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Abstract

For any (S.R)-bimodule M, one can define an invariant d(M) by taking the supremum of n
for which there exists a direct sum of nonzero subbimodules N = M; & M> @ --- & M, such
that N is essential in M as a right R-submodule. This invariant is a sort of hybrid between
the right uniform dimension and the 2-sided uniform dimension. In this paper, we study the
ideal structure of a right nonsingular ring R terms of the ideal structure of O, (R) by working
with the invariant d(/) = d(z{z) for ideals / C R. The family .#(R) of ideals / for which there
exists an ideal J C R with I 5 J C. Rg is characterized in various ways, and for / € .#(R), the
invariant d(/) is related to the direct product decomposition of the ring E(/r) (injective hull) in
O’ .(R). Tt is shown that d(/) is very well-behaved for the ideals / € #(R) and various results
are obtained on the relationship between d(/), u. dim(z/z) and w. dim(/g). © 1998 Elsevier
Science B.V. All rights reserved.

AMS Clussification: 16D20; 16D50; 16D70; 16E50; 16N60; 16590

1. Introduction

For a right nonsingular ring R, the maximal right ring of quotients Oy, (R) is well

known to be a von Neumann regular right self-injective ring. There is an extensive
classical literature on the structure of such rings, starting with papers of Johnson,
Utumi, Findlay-Lambek, and continued in the work of many others. However, not too
much information seemed available in relating the structure of R to that of Qp. (R).
In this paper, we shall contribute to this problem by studying the ideal theory of R in
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relation to the ideal theory of QO . (R). Since much is known about the latter, we hope
thus to be able to get useful information on the former.

The beginning point of this investigation is a certain new notion of “dimension” for
bimodules, which can be introduced quite generally as follows. Let R, S be two rings,
and M be an (S,R)-bimodule. The usual two-sided uniform dimension u.dim(sMy) is
defined to be the supremum of the set of integers n for which M contains a direct
sum of n nonzero subbimodules. This dimension is not difficult to deal with since it
can be interpreted as the uniform dimension of M as a right R © S°°-module. Now
we can define a closely related invariant, d(M)=d(sMy), by taking the supremum
of the set of integers n for which there exists a direct sum of nonzero subbimodules
N:=M;®--- b M, such that N is essential in M as a right R-submodule. Of course,
we are giving preference to the right side in making this definition, so d(M) may be
thought of as a sort of hybrid between the right uniform dimension and the two-sided
uniform dimension.

There seems to be no way in which d(M) can be interpreted as a 1-sided uniform
dimension over a single ring. This makes it difficult to obtain general information about
“d” on the full category of (S,R)-bimodules. In fact, some of the usual properties of
uniform dimensions will definitely not hold for “d”. For instance, it is fairly easy to
come up with examples of bimodules N CM such that d(M) is finite, but d(N) 1s
infinite. Yet, there are other dimensional properties which might conceivably hold for
“d”. For instance, it would be desirable to answer the following questions:

(1.1) For uny (S,R)-bimodules M and M', is d(M S M'Yy=dM)+d(M')?

(1.2) For any (S,R)-bimodule M such that d(M )= oo, does there exist un infinite
direct sum of nonzero subbimodules N :=M; & M, & --- such that N is essential in
M us a right R-submodule?

The answer to both of these questions would presumably depend on a suitable version
of the “Steinitz Replacement Theorem”. But unfortunately, such a theorem does not
seem to be available for the invariant “d”.

For any (S,R)-bimodule M, it is of interest to look at the following family of
subbimodules:

F(M)={NCM: N®N'C.Mp for some subbimodule N' C M }, (1.3)

where the notation N & N’ C. M means that N & N’ is essential in M as a right R-
submodule. For the ring R, we get, in particular, a family of ideals #(R):= 7 (pRg).
This family of ideals and their d-invariants d(/)=d(rlz) will be the main focus of
the present work.

In the case of a right nonsingular ring R, we will show that the family of ideals
Z# (R) can be characterized in many other ways (Theorem 3.5). One particularly impor-
tant characterization is that / € .#(R) iff the injective hull E(/) is an ideal in Qf,,.(R).
Another characterization for such ideals / turns out to be / N/ =0, where [’ denotes
the left annihilator of / in R. This condition first appeared in Johnson’s 1957 paper
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[8, p. 524],° although Johnson did not seem to be aware of the full range of equiva-
lent conditions in our Theorem 3.5. The subfamily #A(R)C #(R) consisting of ideals
in #(R) which are right essentially closed in Ry has also appeared in Johnson’s work,
and was shown in [8, p. 529] to be a complete Boolean algebra. In fact, as we ob-
serve in (3.15)(2), A(R) is isomorphic to the complete Boolean algebra of the central
idempotents in Q. (R).

For the ideals 7 in the family Z(R) over a right nonsingular ring R, various al-
ternative descriptions for the invariant d(/) are given in (3.16). We see from these
descriptions that, on .#(R), “d” has many of the usual features of a uniform dimen-
sion, and that d(/) is an interesting measure for the “size” of the ideals / in F(R).

In Section 4, the invariant d([) is related to the study of the decomposition of von
Neumann regular right self-injective rings. Here, again, we assume that R is right non-
singular and 7 € #(R). We show in Theorem 4.1 that a direct sum of ideals D, [; C. Ir
leads to a direct product decomposition of the ring E(/z) C Onax(R), and vice versa.
In particular, in the case when d(/)<oo, d(/) turns out to be just the number of
“prime components” of the von Neumann regular right self-injective ring E(/z), or
alternatively, the number of “atoms” in the Boolean algebra of central idempotents
in E(/z) (Theorem 4.5). Taking / to be R, the case when Qf, (R) is a prime ring
then corresponds to d(R)=1: such R’s are the right irreducible rings in the sense of
R.E. Johnson. A partial list of characterizations for such rings is assembled (and briefly
discussed) in Theorem 4.8.

A byproduct of the work in Section 4 is that both of the properties (1.1) and (1.2)
are both confirmed for the ideals in the family .#(R) over a right nonsingular ring R.
In fact, contrary to the case of one-sided uniform dimension, one gets even the full
dimension formula d({) +d(J)=d( +J)+d(INJ) for I, J € #(R).

For an ideal / C R, the invariant d(/) is related to the one-sided and two-sided
uniform dimensions of / by the inequality

d(]) <udim(glr) <u.dim(/g). (1.4)

In general, these three invariants are different. But there are various special classes of
[ C R for which two or all three of them turn out to be the same. For instance, we show
that the first two invariants in (1.4) are the same if / contains no nonzero nilpotent
ideals of R. From this, we deduce that, for / € #(R) over a right nonsingular ring R,
the first two invariants in (1.4) are the same if the symmetric maximal quotient ring of
R happens to be semiprime (Theorem 5.6). In particular, this applies to any Utumi ring
R, that is, a right nonsingular ring R for which O, (R)= Q! .. (R) (Corollary 5.7). It
follows that, for such a ring with n:=u.dim(gRg) <oc, the maximal right quotient ring
Q" (R) will decompose into a direct product of exactly n simple self-injective von
Neumann regular rings. Finally, it is also shown, in (5.10), that all three invariants in
(1.4) are equal for any ideal / in a reduced right Utumi ring.

