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Abstract. Rings in which each right ideal is quasi-continuous (right m-rings)
are shown to be a direct sum of semisimple artinian square full ring and a right
square free ring. Among other results it is also shown that (i) a nonlocal right con-
tinuous indecomposable right 7-ring is either simple artinian or a ring of matrices of
a certain type, and (ii) an indecomposable non-local right continuous ring is both a
right and a left n-ring if and only if it is a right g-ring. In particular, a non local
indecomposable right g-ring is a left g-ring.

0. Introduction. Rings for which every right ideal is quasi-injective (known as
right ¢-rings) have been studied by several authors (c.f. [4], [S], [6], [7]). The purpose
of our paper is to extend this line of research by studying rings in which every right
ideal is quasi-continuous (right m-rings). In Section 2 we show that a m-ring is a
direct sum of a semisimple artinian square full ring and a square free ring.

In Section 3 we study right continuous right n-rings. We show that a non-local,
right continuous, indecomposable right -ring R is either simple artinian or a ring of
matrices of a certain type (Theorem 3.8). We show that an indecomposable, non-
local, right continuous ring R is both a right and a left #-ring if and only if Ris a
right g-ring (Theorem 3.13). In particular, under these hypotheses, R is a right g-ring
if and only if it is a left g-ring.

1. Definitions and preliminaries. ~Throughout the paper R will be a ring with
identity and all R-modules will be unital right R-modules, unless otherwise stated.
For modules M, N, the notations N ¢’ M and N C® M respectively serve to denote
that N is an essential submodule of M and that N is a direct summand of M. By
Z(M), Soc(M) we denote the singular submodule and socle of M, respectively. J(R)
is the Jacobson Radical of R. M (or E(M)) stands for the injective hull of M.
Homg(M, N) stands for the set of R-homomorphisms from M to N. Endg(M) is the
set of R-endomorphisms of M. If N C M, a closure of N in M is a maximal essential
extension of N in M. N is said to be closed in M if N has no proper essential exten-
sion on M. Given right R-modules M and N, M is said to be N-injective if for any
K C N, every a € Homg(K, M) is the restriction of some 8 € Homg(N, M).

For a module M we consider the following conditions:

(C) For every submodule N of M there exists a summand L of M with N C’ L.
(C;) If a submodule N of M is isomorphic to a summand of M then Nitself is a

summand of M.
(C3) If A and B are summands of M with 4 N B = 0 the 4 & Bis a summand of

M.
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A module M is called (quasi-)continuous if it satisfies (Cy) and (C2) ((Ci) and
(C3)). A module M is called a CS (or extending) module if it satisfies (Cy).
Equivalently, M is a CS module if every closed submodule of M is a direct sum-

mand of M.
It is well known that a module M is quasi-continuous if and only if eM C M for

every idempotent e € End(!\:l) if and only if every decomposition E(M) = ®c/E;
induces M = @;/(M N E)) [10, 2.8].

DEFINITION 1.1. A ring R is said to be a right (f)m-ring if every (finitely gener-
ated) right ideal in R is quasi-continuous.

REMARK 1.2. A right uniform ring is a right (f)n-ring.

The following Lemma is a particular case of [9, Proposition 2.6.]. This may
already be known but we have not found it anywhere in the literature.

LeEMMA 1.3. 4 right R-module M is quasi-continuous if and only if M satisfies
condition (Cy) and, whenever M = A ® B, A and B are mutually injective.

Proof. The ‘only if* part is well known (see Lemma 1.7 below). For complete-
ness, we include here the proof of the other implication.

Let M = E, & E,. We want to show that M = 4 @ B where 4 = E; N M and
B=E,NM. Since A is closed in M and M satisfies (C1), M = A® X for some
X c M. Let w4 and my be the corresponding projection maps. Then B > ny(B) C X.
Define o :mx(B) > A by a(mx(h)) = w4(b). The map « is well-defined since
7y : B — mx(B) is an isomorphism. But 4 is X-injective, so « extends to f: X — 4.
Let X* = {x+ B(x) | x € X}. Then M = A ® X*. Also B C' X* and B is closed. This
implies that B = X* and, consequently, M = A @ B. ]

Lemma 1.3 has the following immediate consequence, an intrinsic characteriza-
tion of (f)m-rings:

THEOREM 1.4. 4 @ R is a right (f)m-ring if and only if every (finitely gener-
ated) right ideal of R satisfies (Cy) and, whenever A and B are right ideals of R with
AN B =0, A and B are mutually injective.

