(1) Any chain £(b) C ¢(b*) C €(b*) C ... terminates, where {( ) denotes the left
annthilator ideal;

(ii) R/ Nil(R) satisfles (1).

PROOF: The nontrivial direction is (=).

(1) Given a module R/Ra we want to find a projective cover, i.e., R/Re where e is an
idempotent of R for which vRe = v/Ra, which by Lemma 3.3 means Re + J = Ra + J.
Take b € Ra such that Rb = Ra with Rb minimal such. As in the previous proof, we may
assume @ = b. By assumption £(b*) = £(b¥*+1) for some k; replacing b by b*, we may assume
€(b) = (k). Hence RbN £(b) = 0, so we conclude the proof as we dud in Theorem 3.4,
taking b instead of c.

(i) We show R/N is idempotent-lifting over R/J, where N = Nil(R). Indeed, for any
a1 R such that @ = a 4 J is idempotent, we take a maximal superfluous cover R/Rb of

R/Ra and note that

V/(Rb+ N)/N = /(Ra + N)/N.
(Indeed C is clear, and on the hand, (VRb) + N C vRb + N. Hence

VRaF NIV = /(VEa + N)/N =/(VRE + N)/N
c (VRb T M)/N = VREF N/N
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as desired.) Now, the proof of (i) shows Rb+ N contains an idempotent e+ N lying over a,
ie.¢*—e€ N =Nil(R),and € = @ Then 0 = (¢’ —¢)' = e’ —ef(e) for some polynomial f,
the sum of whose coefficients are 1, so as in {9, Proposition 1.1.25] we have the idempotent

(ef(e))t lifting a. O

TueoreM 3.6. Suppose R is a semilocal ring satisying condition (i) or (ii) of Lemma 3.5.
Then the following are equivalent:

(1) cvery simple R-module has a maximal superfluous cover;

(11) every cyclic R-module has a maximal superfluous cover;
{1i) every finitely generated R-module has a maximal superfluous cover;

(iv) R is semiperfect.

Proor: Clearly (iv) — (iii) — (ii) — (i). Finally, (i) implies that every simple R-module

has a projective cover, by Lemma 3.5, and thus that R is semiperfect. [J

§4. Superfluous Covers of modules over Dedekind Domains.
Throughout this section, R is a Dedekind domain. Our first goal is to show that all

torsion-free R-modules are autocovering.
LEMMA 4.1. Superfluous covers of injective R-modules are injective.

ProOF: Over a Dedekind domain, a module is injective if and only if it is divisible. Let
K <« B and B/K be divisible. Let r € R, 7 # 0. Since r(B/K) = B/K, it follows that

rB + K = B. But then rB = B and B is injective, as claimed.

LEMMA 4.2. Every injective torsion-free R-module is autocovering.

ProOF: Let A be an injective torsion-free R-module and let B be a superfluous cover of

A, with kernel K « B. Then E(K)@® L = B, for some L C B. Therefore

E(K)®L
K

R

A

=|

But then A = E(K)/RK @& L. Since E(K)/K is torsion, we conclude that E(K)/K = 0.
Therefore, K = 0.
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We prove next that over a Dedekind domain the classes of autocovering and flat
modules coincide. This was also shown to be the case over left perfect rings by Bass (see

[1. Theorem 28.4]).
THEOREM 4.3. An R-module is autocovering if and only if it is torsion free.

Proor: Let M be a torsion-free R-module and let B be a superfluous cover for M with
E(B)

K’
there exists B © § C E(B) such that E(B/K) = —1-5;— But then K € 5. So, Sis a

kernel K « B. Then K « E(B). Since B/K is contained in the injective module

supesfluous cover for the injective torsion-free module E{B/K) ~ E(M). By Lemma 4.2,
K =0

To prove the converse, assume 0 # #(M)} is the torsion submodule of a module M.

Arguing as in [6, Thm 9], one gets that ¢{(M) contains a summand of M which is
either of the form R/P™ {(n > 1, 0 # P a prime ideal of R) or R) or E(R/P) (0 # P a
prime ideal of R).