3 Johnson referred to this property by saying that the “ring” (possibly without identity) / is a “left faithful
ring”.
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2. Definitions and notations

Throughout this paper, we denote by QL. (R), O (R) and Qg(R), respectively

the right, left and symmetric maximal quotient rings of a ring R. Here, the symmetric
maximal quotient ring is defined as in [13]; namely,

O,(R)={xe 0", (R): KxZR for some dense left ideal K CR }.

We write M' C, M (resp. M'CyM) to denote the fact that the R-submodule M’ is
essential (resp. dense) in the R-module M. The injective hull of M will be denoted by
E(M), and the singular submodule of M will be denoted by Z(M). If it is necessary
to indicate whether M is a right or left R-module, we shall do so by writing My or M.

The notation u.dim(My) (resp. u.dim(sN)) will be used throughout to denote the
uniform dimension of a right module My (resp. a left module sN). If M 1s an (S, R)-
bimodule, we have also a two-sided uniform dimensi on u.dim(sMpg), defined to be
the uniform dimension of M as a right R S°*-module (see [15, p. 53]). The invariant
d(M) for the bimodule My (and the associated family .#(M ) of subbimodules of M)
will be as defined in the Introduction. In general,

d(M) < u.dim(sMg) < min{u.dim(Mp), u.dim(sM)}. (2.1)

Although the invariant d(M ) is defined somewhat in the spirit of the two-sided uniform
dimension u.dim(sMg), we must exercise caution in working with “*d” since it does
not have all the usual properties of a uniform dimension on the full category of (S, R)-
bimodules. Nevertheless, the invariant d is better behaved on the 2-sided ideals of a
ring R, especially on those which constitute the family #(R) for a right nonsingular
ring R. For the most part of this paper, we will be studying the d-invariant in this
particular setting.

Throughout this paper, all rings have an identity element 1, and all modules are
unital. The word “ideal” always means a two-sided ideal. For any subset 4 in a ring
R, A’ shall denote the left annihilator of .4 in R. Note that A’ is always a left ideal in
R, and if A4 itself is a left ideal, then A" is an ideal in R. By A%, we shall mean (4"Y,
etc.

For other standard notations, terminology and basic facts for rings and modules used
in this paper, the reader is referred to the classical books [3, 4, 15, 16].

3. The families of ideals 7 (R) and #(R)

In this section, we develop the basic results on uniform dimensions to be used in the
rest of the paper, and introduce the families of ideals .#(R) and A(R) in a ring R. In
Sections 3 and 4. these families will be studied mostly over a right nonsingular ring R.

Our first lemma is possibly folklore in the theory of nonsingular modules. We include
it here with a full proof since there is no convenient reference for it in the literature.
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Lemma. 3.1. Let R be a subring of a ving S such that Rgp C. Sg. and let NTM be
right S-modules.

(1) If My is nonsingular, then Ng Ty Mg iff Np C4 Mg:

(2) If Ny is nonsingular, then Ny C, Ms iff Ng Z. Ma.

Proof. (1) The “if” part is trivial (and is truc without any assumptions on M or on
RCS). For the “only 1f” part, assume that Ny Ty Ms. and let x. veM with x#0.
There exists s €S such that xs #0 and ys € N. Since Rg & Sg, K C R for some right
ideal K C.Rp. Now xs ¢ Z(Mp)=0, so (xs)k =0 for some k € K. For r =sk € R, we
have xr #0 and vr=(ys)k € NKCN. This shows that Nz C4 Mp.

(2) For the “only if” part in (2), repeat the argument above with v=x#0. Here
0£xs=vs €N, so the (weaker) assumption Z (Nz) =0 would have sufficed for the
argument. The “if” part is trivial as before. [

Lemma 3.2. Let R be a right nonsingular ring, and Q = Q. (R). For any right ideal
[ CR. the injective hull E(Ig) (formed in Q) is a right ideal in Q. If [ is an ideal,
then E(lz) is an (R, Q)-subbimodule of Q.

Proof. First note that. since R is right nonsingular and R C Or, O is a right nonsin-
gular module. In this situation, it is well known that /z has a unique essential closure
in Op given by

C:={c€Q: cK CI for some essential right ideal K CR}.

In particular, £(/)=C. (Here and in the following, £({) shall always mean E(lg).)
From the above equation for C, it is an easy exercise to check that C is a right 1deal
in Q. In case / is an ideal in R, the same equation for C implies that it is also a left
R-submodule of Q. U

Remark. In the special case when u.dim(Rg) <0, it 1s known that E(/)=1-0 (see,
for instance, [6, Exer. 4ZK(b), p. 84]). In this case, it is immediately clear that £(/)
is an (R, Q)-bimodule. However, in the general case, one has only /- Q C £(1).

In general, if  is a right (or even 2-sided) ideal in R, E(/) may not be an ideal
in 0. We shall now proceed to find the necessary and sufficient conditions for E(/) to
be an ideal.

Proposition 3.3. Let R be a right nonsingulur ring, Q= Qpay(R), and A,..., A, be
right ideals in R such that P, 4 S Re. If the 4; ure mutually orthogonal (i.e.
4;,4; =0 whenever i), then each injective hull E(A;) is an ideal in Q, with

@;121 E(4,) — Q

Proof. Taking injective hulls with @/_, 4; C. Rz, we have @7, E(4,)= Q. Since each
E(A4;) is a right ideal in Q by (3.2), we can write E£(4;)=¢;Q where ¢e;...., e, arc
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mutually orthogonal idempotents in @ with sum 1. In the rest of the proof, we will
show that each e; is a central idempotent in Q. Certainly, this will imply that each
E(A;)=¢;0 is an ideal n Q.

As a first step, we claim that 4; - £(4,)=0 whenever i # j. Indeed, for a € 4; and
be E(4;), we have bK C 4; for some right ideal K C. Rg. Therefore, a-bK C 4;4; =0.
Since Qg is nonsingular, this implies that ab € #(Qr) =20, which proves our claim.

Next we claim that e; commutes with each element in A;, for all i, j. Indeed, let
acA;. If j#i, then e;acee;Q=0, and ae; €A, - £(4;)=0 (by the last paragraph).
Now assume j=i. Then a € 4; Ce;Q implies that

ea=a=a e,«f—g e, | = ae;,
k#i

since aey €A, - E(A;)=0 for any k #1i.
We have now shown that each e¢; commutes elementwise with the direct sum
A & --- B A,. Since

A] @"'@AngcRRgeQR’

a standard argument using the nonsingularity of Qg shows that each e; is central in Q,
as desired. [

Remark 3.4. Note that the proposition above is applicable to any finite direct sum of
ideals @7:1 A; C. Ry, since, in this case, the 4;’s are automatically mutually orthogonal.

With the help of the above lemma, we can now formulate the conditions for an
injective hull E(I') (I CR) to be an ideal in Q.

Theorem 3.5. Let R and O be as in (3.3), and [ be a right ideal of R. The following
statements are equivalent:
(1) E(1) is an ideal in Q;
(2) E(I)=e Q where e is a central idempotent in Q;
(3) There exists a right ideal P’ in Q orthogonal to E(I) such that E(I)® P' = Q;
(4) There exists a right ideal P’ in Q orthogonal to E(I) such that E(I)®P' C. Og;
(5) There exists a right ideal J in R orthogonal to I such that I ®J C. Rg;
(6) There exists an ideal P in Q such that I C,. Pp.

Proof. (2) = (3) Just take P’ to be the ideal (1 —e)Q.

(3) = (4) is a tautology.