Proof. Immediate from Lemma 1.3. O

We list below some well known results that will be used frequently.
Theorem 1.4 may be strengthened by observing that in order to check if a ring R
is right (f)m, it suffices to concentrate on the essential right ideals.

THEOREM 1.5. For a ring R the following conditions are equivalent:

(1) R is aright (f)m-ring,

(2) every essential (finitely generated) right ideal of R is quasi-continuous,

(3) every essential (finitely generated) right ideal satisfies (C\) and, whenever
A and B are right ideals such that A® BC' R, A and B are mutually

injective.
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Proof. It follows from the above characterizations of (f)n-rings since, when R
satisfies (Cy), every (finitely generated) right ideal is a direct summand of a (finitely
generated) essential right ideal. (]

LemMA 1.6. Let M and N be two right R-modules. Then M is N-injective if for any
o« € Homg(N, M), Ima C M.

Proof. See [10, 1.13). OO

LEMMA 1.7. If M = & M; then M is quasi-continuous if each M; is quasi-con-
tinuous and M; is M- injective for all i # j.

Proof. See [10, 2.14]. O

LEMMA 1.8. A right quasi-continuous ring R is right continuous if J(R) = Z(R)
and R/J(R) is a regular ring.

Proof. See [10, 3.15]. 3

LemMa 1.9. In a right quasi-continuous ring the idempotents modulo Z(R) can be lifted.

Proof. See [10, 3.7]. O3

A right module M is called local if M contains a unique maximal submodule. A
ring R is called local ring if the right R-module Rp is local. Let e be an idempotent in
R. Then e is called primitive if the right ideal eR is indecomposable. Furthermore, e
is called local if the ring Endg(eR) is local or equivalently if eJ is the unique maximal
submodule of eR [8, 21.18].

LEMMA 1.10. 4 primitive idempotent in a right continuous ring is local.

Proof. Let e be a primitive idempotent in a continuous ring R. Then eRe is a
continuous ring [10, 3.8] and contains no nontrivial idempotents [8, 21.8]. By Lem-
mas 1.7 and 1.8, £ s a division ring. It follows that eJe is the maximal right ideal in

eRe and, therefore, e is local [8, 21.9]. (O

Local rings have nontrivial idempotents. We see next that the converse also
holds when the ring is continuous.

LemMMma 1.11. A right continuous ring R is local if it contains no nontrivial
idempotents.

Proof. Let R be a right continuous ring with no nontrivial idempotents. Then
R/J(R) is a regular ring with no nontrivial idempotents. Hence R/J(R) is a division
ring. It follows that R is a local ring. The converse is trivial. ]

Two modules M and N are said to be orthogonal if no submodule of M is
isomorphic to a submodule of N. Let M, X be arbitrary right R-modules and N a
submodule of M. Then M is said to be a square if M = X?. The N is called a square
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root in M if N? is embeddable in M. M is called square free if M contains no square
roots. M is called square full if every submodule of M contains a square root in M.

2. Rings with quasi-continuous right ideals. Right (f)g-rings may be characterized
as those right self-injective rings for which every (finitely generated) essential right
ideal is a two sided ideal [7]. For right (f)z-rings one obtains the following.

PROPOSITION 2.1. 4 ring R is a right (f)n-ring if and only if R is quasi-continuous
and every (finitely generated) essential right ideal is a left S-module, where S is the
subring of R generated by its idempotent elements.

Proof. From Theorem 1.5, in order to check to see if R is an (f)n-ring, it suffices
to check that every (finitely generated) essential right ideal in R is quasi-continuous.
We’ll show here that a (finitely generated) essential right ideal I of a quasi-con-
tinuous ring R is quasi-continuous if and only if it is a left S-module. Our result will
then follow. Let R be a quasi-continuous ring. The subring T generated by all the
idempotents of the ring Endz(R) can then be viewed as the subring S generated by
all the idempotents of the ring R. Let I be a (finitely generated) essential right ideal
of R. Then, I = TT = SI if I is quasi-continuous. []

LEMMA 2.2. Let A, B be right ideals in a right fr-ring R with ANB =0 and
A= B. Then.,
(a) every finitely generated right ideal in A or B is injective. Moreover, if R is a
right m-ring then A and B are semisimple and injective, and
(b) the right ideals A and B are nonsingular.