Since R/P™! is a non-trivial superfluous cover of R/P™ and E(R/P)~ (R/P?)is a
non-trivial superflucus cover of E(R/P), we see that M is not autocovering, proving our
claim.

The previous theorem allows us to provide an example of a module M over the ring

of integers having a maximal cover which is not projective.

EXAMPLE 4.4. Let M = G}p 1,0, where the sum runs over all prime integers. Then Q is

a maximal superfluous cover of M.

PROOF: Since Q has no maximal Z- submodules, Rad @ = Q. So, Q has small submodules.
In particular, @ has a cyclic small submodule aZ. The isomorphism between aZ and Z
extends to an automorphism of Q. So, Z € Q. Since Q/Z = M and Q is autocovering, Q

1s a maximal cover of M.

Let us turn next to the study of injective torsion R-modules. One may be tempted to
study modules M over which every superfluous cover S of M is isomorphic to M. We will
vefer to these modules as ‘autocovering up to isomorphism ’. Indeed, every autocovering
module is autocovering up to isomorphism. Our next Lemma shows that the converse is

not true.
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LeEMMA 4.5. Every indecomposable injective torsion R-module is autocovering up to iso-

morphism.

ProoOF: Let 4 be an indecomposable injective torsion R- module. Suppose B is a super-
fluous cover of A with kernel K < B. Write B = @;; K as a sum of indecomposable
injective modules. Consider the projections 7; : B — K;. Then n;(K) < K;, for all : € I.

Also, K C €D,¢; mi(I{) and, therefore, there is an epimorphism from A = B/K onto

B @ K K;
= = = K;.
Dm(K) Dm(K) 697’:‘(5-’) D
Since 4 is uniserial, || = 1 and therefore B = A.

The following is an easy proof of a well-known result, given here for the convenience

of the reader.
LEMMA 4.6. For0# K « Q, Q/K £ Q/1.

PrOOF: Let 0 # aZ C K € Q. Then Q/K = %ﬁ—% and K/aZ <« Q/al = Q/Z. So,

it suffices to show that if S is a small Z- submodule of T = EBP Z,- ( = Q/1), then
T/S = T. First of all, since T/S is a homomorphic image of T, every Z,~ appears as
a summand of T/S at most once. On the other hand, let 7, : T — Z;~ be the natural
projection map. Then 7,(5) « Z,». Also, S C GBP m,(S) and, therefore, T/S maps onto

Z,00 A

T ~ ~ -
T P iy = €Bp Z,- = T. Consequently, each Z,~ appears at least once as a

summand of T/S. Therefore T/S = T, as claimed.

We show next that the direct sum of two autocovering up to isomorphism modules

need not be autocovering up to isomorphism.

REMARK 4.7. There exist two Z-modules M and N which are autocovering up to isomor-

phism but M & N is not autocovering up to isomorphism.

ProoF: Let M = I3 ) and N = @4, Lp=. M is autocovering up to isomorphism, by
Lemma 4.5. Let S be a superfluous cover for N with kernel K « §. Then 5 = @iél E;,
a sum of indecomposable injective modules. We claim each Ej is torsion. Otherwise, let
Q C% S. Then there is a nonzero map ¢ : @ — N with small kernel L < Q. But then
Q/L embeds in N and Q/L = Q/Z (by Lemma 4.6). This is a contradiction since the
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2-primary component of NV is zero. So, as claimed, every E; is torsion. Clearly, Z,~ is not
a summand of 5, while, for every p # 2, Z,~ must be a summand of S. We need only to
rule out the possibility that Z,= x Z, may be a summand of S. This is not the case since
otherwise there is a map & @ Z,0 X Lo — N with small kernel K’. But then —z-ﬁ’—%?ﬁ
embeds in V. This is a contradiction since E%x,zﬁ = Zpo X Lpo. So, S =N and N is

autocovering up to isomorphism.
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