(4) = (5) Suppose the ideal P’ exists as in (4). Since R C, O, we have P'NRC, P
Together with 1 C, E(/)g, this shows that

[B(P NR)C.EU)DP C. Ok
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Thus. / &.J Z, R for the right ideal J:= P’ M R. Since P’ is orthogonal to E(/), J 1s
orthogdnal to {.

(5)= (1) This follows from (3.3) in the special case n=2.

(1) = (6) Since £(/) is an ideal by assumption, we can take P in (6) to be £(/).

(6) = (2) Since P is an ideal in Q. there exists. by [4, (9.5)], a central idempotent
e < O such that P C. (e Q). (This is an easy result. In fact, we shall prove it In a
slightly more general context in (3.14)(3) below.) By (3.1)(2), we have P C. (e O)r.
and. together with / C_ Pg, this implies that 7/ C. (e Q)g. Since (e Q)g is injective, we
have £(/)=eQ as desired. [

Remark 3.6. Note that the arguments given above would have worked if the P'CQ
in (3) or (4) is assumed to be an R-submodule of O, instead of a right ideal in O.
Therefore. we could have added two more equivalent statements (3*) and (4%) to (3.5),
by changing the condition that P’ C O be a right ideal to P’ being an R-submodule of
Or. More significantly. in the case when / is an ideal of R (and R is right nonsingular),
we can also add two more equivalent conditions: *

(5% There exists an ideal J in R such that T 4.J C. Rg.

(7) [N =0.
Indeed. (5%) = (5) follows from Remark 3.4. For (5) = (7), let J be as in (5) (we
shall only need the properties IJ =0 and / +.J C. Rg). and consider any x &/ N .
Then x/ =0 and x.J =0, so x- (I +J)=0. Since [ +J C. Rz, x € Z(Rp)=0. Finally,
for (7) = (5%), let B be a right ideal complement to Iz in Rz. Then [ & B C. Re.
Now B/ CBNI[=0,so BCI . For the ideal J = [/, we have then / & J C, Ry, since
/5.0 =1 . B. (In particular, we have B=1/’, and this is the unique complement to /
n Rx.)

Note that, among all conditions given above, (5) is the only one with the following
two features: (A) it involves only the ring R, and not its maximal right ring of quotients
O: and (B) it can be formulated purely in the language of bimodules. This prompts
the following general formulation.

Definition 3.7. For any rings R. S and any (S,R)-bimodule M, let .7 (M) be the set of
subbimodules I € M for which there exists a subbimodule J C M such that /5J C. Mpg.
For any ring R, we write .7 (R) for 7 (zRz), that is, the set of ideals in R satisfying
the condition (5°) above.

Ot course, in the case when R is right nonsingular and Q= 0Oy, (R), the ideals
[ in .7(R) arc characterized by any of the conditions in (3.5) and (3.6), The notation
F(R) follows Johnson [8. p. 524], who used condition (7) as its definition, but did
not seem to realize the full range of equivalent conditions in (3.5) and (3.6). Note

4+ Eor the condition {7) below. recall that /” denotes the left annihilator of /, and /’/ means (/7).
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that, since RC,Qg, the fumily F(R) includes the contractions of all ideals of O
to R.

We could have introduced also the set #(R) of right ideals / C R satisfying the
condition (5). In the case when R is right nonsingular, it is easy to see that a right
ideal I belongs to .Z(R) iff [ is right essential in some ideal belonging to .#(R), ift
I C.(RI)g and RI € F(R). Therefore, questions about % (R) can often be reduced to
questions about .#(R). For this reason. we shall pass up on the family #(R) in the
rest of the paper, and just focus our attention on the family #(R) (mostly over right
nonsingular rings R).

For R and O as in (3.3), we record the following useful consequence of (3.5).

Corollary 3.8. Let S be any ring between R and Q. Then we have a mapping *: Z(R)
— F(S) defined by [+ I[*:=SIS for any I € F(R).

Proof. It is well known that S is also a right nonsingular ring, with Qg (S)=0.
For / € Z(R), we only have to make sure that /* € .7(S). This follows easily by
checking the condition (6) in (3.5): if [ C, Pg for some ideal P of O, then we also

have I = SIS C. Pg, and hence [*C.Ps. O

At this time, let us introduce two more pieces of notations.

(3.9) For any ring R, we write B(R) for the set of all central idempotents in R. It
is well known that, with respect to the standard partial ordering and binary join/meet
operations for central idempotents, B(R) is a Boolean algebra. It is often convenient
to think of B(R) as the Boolean algebra of ideals eR for e ranging over B(R).

(3.10) For any ring R, we write B(R) for the set of all ideals in F(R) which are
right essentially closed in Rg. In the case when R is right nonsingular, it is easy to
show that

BRY={IcFR): ="}, (3.11)

using the fact that, for / € #(R), 1/, I’’ are both complements in Rg (and are hence
right essentially closed in Rg). In the form (3.11) (for right nonsingular rings R), the
family #(R) was first introduced by Johnson [8, p. 542], who denoted it by F "(R),
and showed that it is the “center” of the lattice # (R). Note that there are two natural
maps

¢c:F(R)— #BR) and ¢ :F(R)— A(R), (3.12)

defined by sending / € .#(R) respectively to /¢ (the unique right essential closure of /
in R) and [’ (the left annihilator of / in R). The map c is easily seen to be a “closure
operator” in the sense of [16, II1.7].

Remark 3.13. For semiprime (but not necessarilly right nonsingular) rings R, the two
families .#(R) and .B(R) are particularly easy to identify. In fact, for any ideal / in a
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semiprime ring R, [ N[’ is an ideal of square zero, so [N’ =0. Since the implication
(7) = (5%) in (3.6) holds for any ring, we have [/ € #(R). Thus #(R) 1s the family
of ull ideals in R, and it follows that A(R) is the family of all ideals which are right
essentially closed in R.

Recall that a Baer ring is a ring in which every left (equivalently, right) annihi-
lator ideal is generated by an idempotent. It is well known that any Baer ring 1s a
(left and right) nonsingular ring, and any right self-injective von Neumann regular ring
is a semiprime Baer ring. For semiprime Baer rings, we have the following
result.

Proposition 3.14. Let R be a semiprime Baer ring, with a maximal right quotient
ring Q. Then

(1) The map ¥ : B(R) — A(R) defined by W(e)=eR for every e€ B(R) Is a bijec-
tion.

(2) B(R)=B(Q), and these are complete Boolean alyebras.

(3) Any ideal 1 CR is right essential in eR for some e € B(R).

Proof. (1) Clearly ¥ is injective, so it suffices to show that ¥ is also surjective.
Consider any 7 € A(R). By (3.11), [ ="', In particular, / is a left annihilator, so
| = Re for some idempotent e € R. Since R is semiprime and [/ is ideal, it follows from
[3, (2.33)] that e is a central idempotent. Hence I =eR = ¥(e). This shows that ¥ is
a bijection.

(2) Note first that any element in the center of R is also in the center of Q (cf. the end
of the proof of (3.3)). Therefore, we have an inclusion B(R) C B(Q). To see that this
an equality, let e € B(Q). Then the ideal [ := eQNR is right essentially closed in R, so
by (3.13) I € A(R). By (1), I =eoR for some ey € B(R). Since (epQ)r is an R-direct
summand of (¢Q)r, and E([)=eQ, we must have eQ =¢epQ, and so e=¢) € B(R).
Finally, {eR:e € B(R)} is just the family of all annihilator ideals in the semiprime ring
R, so it is closed with respect to arbitrary intersections. By [16, Proposition III.1.2],
this implies that B(R) is a complete Boolean algebra.