Proof. For the first part (a) we can assume that 4 and B themselves are finitely
generated. By the quasi-continuity of R, there exists an idempotent & =e e Rsuch
that 4 ' eR C® R. The fact that BNeR =0 implies that B is eR-injective. And
A = B = Ais eR-injective. But 4 is also (1 — e)R-injective, therefore 4 is R-injective.
For the second part of (a), assume that R is a 7r-ring and 0 # X C 4 then X = a(X)
where a : A — Bis a given isomorphism. By a similar argument as above X is injective.
Thus, A is semisimple and so is B. Let us now consider (b). Let x be an element of Z(4).
Since xR is injective, there exists an idempotent e € R such that eR = xR < Z(4).
Since Z(R) contains no nonzero idempotents, it follows that x = 0. [

LEMMA 2.3. Let A, B be right ideals in a ring Rwith ANB=0. Leta: A — Bbe
a nonzero homomorphism.
(@) If R is a right n-ring then the image of o is semisimple.
(b) If R is a right fr-ring and B is uniform then the image of o is simple.
(c) Let R be a right fr-ring with a non-trivial primitive idempotent e such that
eR(1 — e) # 0. Then eR contains a simple right ideal.

Proof. (a) Let L C’ B. Since L & A is quasi-continuous, and o may be viewed as
a: A — L, Ima c L. It follows that Ima C Soc(B).

(b) Let a and x be a nonzero elements in A and B respectively. Then
a:A—>BcB=xR implies a(aR) C xR since aR & xR is quasi-continuous. It fol-
lows that Ima C xR. Then 0 # Ima C Soc(B), a simple right R-module.
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Proof. Suppose [ is infinite. In view of Theorem 2.6 we can assume that R is
square free. By Lemma 2.3 we can assume the B; are simple. Since R is a 7-ring, any
homomorphism from 4; onto B; can be extended to a homomorphism from ¢;R to
B;, where e;R is a closure of 4; in R and ¢; is an idempotent in R. As R is square free,
using the projectivity of ¢;R one can assume that B; are independent. Pick an 4;,. By
Lemma 2.4, images of the 4; are contained in A;, for only finitely many i. Pick an 4,
whose image is not contained in A4;. Again by Lemma 2.4, images of the 4; are
contained in 4;, for only finitely many i. Hence there exists an 4; whose image is
not contained in 4;, @ A,,. Clearly this process is inductive.

Hence there exists an infinite subset I' C I such that (®;epd;) N (Bier B;) = 0.
Now for each i € I', the homomorphisms from 4; onto B; induce an epimomorph-
ism from @;cyA4; onto ®;crB;. By Lemma 2.4, I is finite, a contradiction. Hence the
proof follows. [J

3. Continuous (f)7-rings. In this section we will study the (f)n-rings that are
continuous. Since, by Lemma 1.9, a continuous ring is local if and only if it contains
no non-trivial idempotents, a continuous, local (f)m-ring is uniform. Conversely, all
right uniform rings are n-rings (Remark 1.2.). Consequently, from now on, we shall
only consider non-local rings. We completely characterize indecomposable, non-
local, right m-rings that are right continuous. We prove that such rings are either
simple artinian or a certain type of rings of matrices.

LeMMA 3.1. Let R be a right continuous right fr-ring, e a primitive idempotent in
R and a : eR — R a nonzero homomorphism with Ima N eR = 0. Then

(a) Ima is simple;

(b) eR(1—-¢) #0.
In particular, for a right continuous, right fr-ring R and primitive idempotent e € R, if
(1 —e)Re #0 then eR(1 —e) #0.

Proof. (a). Let @ : eR — R. By Lemma 1.8, eR is local and therefore a(eR) is
© local. It follows that a(eR) is indecomposable and therefore uniform (a(e)R, being
finitely generated, is quasi-continuous). Thus, by Lemma 2.3(b), Ime is simple.

(b). Let Ima c’ fR. Then, fRNeR =0 and, therefore, R=(fR® eR) ® L for
some L C R, since R is quasi-continuous. Thus, (1 —e)R = ;% =~ fR& L and,
therefore, 4 is embedded in (1 — e)R. Hence we can assume that a : eR — (1 — e)R.

Assume eR(l1 — ¢) = 0. By Lemma 1.8, eRe = eR is local ring with its unique
maximal ideal eJ where J = J(R). If eJ =0, eR is simple right R-module and
a(eR) = eR. The inverse of « from eR into a(eR) extends to some nonzero homo-
morphism from (1 — )R to eR, proving our claim. Let x be a nonzero element in eJ.