(3) Let I be any ideal in R. By (3.13), we have [ € Z(R), so by (3.12), the unique
right essential closure [€ of / in R belongs to A(R). By (1), /°=eR for some e € B(R),
so we have I C.(eR)z. U

The conclusions (2) and (3) above are well known in the case when R is a right
self-injective von Neumann regular ring; see, respectively, [4, (9.9)] and [4, (9.5)].
Here, we have proved them more generally for any semiprime Baer ring R.

Returning now to general right nonsingular rings, we collect in the following propo-
sition a few key properties of #(R) and #(R). The first of these has already appeared
in [8, Theorem (2.4)].
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Proposition 3.15. Ler R he u right nonsingular ring, and Q = Oy (R). Then

(1) The family of ideals F(R) is closed with respect to arbitrary sums and finite
intersections. With respect to the stundard partial ordering given by inclusion, F(R)

forms a complete lattice.

(2) There is a one-one correspondence ®: B(Q) — AB(R) given by ®(e)=eQ R for
e € B(OQ), and ®~'(Iy=e for I = A(R), where E(I)=eQ. With respect to inclusion
again, B(R) is a complete Boolean alyebra where, for an arbitrary set of ideuls
(I;} C AB(R), the meet of {L;} is given by (), I;, and the join of the same is given by
the right essential closure of >, 1; in R.

Proof. (1) Note that if {/;; i€ C}C.7Z(R), say with [; C.(P;)r where the P’s are
ideals in Q, then Y. [; C. (>, Pi)g, and (), [; C. ("), Pi)r in case |C|<oc. This checks
the first statement of (1), and it follows from [16, Proposition I11.1.2] that #(R) 1S a
complete lattice. (The meet of {/;: i€ C} for arbitrary C is the sum of ideals in N, I
belonging to .7 (R).)

(2) First, the fact that @ is a one—one correspondence follows from (3.5). Second,
since O is a semiprime Baer ring, we know from (3.14)(2) that B(Q) is a complete
Boolean algebra. In fact, for any family {e;} € B(Q), the meet and the join of {e;}
are defined via the equations (A ¢;) Q= [1e; O and (\/ e)O=E((> e Q)p) (see also
[4, (9.9)]). Using these characterizations and the one—one correspondence @ above,
it is then easy to check that, with respect to the partial ordering given by inclusion,
A(R) is also a complete Boolean algebra, with the meet and the join as described
in (2). O

Next, we would like to give some alternative descriptions for the invariant d(/) for
the ideals 7 €.7Z(R), in case R is a right nonsingular ring.

Proposition 3.16. Let R, Q be as in (3.3), and I € 7 (R). Let m( <oc) be the supre-
mum of the set

{n e N: there exist nonzero mutually orthogonal right ideals Ay,....4, <1

such that A, < -0 A4, C g }
and m' ( < >c) be the supremum of the set
{k e N: there exist nonzero ideals I,.....I, € F(R) such that I, &--- =1 C1}.
Then d(1)y=m=m’"
Proof. Let us show that d(/)<m <m’ <d(I). For the first inequality, let [y =---F/, be
any direct sum of nonzero ideals in [/ which is essential in /z. Then the [;’s are mutually

orthogonal by (3.4). Thus, we have t <m, and so d(/) < m. To see that m < m’, suppose
the right ideals 4;...... 4, are as in the definition of m. Since [ € #(R). we have (by
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the equivalent conditions discussed in (3.6)):
4, m A, S e R Re.

Here, for anv i. I’ 4,=0, and 4,/" €4, N[  =0. Therefore, by (3.3), each E{4;) 1s
an ideal in Q. and so E(4;) [ € F(R). Recalling that .7 (R) is closed under (finite)
intersections, we see that

[ = E(A4) N1 =(E(4)NRYNIEF(R).

Now S_7_ E(A;) is automatically a direct sum, so we have @’ _, [ CI. This shows
that #n <m’, and so m <m’. Finally, to see that m’' <d([l), let {;: 1 <i<k} be as in
the definition of m’. By (3.15)(1)., J =1, -+ S [y € F(R), s0 J B J’ C,Rp. Taking
intersection of both sides with /, we get

1[ o ”,%1/\' ?E([m-]/):*] o ([ﬂ.]/’)gc[R.

This shows that k <d(/) (noting that [ N J’ is possibly zero), and consequently
m <d([). O

Remark 3.17. Actually, in the context of (3.16), there is yet another description of
d(]). Using either d(/)=m or d(l)=m’, one can show that d(/) is also the supremum
of the set of integers r for which there exists a chain

0CB C---CB.CI

such that B; € .7 (R) for all i, and each B; (1 <i<r) is not right essential in B;.,. The
proof of this is left as an exercise to the reader.

For later reference. we shall prove here a general result on the behavior of the
“"_invariant and the 1-sided and 2-sided uniform dimensions vis-a-vis the change of
rings. For part (4) below, recall that Q;(R) denotes the symmetric maximal ring of
quotients of R.

Theorem 3.18. Ler R, O he as in (3.3), und S be any subring of Q containing R.
For any ideal I € 7 (R). let I * .= SIS be the ideal generated by I in S. Then

(1) d(I)=d(I™*) (where d(I*) is supposed to mean d(s13)).

(2) wdim ([z) = udim (/)= udim (/).

(3) wdim (glg) = u.dim (g3 ) = wdim(z{$) > u.dim (/).

(4) Equality holds throughout in (3) if S C OR).

Proof. (1) Since /€ .7(R), E(I) is an ideal in Q. Hence [*=SISCE(/), and so
1 C. 1[}". If [, & --- [, C, Iz where the [;'s are nonzero ideals in R, then these are
mutually orthogonal, and as in the proof of (3.16), the £(/;)’s are also ideals in Q,
with @, E(J;)=E(/). Since the direct sum D, (EU) N I*) contains P, {; C. Iy, it
is essential in /5, and hence also essential in 15*. Therefore, n < d(/™), and we have
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d(l) < d([™). To prove the reverse inequality, let J =J, ©--- @ J, be a direct sum of
nonzero ideals in the ring S such that J C./J. Since Ji is a nonsingular R-module, we
have J C. [ by (3.1)(2). On the other hand, / C, I implies that J;1/ C; (J;)g. Taking
direct sums leads to €. (J;N1)C.Jr S, 15, so a fortiori @, (JiNI)C,Ix. Since each
Ji N [0, this shows that n <d(/), and so d(/*)<d(I).

(2) Here again, we exploit the fact that / C /7. This implies that any nonzero
R-submodule of /5 intersects / at a nonzero right ideal of R. From this, we see easily
that u.dim(/g) > w.dim(/;) > u.dim(/$). Thus it remains only to show that u.dim(/{") >
u.dim(lz). Consider any direct sum of nonzero right ideals €B;_, 4, CI. This gives
a direct sum @_, E(4;)CQ, and so the sum Y., 4:SC ., E(4;) is also di-
rect. From P, 4,SC/I*, we have then n<udim(/), and so u.dim(/z)<
u.dim([§|< ).

(3) As in the proof of (2), we have

wdim(glz) > uwdim(z/y) > udim(zly) > u.dim(sS).

since any nonzero (R, R)-subbimodule of / * intersects / at a nonzero ideal of R. Thus
it remains only to show that u.dim(RIS* )>u.dim(g{r). Consider any direct sum of
nonzero ideals €p_,/; C/. Then we have a direct sum @’_ E(l;)C O, where, by
Lemma 3.2, each E(/;) is an (R, Q)-subbimodule in Q. It follows that @7: L(EUHN
[*)CI* is a direct sum of nonzero (R,S)-subbimodules in /*. This clearly implies
that u.dim(g/g ) > u.dim(g/z).

(4) Now suppose S C Q,(R). It suffices to prove that u.dim(plz) <u.dim(s/g). Let
[y ®--- & 1,CI be a direct sum of nonzero ideals in R. We are done if we can
show that >, SI,S CTI* is a direct sum in S. Suppose > _.x; =0, where x; € SI;S.
Let us write x; = Y /.s,fjxijs,j, where x;; € [;, and sy, s,’-j e S. Since the intersection of
a finite number of dense right (resp. left) ideals is dense, there exist a right ideal
J C4Rr and a left ideal J' Cy4gR such that s;J CR and J's;; CR for all i, j. Then
> 2 si)xij(siJ) =0 shows that

> (J'si)xi(sipJ) =0 for alli. (3.19)
J

Now by the transitivity of denseness, J C4 Rg Cy Sg implies J T4 Sg, so J has zero left
annihilator in S (see [13, (1.1)(iii)]). Similarly, J’ C4 zS and J' has zero right annihila-
tor in S. Therefore, (3.19) implies that x;,= Zj s;xys; =0 for all i, as
desired. [

Remark 3.20. In general, in (3.18)(3) above, the (last) inequality may not be an
equality, even for S= Q. (R) and / =R; see (3.22). However, in the case when
0" (R)=0,.(R) (and R is a right nonsingular ring), it will follow from (5.7)
below that «ll the invariants listed in (1) and (3) of (3.18) are equal.

We shall conclude this section with a couple of examples.
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Example 3.21. If R is a prime ring, clearly d(R)=u.dim(zgRg)="1. More generally,
if R=R, x---x R, where the R;’s are prime rings, then by decomposing ideals of R
into their components in the R;’s, it is easy to show that d(R)=u.dim(zRr)=n. If, on
the other hand, R is a direct product of an infinite number of nonzero rings R;, then
we have @ R; C. Rg, and hence d(R)=u.dim(zRg)=o0c. These observations will be
crucial to the work in the next section.

Example 3.22. Let F CK be fields with n:=dimr K € NU{>c}, and consider the
F-algebra R:(g g) Let 4 be the right ideal (8 8) in R. For any ideal [ C, Rg,
we have /N A+#0 and so [ O 4 since dimp A = 1. Theretore, / DR - A= (8 f), SO We
have either / = ('()) [}) or [/ =R. From this, we see that d(R)=1. Now let {u;} be an
F-basis for K, and let J; = (% g’“') in R. It is easy to check that the J;’s are ideals,
and that J = Z,.J,- is a direct sum which is essential as an (R, R)-subbimodule in
#Rg. Since dimrJ; =1 for each i, we see that u.dim(zRp) =n. Therefore, u.dim(zRz)
can be as far apart from d(R) as one wants. In the case when n<oc, it will be
seen in (6.2) below that Q:=0! . (R)=M,.(F), so in particular u.dim(pQp)=1
(and u.dim(Rg)=u.dim(Qp)=n+ 1). Therefore, we also have an example where the
2-sided uniform dimensions u.dim(gRz) and u.dim(yQy) differ by an arbitrary amount

in (3.18) (3) (in the case / =R and S =Q).

Note that in the above example, we have d(R)=1 and yet d(J)=n<nc for the
ideal J = (% [g) C R. The “trouble” here is that J is not right essential in R. Since J 1is
2-sided essential in zRpy, this implies that J ¢ .#(R), which is the main source of the

anomaly. See the remarks in the paragraph following (4.9) below.

4. Relating d(/) to the direct product decompositions of E£(/)

As we have pointed out in the Introduction, for a right nonsingular ring R, the
maximal right ring of quotients Q= Qf .,
injective ring. The decomposition theory of such a ring Q into a (possibly infinite)
direct product of prime rings is available from Goodearl’s book [4]. In (9.11) of
this book, it is shown that O admits such a direct product decomposition iff B(Q) is
atomic, where B(Q) denotes the (complete) Boolean algebra of central idempotents
in Q. (“Atomic” here means that any nonzero f € B(Q) dominates some minimal
element (atom) fo € B(Q).) In this section, we shall generalize our earlier result (3.3)
by showing that, for any ideal /€ .Z(R), the study of arbitrary ideal direct sums
@D, ¢ . [ right essential in Iz corresponds exactly to the study of arbitrary direct product
decompositions of the von Neumann regular right self-injective ring E(/) associated
with /. Using this correspondence, we can then deduce facts about the invariant d(/)
from known facts about the Boolean algebra B(E(/)) of central idempotents in E(/).
In the special case when / = R, for instance, this study recovers various known criteria

for the maximal right quotient ring QF .. (R) to be a prime ring: see (4.8).

(R) is a von Neumann regular right self-

r
max
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Theorem 4.1. Let R be u right nonsingular ring, and QO = Q. (R). Let 1€ 7 (R),
with E(1)=eQ where e € B(Q). Let C be uny (finite or infinite) indexing set.

(1) If eQ is a direct product of rings [[,c. O then I;:= Qi N1 (i €C) are ideuls
in R with @, i Ce Ir.

(2) If A, (z'_G C) are mutually orthogonal right ideals in R such that EBI.E oA S g,
then Q;:=£E(A4;) (i€C) are rings with identity, with a ring isomorphism e Q=
[Icc O (over R).

(3) For a given i € C, ussume that A; in (2) is an ideal of R. Then Q; is a prime
ring iff d(4;)=1.

(4) e Q is a direct product of prime rings iff there exist ideals I; C I with d(I;) =1
for all i such that @.1; C, Ix, iff every nonzero ideal J € B(R) in I contains some
Jo € A(R) with d(Jy)=1.

Proof. (1) To begin with, note that . O; C. (e Q). Since QOr is nonsingular, it fol-
lows from (3.1)(2) that @, Qi C. (e Q). Now, from [ C,(eQ)r, we have I, =0;N
[ C.(0;)r. Therefore,

[i gc (@ Ql) gc ((3 Q)R (42)
! I R
In particular, €. /; C. Ix.
(2) Say I @ J C. Ry, where J is a suitable right ideal in R orthogonal to /. Then

4% | S5 P4 | SR (43)
i# :
with A4, orthogonal to J & @,/7@'/‘/- By (3.3) (in the case n=2), E(A4;) 1s an ideal in
O of the form e¢;Q, where ¢; € B(Q). In particular, each E(4;) is a ring with identity ¢;
(necessarily in e Q). Since > . E(A;) is a direct sum, the e;’s are mutually orthogonal.
From @, 4; C. Ir C. (e Q)r, we have P, ¢;0 C.. (e Q)r and a fortiori P, €0 C. (e O)y.
Since ¢ Q is an injective O-module, we have E((D, e O)p)=(eQ)o. By [4, (9.9)],
this means that /\,. e, =e in the complete Boolean algebra B(Q), and by [4, (9.10)]
(applied to the von Neumann regular right self-injective ring e O), this in turn implies
that there is a ring isomorphism e 0= [[,c e O (given by eq— (e;q)icc for any
g€ Q).