. . . . R
Since eRe is local there exists an eRe-epimorphism B: xeR — e_J' Furthermore,
since eR — eRe, B is an R-homomorphism as well. €

Since Ime is simple (by (a)), %-}; 2 Ima C (1 — e)R. Let y be a nonzero homo-
morphism from % to (1 — e)R. Then yB is a nonzero R-homomorphism from xeR to

(1 — e)R. Since R is quasi-continuous, yf extends to a nonzero R-homomorphism, &
say, from eR to (1 —e)R. But xeR CeJ=XKers (by (a)). This implies that
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0 = 8(xeR) = yB(xeR) = Ima, a contradiction since o # 0. Thus eR(l1 — ) # 0 and
the proof follows. []

LeMMA 3.2. Let R be a continuous square free fr-ring with a primitive idempotent
e such that eR(1 — e) # 0. Then eRe is a division ring and eR(1 — e) is the only proper
submodule of eR.

Proof. By Lemma 2.3 S = Soc(eR) is non-zero. Since eR is continuous, S is
simple. By Lemma 23, we get eR(1-¢)SS. Now let 0#s5cS and
0+# a: (1 —e)R — eR. Clearly, by Lemma 2.3, Ima = S. If se # 0 then S =seRis a
homomorphic image of eR under some 8: R — sR given by B(ex) = sex. By the
projectivity of eR there exists a homomorphism y : eR — (1 —¢)R so that ay = 8.
By Lemma 3.1, Imy is simple. It follows that Imy = §, a contradiction since R is
square free. Hence se = 0 and s € eR(1 — ¢). Consequently, S = eR(l — e). Now, let
J=J(R). Then eJe is the Jacobson radical of eRe. Since R is continuous
J(R) =Z(R) and therefore JS=0. Hence (eJe)S = (eJ)(eS) =eJS =0. Thus,
eJe[eR(1 — €)] = 0, and so eJeR = eJeRe C eJe. Hence eJe is an R-submodule of eR.
As S = eR(1 — e) it follows that (eJe) N S = 0. But eR is uniform, so eJe = 0. Thus
eRe is a division ring. Now let / € eR. Then S C I (since ¢R is uniform). It follows
that S € I(1 —e) S eR(1 — e) = S. Hence I(1 — e) = S. Furthermore, since Je is an
eRe-submodule of eRe, it follows that either Je =0 or fe = eRe. If Ie =0 then
I=I1—¢e)=S. If Ie=ecRe then, since I=Ie®I(l1—e¢), it follows that
I=eRe ®eR(1 — e) = eR. Hence § is the only proper submodule of eR. [J

THEOREM 3.3. Let R be an indecomposable, non-local, right m-ring. If R is right
continuous then R has essential socle.

Proof. If R contains a square then, by Corollary 2.7, R is simple artinian and we
are done. Assume R is square free. Since R is non-local and indecomposable it con-
tains a nontrivial idempotent f and either fR(1 —f) or (1 — f)Rf is nonzero (by
Lemma 1.9). Therefore, by Lemma 2.3, R has nonzero socle. Let ¢ = ¢ € R with
Soc(R) C’ eR. Suppose e # 1. For any non-zero idempotent g € (1 —¢)R, since
Sco(gR) =0, (1 — g)Rg # 0 and g is not primitive (Lemmas 2.3, 3.1). Indeed, for any
«:gR— (1 —g)R, Ima is semisimple. So a: gR — eR. Furthermore, for any two
non-zero orthogonal idempotents g1, g2 € (1 — )R and non-zero a; : g:.R — eR, (i =
1,2), one gets that Ima; N Ima, = 0, for, otherwise, there exists a minimal right ideal
S C eR such that g; R and g, R map onto S. But then by the projectivity of g1 R there
exists a non-zero ¢ : giR — g, R. By Lemma 2.3, Im¢ is semisimple, a contradiction.