(3) First assume d(A4;)>1. Then there exist nonzero ideals X, Y CA; such that
XY C.(4)r Tt follows from the above analysis that E(X), E(Y) are nonzero
mutually orthogonal ideals in Q; =E(4;), so Q; is not a prime ring. Now assume
that d(4,)=1. We claim that Q; is indecomposable as a ring. Indeed, it Q; is a
direct sum of two nonzero ideals X’, Y’. then, for the ideals X =X"N4,#0 and
Y=Y'NA4,#0, we have X $ Y C, (4, )r. which contradicts d(4;)= 1. Since the ring ¢
is von Neumann regular and right self-injective, so is e Q and each component ring
O;. Having shown that Q; is indecomposable. we conclude from [4, (9.6)] that O; 1s
a prime ring.
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(4) The first “iff” follows immediately from (1)—(3). The second “if” follows by
taking Goodearl’s “atomic” criterion for the decomposability of e O into a direct product
of prime rings, and translating it, via (3.13)(2), into a criterion in terms of the subideals
of / in #(R). (We mention in passing that the second “iff”” statement is also valid if

we replace 4(R) in both places by .7 (R).) =

Remark 4.4. Note that, in the context of Theorem 4.1(4), the prime rings Q; occurring
in the direct product decomposition of e Q are in fact (left and right) primitive rings,
by a result of Goodearl [2, Corollary 16]. Also, if ¢ O happens to be left self-injective,
then each O; is left and right self-injective (and von Neumann regular), so each 0,
will in fact be a simple ring, by [4, (9.30)].

In the case of a finite indexing set C, we deduce easily the following result from
Theorem 4.1.

Theorem 4.5. (Notutions as in (4.1).) For any natural number n, eQ is a direct
product of n prime rings iff d(I)=n. (It follows, incidentally, that in this case d(I)
is exuctly the number of atoms in the finite Boolean ualgebra B(e Q).)

In the case of an infinite indexing set C, a little additional work leads to the following
(cf. (1.2)).

Theorem 4.6. (Notations as in (4.1).) Suppose that d(I)=oc. Then (1) there exist
nonzero ideuls [; CI (i >1) such that @il [ C. Iz, and (2) e Q is an infinite direct
product of nonzero rinys.

Proof. According to Theorem 4.1, (1) and (2) are equivalent statements, so it suf-
fices to prove (2). Since d(/)=20, eQ cannot be a finite direct product of prime
rings, so we must have |B(e Q)| =oc. Write e =e| + ¢|, where 0#e, ¢ € B(¢ O).
With a suitable labelling, we may assume that |B(e] Q)| = >c. Next write ¢] = e + €5,
with 0# e, €} € B(e] Q) and |B(e; Q)| =c, etc. In this way, we get an infinite set
of nonzero mutually orthogonal central idempotents ¢;’s in e . Since B(eQ) is a
complete Boolean algebra, there exists a central idempotent f := /o e €eQ. Letting
eo:=¢ — f E€B(eQ), we have then \/ .=, e; =e where {eg, ¢, e,...} are mutually or-
thogonal, and ¢; #0 for i > 1. By [4, (9.10)] again (applied to ¢ Q), we have a ring
isomorphism e Q= [[2, e Q (with e; Q#0 for i > 1), as desired. [

Remark 4.7. There certainly exist right nonsingular rings R whose maximal right rings
of quotients Q are not direct products of prime rings. We can construct a commuta-
tive example as follows. Let F' be a field, and R be the commutative reduced ring
FxFx---/M where M =F ¢ F+---. 1t is easy to check that R has no primitive
idempotents, and hence that there is no ideal JCR with d(J)=1. It thus follows
trom (4.1) that, for the (commutative) maximal quotient ring Q of R, there is no
decomposition O = Q; x Q> where Q| is a prime ring (i.e. a field).
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As a special case of (4.1) and (4.5), we can compile a list of characterizations (in
terms of R) for the maximal right quotient ring Q to be a prime ring. In order to make
all the statements directly accessible, we shall formulate them with only the annihilator
notation (and not the more technical notations .#(R) and :A(R)).

Theorem 4.8. For R, Q us in (4.1} with R#0, the following are equivalent:

(1) Q is a prime ring;

(2) For every ideal A in R, either A" =0 or A" =R;

(3) For every ideal A in R, if A=A"", then either A=0 or A=R;

(4) For every ideal A in R, if A=A"" and ANA" =0, then either A=0 or A=R;

(5) For every nonzero ideal A in R, A" #0 implies A A" #0;

(6) If A, B ure ideals in R such that A< B C, Ry, then either A=0 or B=0;

(7) If A, B are mutually orthogonal right ideals in R such that A® B C, Ry, then
either A=0 or B=0.

Proof. To avoid repetitions, we shall only give a sketch of the proof. Note that (6),
(7) are just explicit statements for d(R)=1. (4) is the statement that A(R)= {0, R}
(see (3.11)), and (5) 1s the statement that every nonzero 4 €.7(R) is right essential
in R. By our results in Sections 3 and 4, these are all equivalent to O being a prime
ring. The other conditions are technical variations of the ones mentioned above, and
their equivalences can be checked readily. [J

A few historical remarks about Theorem 4.8 are in order. The condition (4) in this
theorem was discovered by Johnson in [8, p. 530]; he called a (nonzero) right non-
singular ring R right irreducible if R satisfies this condition. Later, Johnson introduced
the equivalent condition (5) in [9, p. 712] (see also [11, p. 262]). For right nonsingular
rings, Johnson proved that (4) (or (5)) implies (1) in [10, (2.7)], but it is not entirely
clear that he proved the converse.’ In [7], Handelman introduced the condition (2),
and proved the equivalence of (1), (2), (4) as well as a couple of other conditions
involving torsion and pretorsion theories. The equivalent condition (6) appeared in
Theorem 6.1 of [3]. (3) and (7) do not seem to have appeared before, and are varia-
tions of the others.

We should also point out that the conditions for Q to be a simple ring (resp.
a “full linear ring”) were studied by Goodearl and Handelman i [5, (5.3)] (resp.
[7, Corollary 8]), and the condition for Q to be a division ring is simply that R be a
right Ore domain.

Remark 4.9. Suppose the right nonsingular ring R satisfies the strong finiteness con-
dition u.dim(Rz) <oc. By the theorem of Johnson and Gabriel (see, e.g. [16, p. 248]),
this is precisely the case when ( is an (artinian) semisimple ring. In this case,
Theorem 4.5 tells us that d(R) computes the number of Wedderburn components of Q,

3 In the literature, the full equivalence of (1) and (4) is somctimes attributed to Johnson (at least in the case
when u.dim(Rz ) <o¢); see, for instance, [14, p. 122].



398

S.K. Jain et al. | Journal of Pure und Applied Alyebra 133 (1998) 117-139 133

and Theorem 4.8 gives a list of characterizations, in terms of R, for Q to be a simple
artinian ring.

We close this section by making some remarks on the invariant d(/). For a general
(S, R)-bimodule /, the behavior of d(I) seems rather mysterious. Firstly, if J is a
subbimodule of /, we may not have d(J)<d(/). In fact, as we have seen in the last
paragraph of Section 3, it is possible for d(/) to be 1 and d(J) to be oco. (This can
be “corrected” by putting a condition on J: if JCICM are (S,R)-bimodules and
J € F(M), then it is easy to show that d(J)<d(l).) Secondly, we do not know in
general if d(/)=oc would imply that there are nonzero subbimodules {/; C/: i> 1}
such that @~ | I; C. Iz. However, in (4.6), we were able to prove this property for
[ € Z(R) over a right nonsingular ring R. Similarly, by using the results in this section
and by appealing to the known properties of B(Q), we can derive a few other properties
of the d-invariant for ideals in .#(R) (over a right nonsingular ring R). We list below
some of these properties (with only a sketch of their proofs).

(4.10) For {I;; 1<i<n}C.Z(R), we have d(®_, I;)= Y ;_, d(1;), with the usual
conventions on the symbol ~o. (In particular, if each d(I;)=1, then d(@_, I;)=n.)

@.11) For I, J € F(R), we have d() +d(J)=d(I +J)+d(INJ), with the usual
COnventions on oQ.

Proof (sketch). For both cases, it is a simple matter of counting central idempotents in
the injective hulls of the respective ideals (and using Theorem 4.1 ). For (4.11), we can
reduce to the case of direct sums by using the familiar formula eQ + fQ=eQ & (1 -
e) /O for idempotents. (Of course, it is also possible to prove (4.11) directly by using
the analogous formula: I ® (I’ NJ)C (I +J)r for I, J€ F(R).) U

The property (4.11) for the d-invariant may be slightly surprising since the same
formula is known to fail rather miserably for the usual one-sided uniform dimension
of modules; see the paper of Camillo and Zelmanowitz [1].

5. Comparison of d(/), u.dim(z/z) and u.dim(/z)

For any (R,R)-bimodule /, the three invariants d(/), u.dim(z/z) and u.dim(/g) are
in general related by

d(I) <u.dim(glz) < udim(/z). (5.1)

A natural question to ask is when are some of these invariants equal. We shall be
primarily interested in the case when / is an ideal of R in the family #(R). For a
general right nonsingular ring R, we have seen in (3.22) that, even for [ =R, d(I)
and u.dim(g/z) can differ by any amount. So for equality to occur between two or all
three of the invariants in (5.1), we have to look for special classes of R and /. Our
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first result in this direction is Theorem 5.3 below, which is preceded by the following
lemma.

Lemma 5.2. Let R be any ring, and I, J be ideals in R such that JNJ' =0. If
J <. rlz, then J Ce Ix.

Proof. Let 4 be any right ideal in / such that JNA=0. Then 4-JCANJ =0, so
ACINJ’. Now, since J C,glz and J’ is an ideal, JNJ’ =0 implies that /N.J’ = 0.
Theretore, 4 =0, and this shows that / C.Jz. U

Theorem 5.3. Let R be any ring, und [ CR be any ideal which contuins no nonzero
nilpotent ideals of R. Then d(I)=u.dim(g/lr).

Proof. In view of (5.1), it suffices to prove that u.dim(zfg) <d(I). LetA:=1, &--- G,
be any direct sum of n nonzero ideals in /. Let [y be an ideal which is a 2-sided
complement to 4 in /. (Such a complement always exists by Zorn’s lemma.) Then
J:=1y®AC,glz. Now JNJ’ is an ideal of square zero in /, so by assumption,
J NJ’" =0. Therefore, by (5.2), we have

J=hhdl (E"'@[ngc[R-

This shows that n <d(/) (noting that [, is possibly zero), which then yields u.dim(z/r)
<d(l). O

Corollary 5.4. Let R be any semiprime ring, For any ideal [ CR, we have d(I)="
u.dim(zlg). In the cuse when [ =R, this is equal to the number t ( < oo) of minimal
prime ideuls in R.

Proof. Since R contains no nonzero nilpotent ideals, the first conclusion follows from
(5.3). The fact that u.dim(zRg) =1 is proved in [15, p. 54]. 0[]

Remarks 5.5. (1) The number u.dim(zRz) =1 is called the “prime dimension” of R
by Kharchenko [12]. If this number ¢ is finite, then, as Kharchenko pointed out in
[12, p. 167], each of the left, right and symmetric Martindale rings of quotients of R
is a direct product of ¢ prime rings.

(2) In the case when R is a semiprime right Goldie ring, one has Q... (R)= O} (R),
the classical right ring of quotients of R. In this case, (5.4) and (4.9) together imply
that the number of Wedderburn components of Qf(R) is given by the number ¢ of
minimal prime ideals in R. This is a well known fact; see [15, 3.2.2, p. 68].

(3) In the case when R is a right nonsingular ring, its maximal right quotient ring Q
is certainly semiprime. Therefore, (3.18) and (5.4) together imply that d(R) is equal to
d(Q)=u.dim(pQp), and hence also equal to the number ¢ (< oc) of minimal prime
ideals of Q.
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(4) From (5.4), we can also quickly recover Johnson’s result [9, (2.1)] that a
semiprime right irreducible ring is always prime.

Theorem 5.6. Let R be any right nonsingular ring such that its symmetric max-
imal quotient ring Q4(R) is semiprime. Then, for any I € F(R), we have d(I)=
u.dim(RIR )

Proof. Let S=0,(R) and [*=S8ISCS. We have, by (3.18) (4), udim(rlr)=
u.dim(s/g). By assumption, S is semiprime, so by (5.4) (applied to S), u.dim(s/J)=
d(I*) (where d(I*) means d(s[)). Finally, by (3.18) (1), d(I*)=d(I). Combining
these equations, we have then wdim(g/lr)=d([). U

To name some classes of right nonsingular rings to which (5.6) can be applied, recall
that a right nonsingular ring R is said to be right Utumi if A’ #0 for any nonessential
right ideal 4 C R (see [16, p. 251] for other equivalent definitions). A left Utumi ring
is defined similarly. By a Utumi ring, we shall always mean a right and left Utumi
ring. A basic result in the theory of maximal quotient rings, due to Utumi, states
that, for any right nonsingular ring R, Qp,, (R)= Q.. (R) iff R is a Utumi ring; see
[3, (2.38)], or [16, (4.9), p. 252]. For such a ring R, we can deduce from (5.6) that
the first two invariants in (5.1) are always equal for ideals in .7 (R).

Corollary 5.7. Let R be a Utumi ring. Then, for any I € #(R), d(I)=u.dim(z/g).

Proof. By the Utumi assumption on R, we have Q0 :=Qp., (R) = Q7 (R). In particular,
O = 0,(R). Since Q is von Neumann regular, it is semiprime. Therefore, (5.6) applies.
O

Combining (5.7) with (4.9), we have the following:

Corollary 5.8. For any Utumi ring R:

(1) R is right irreducible iff it is left irreducible, and in this case any two nonzero
ideals in R intersect nontrivially.

(2) If u.dim(Rg)<oc, then the number of Wedderburn components of the semi-
simple ring Q is given by u.dim(zRg).

Of course, in (5.3), (5.4) and (5.7), d(/) =u.dim(g/z) may not be equal to u.dim(/z)
in general, as the classical cases of non-Ore domains and non-reduced semisimple rings
already show. Let us now investigate some circumstances in which u.dim(/z) can be
equal to d(I) or u.dim(glg). Crucial to this consideration is the following condition
on the ideal /:

(*) For any right ideals A, A’ CI, ANA'=0= 4-4"=0.



401

S.K. Juin et al. | Journal of Pure and Applied Algebra 133 (1998) 117-139

Note that this condition fails to hold for / = R over a non-Ore domain, and also over
a non-reduced semisimple ring. For ideals / satistying the condition (*), we have the
following positive result.