Let 1—e=f+g, a sum of orthogonal non-zero idempotents and
0 # ) : gIR — eR. Write fi = f> + g2, a sum of non-zero orthogonal idempotents
and 0 # a3 : g22R — eR. Continue like this writing f; = fi;; + giy1 and considering
0 # aiy1 : gir1R — eR. Then the sum of Ime; is direct and there exists an epi-
morphism a : ®2,g;R - ®%,Ime;. This is a contradiction in view of Lemma 2.4.
Therefore e = 1, proving that Soc(R) ' R. OO

LEMMA 3.4. Let R be a continuous ring. Suppose e is a nonzero idempotent of R.
If, for a,b € R, aR, bR are two non-isomorphic minimal right ideals of R that are
homomorphic images of eR, then there exists a nonzero idempotent f in eRN a* such
that f & b*, where x* is the right of x in R.
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Proof. As aR and bR are non-_isomorphic, there exists a nonzero element x in
eRNa* but not in eRNbL. Let R = R/J(R). Then eRe = eRe/ele is regular [10,
3.11]. Hence there exists y € eRe such that Xy is a nonzero idempotent in eRe. Thus
there exists a nonzero idempotent f'in eRe such that /' — xy € eJe (Lemmas 1.8, 1.9).
Thus f € eRNat. Now, if f € bt, then xy € b*. But, as x — xpx € b, it follows that
x € b*, a contradiction. Hence, f ¢ b*. []

THEOREM 3.5. Let R be a continuous m-ring. For any two independent right ideals
A and B in R, A has only finitely many simple images in B.

Proof. Let I be an infinite index set such that for each i € I, S;, is a simple image
of Ain B. For &2 =e € R, let eR be a closure of 4 in R. As R is a m-ring, each S; is
an image of eR. Let S; = a|R for some a; € R. For i #}, i, j € I, there exists, by
Lemma 3.4, a nonzero idempotent fin eR N g} such that fis not in ajl. One of fR or
(e — /)R maps onto infinitely many a; R, k € I. Denote one that maps onto infinitely
many a, R’ by g1 R, and the other one by fiR.

Now eR = fiR @ g1 R. Since f ¢ a and e — fis not in 4", it follows that fi R has a
nonzero simple image in B. As Ris quasi-continuousand RN B =0, (1 — f1)Rf; # 0.
Now, since g R has infinitely many simple images in B, repeating the same process we
get idempotents f; and h; in g; R such that (1 — f,)Rf; # 0 and Ay R has infinitely many
simple images in B. Now ¢R = (fiR & /2.R) @ h>R. Continuing this process, we get an
infinite family {f,, :neN } of orthogonal idempotents in R such that (1 — f,)Rf, # 0, a
contradiction to Proposition 2.8. Hence the index set [ is finite. []

THEOREM 3.6. A continuous, indecomposable, non-local n-ring R has finitely gen-
erated essential socle.

Proof. In view of Theorem 2.6, we can assume that R is square free. By Theorem
3.3, Soc(R) c’ R. Suppose Soc(R) is not finitely generated. Let {S;:i € I} be the
infinite family of minimal right ideals in R. As R is square free, this family is inde-
pendent. For each i € I, let ¢;R be a closure of S;, where e,2 = ¢; € R. By proposition
2.8, there are only finitely many simple S;,..., S;, in R such that (1 —¢;)Re;, # 0,
k=1,...,n We can pick an idempotent ¢ € R such that both eR and (1 —¢)R
contain infinitely many minimal right ideals of R.

By Theorem 3.5, both eR and (1 — r)R have only finitely many simple images in
each other. Of these simple images, consider only those that are not S; for
k=1,...,n Now, take the closures fR and gR of these simple images of eR and
(1 —e)R in (1 — ¢)R and eR respectively, where f2 = fe (1 —e)R and g =g € eR.
Since R is quasi-continuous, there exist primitive orthogonal idempotents fi, ..., fi,
g1.-..8n such that fR = ®'_ /iR and gR = ®'_,g:R. Then fR and gR do not map
outside themselves. Now there exist idempotents f* € (1 — e)R and g’ € eR such that
R=ERO®ZRBO(/RBSR =ERDPSR)®(fROZR). Since R is a n-ring and
any nonzero image of (1 — )R in eR lie inside gR, any nonzero image of 'R in eR
must lie inside gR. If there is a nonzero homomorphism from /' R into fR, composing
with a projection map we’ll get a nonzero homomorphism from f'R onto a simple
right module S in fR. But every simple in fR is an image of eR. As eR is projective, §
would be isomorphic to a simple in f'R. As R is square free, this is a contradiction.
Hence there is no nonzero homomorphism from gR & 'R into fR & g R. Symme-
trically, there is no nonzero homomorphism from fR® g’R fR® g’R. But, as R is
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indecomposable and f’R and g’R have infinitely many minimal right ideals, this is a
contradiction. Thus, R must have finitely generated essential socle. [J

PROPOSITION 3.7. Let R be an indecomposable, right continuous, right square free
ring. Then R is a right fr-ring with finite uniform right dimension if and only if R is a
right artinian right w-ring.