Theorem 5.9. Let R be a ring, and let I CR be any ideal satisfying the condition
(*). Assume that either

(1) I contains no nonzero nilpotent ideul of R, or

(2) R is right nonsingular and I € #(R).
Then d(I) = u.dim(zlg) = u.dim(/g).

Proof. (1) We know already from (5.3) that, in this case, d(/) = u.dim(glg), so it only
remains to show that u.dim (/g ) <u.dim(z/g). Consider any direct sum of nonzero right
ideals 4, ®---®A,C/, and let B;:=R-A; CI (1 <i<n) be the ideals generated by
A;. We are done if we can show that the sum of ideals Z?:l B; C I is direct. For ease
of notations, let us just show that the intersection C:=B; N (B, +---+ B,) is zero. By
(*), 4, - A; =0 for any i # j. Therefore, for i # j,

and hence C2=C-CCB, - (B +---+ B,)=0. Since C CI, our assumption on / in
this case yields C =0, as desired.

(2) In view of (5.1), we need only show that u.dim(/z) < d(7). Consider any direct
sum of nonzero right ideals 4:=A4,®---® A, /. Let Ay be a right ideal which is a_
complement to A in [g. Then 4D A= @?ZOA,- C. Iz. By the condition (*) on I, the
right ideals 4; C 1 (0 <i<n) are mutually orthogonal. Since R is right nonsingular and
[ € #(R), (3.16) implies that n <d(I) (noting that Ay is possibly zero). This shows
that u.dim(/g) <d(/), as desired. [

Corollary 5.10. Let R be u reduced right Utumi ring. Then for any ideal I C R, we
have d(I)=u.dim(glz) = u.dim(lr).

Proof. The fact that R is reduced right Utumi implies that any ideal / satisfies (*) (by
[16, (5.2), p. 254]), and (of course) that R has no nonzero nilpotent ideals. Therefore,
the desired conclusion follows from Case (1) of (5.9). O

Remark 5.11. (1) By symmetry, it follows from (5.10) that, if R is any reduced Utumi
ring R, then u.dim(g/)=u.dim(/z) for any ideal /.

(2) The reducedness property used in the proof of (5.10) is only a sufficient, but
not a necessary, condition. In fact, the conclusion in (5.10) clearly holds for any ideal
[ in any commutative ring R. More generally, if R is any right duo ring (i.e., a ring in
which any right ideal is an ideal), it is easy to check that all ideals / belong to F#(R)
and also satisfy (™), and that the conclusion of (5.10) holds for /.
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We close this section with one more result on the comparison between the three
invariants in (5.1). This result requires no assumptions whatsoever on the ring R.

Proposition 5.12. For any ring R and an ideal I C R, suppose that n:=u.dim(glr) =
u.dim(/z) <oc. Then d(1)=n too.

Proof. Let [y, ..., [, be nonzero ideals such that [; & --- S 1, &, RIy. Since u.dim(lg)=n,
we must have already I} @ - - - &1, C. Ir, Therefore, n < d(I), from which we conclude
that d(/)=n. U

Remark 5.13. In contrast to (5.12), in case u.dim(g/z)=u.dim(/g) =00, we may not
have d(/)=o0c. We have already constructed such an example in (3.22), with [ =R.
In fact, in the notation of (3.22), if dimp K = oo, then u.dim(gRz) =u.dim(Rp) = o0,
but d(R)=1! The same example shows that no conclusions can be drawn on d(/) if
u.dim(zlg)=n and udim(/z)=n+ 1 for some finite n.

6. Examples

We conclude with a few illustrative examples in this section. In (5.7), we have
shown that the Utumi condition Qf ., (R)= O/ . (R) implies d(/) =u.dim(g/g) for any
ideal / € #(R). The converse is not true. For instance, take a domain R which is right
Ore but not left Ore. Then d(I) =u.dim(z/g) =u.dim(/z)=1 for any nonzero ideal I.
Here, O, (R) is a division ring, and Q... (R) is not even a reduced ring. The ring
R is easily checked to be right Utumi but not left Utumi. In the following, we shall
construct, for any given n>2, an example of a (right nonsingular) ring R for which
d(R)=u.dim(zRg)=n — 1, but O, (R) is not isomorphic to 0/ . (R).

Example 6.1. Let F be any field, and n>2 be a natural number. Let R be the
ring Y1, Fei + 2 i, F ey, where the e;;’s are matrix units in M,(F). To compute
Q=0 . (R), let P:=(My(F))"~! (direct product of n — 1 copies of M,(F)), and
consider the ring embedding ¢ : R — P defined by

i=1 i=2

n n
[ (E ajieii + _S_ a1i€11> = (a1 + aien + aienn)iz2 €P.

It is easy to check that ¢(R)C.Pr and that P is von Neumann regular and self-
injective, so it follows from (3, (2.11)] that R is right nonsingular, with Q = P. There-
fore, d(R)=d(Q)=n — 1 by (3.18) (1) and (3.21). Now consider

li=Fe, + Fe; CR (i=>2).
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It is easy to check that these are minimal ideals in R, with @?:2 I; C. Rg. From this,
we see that u.dim(zRz)=n — | =d(R). However, since RD > ._, Fey;, Ona (R) is
given by M,,(F), which is not isomorphic to O, (R) as long as n>2. (In particular,
R is not Utumi if n>2.)

[t is worth pointing out that the constructions in (6.1) can actually be extended to
the case of infinite matrices. To see this, let R = ijl Fe; + Z?jz Fey; instead. Then
similar arguments can be used to show that QF, (R)=M,(F)> (countable infinite
direct product of copies of M»(F)), and Q! (R)= Mf;(F ) (the ring of column-finite
infinite matrices over F). We have here d(R) = u.dim(gRg) =00, and d'(R) =1, where
d’(R) denotes the d-invariant for the bimodule zRz defined by giving preference to
left (instead of right) essentialness in R.

We stress that the Utumi condition Q. (R)= Q.. (R) in (5.7) amounts to the fact
that the two quotient rings are not just isomorphic, but are isomorphic over R. To
illustrate this point, we’ll construct below an example where Qp ., (R) and Q! (R)
are isomorphic as rings, but nevertheless d(R) # u.dim(zRg).

Example 6.2. Let R be the F-algebra constructed in (3.22). We will use the notations
in (3.22), but assume here that n=dimg K is finite and greater than 1. For a fixed
F-basis {uy,...,u,} on K, consider the F-algebra embeddings

D1, (,DZ:R_’ Mn—i—l(F)

defined by sending the matrix

a Zic,-u,-
x-(o b )ER

to, respectively,

a ¢y Cy Cl

0 ] .
pr(x)=| . and @a(x)= | ¢ |,

: b-1, Cn

0 0---0 b

where a.b.cy,....c, € F. One can check that ¢@(R) (resp. ®2(R)) 1s left (resp. right)
essential in M, (F) as a ¢;(R)-module (resp. ¢2(R)-module). Thus,

0. (01 (R)) =M, 1(F) = Ohax(02(R)),

again by [3, (2.11)]. In particular, we have QL (R)Y=ZQO . (R)Y=ZM,11(F) as rings.
However, as we have shown in (3.22), u.dim(gRg) =n>1=d(R). This implies that the
two quotient rings cannot be isomorphic over R, which one can also check directly.
In fact, the nonsingular ring R here is neither left nor right Utumi. Moreover, the
symmetric maximal ring of quotients Q,(R) turns out to be the ring R itself, so (3.18)
(4) does not yield any useful information about R.
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