Proof. Let R be an fr-ring with finite uniform dimension. Then it contains an
independent family of uniform right ideals Uy, ..., U, with &L ,U; C' R. As R is
quasi-continuous, there exists nonzero idempotents e,...,e, in R such that
U; C' e;R and R = &"_,e;R. Since each U; is uniform it follows that each e;R is pri-
mitive. As R is indecomposable and continuous it follows, by Lemma 3.1 that
e;R(1 — ¢;) # 0. By Lemma 3.2, and each ¢;R is artinian. Hence R is artinian. Now,
since R is an fr-ring, it follows that R is a -ring.

Conversely, assume that R is a right artinian m-ring. If R is local, then it is uni-
form (Lemma 1.11) and, therefore, has finite uniform dimension. If R is non-local,
then it has finite uniform dimension by Theorem 3.6. Hence the proof follows. []

The right handed version of Theorem 3 in [4] states that a ring R is a non-local
indecomposable right g-ring containing no minimal injective right ideals if and only
if R is isomorphic to a ring of n x n matrices of the form

DV

DV

M(D, V) = bv
R 4
V D

with D a division ring, ¥ a null algebra over D with dimp ¥ =dimVp =12andn > 2.
We will consider next a larger family of rings. Let n > 2 be a natural number. For
ie{l,...,n}, let D; be a division ring. For ie (1,...,n—1}, let D.-Vi,i+1o,.+, be a
bimodule and let p, Vai 5 be a bimodule. For convenience, we will consider here,
when dealing with the subscripts, addition modulo » on the set {1, ..., n} rather than
on {0,...n — 1} as is customary. We do this since the rows and columns of matrices
are usually labeled by the first set and not the second. So, in particular, n+1 =1
and therefore it suffices to say that p, Vi1, is a bimodule for i=1,...,n. By
M=MyDy,...,Dn Via, ..., Vacin, V) we denote the set of n x n matrices with
(i, i) entry from Dy, (i, i + 1) entry from V;,;;1(i =1...n), and all other entries zero.
It is straight forward to see that M is a ring under the usual matrix addition and
multiplication if one assumes that V; ;.1 Viypig2-0 fori=1,...,n

In the following theorem we show that, under certain conditions, right n-rings
are precisely those rings of the form

Dy Vi
D, Vi

Dy V.
Mn(Dl,...,Dn; V127 ey Vn—l,nq V’ll)z ’ 34

Vn—l.n
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for which dim(V;41)p,,,) = 1.

THEOREM 3.8. Let R be an indecomposable, non-local ring. Then the following

conditions are equivalent:

(1) R is right continuous and a right m-ring.

(2) Every right ideal in R is right continuous.

(3) Either R is simple artinian or R is right continuous, square free and there exist
orthogonal primitive idempotents ey, . . . e, in R such that e;Re; # 0 if and only
if either i = j or j — 1(modn), each ¢;R has length two and R = ®?_e;R.

(4) R is either simple artinian or isomorphic to a ring of the form

M= Mn(Dlv R ) SN 4TI Vn—l,m an)

Jfor some natural number n and with entries such that dim(Vi iy, )= 1.

(5) R is right continuous and every right ideal in R containing the Soc(R) is two-
sided.

(6) R is right continuous and every essential right ideal in R is two-sided.

Proof. The implications (2) = (1) and (5) = (6) are trivial, and (6) = (1)
following from Proposition 2.1. It remains only to prove the following implications:
(1) = (3) = (4) = (5) and (1) = (2). Suppose (1) holds. If R contains a square then
R is simple artinian, by Corollary 2.7. Suppose R is square free. By Theorem 3.6, R
has finitely generated nonzero essential socle. Let §),...S, be the minimal right
ideals in R. Let I={1,...,n}. For each i € I, let S; C’ e;R, where ¢; is a primitive
idempotent in R. Clearly, R = ®_,e;R. As R is indecomposable, e;R(1 — ;) % 0 for
each i € I (Lemma 3.1). Hence there exists some j # i, j € I such that e;Re; # 0. As R
is square free and e;R is projective, e;Rex =0 for all k # {,j, k € I. Since R is inde-
composable, there must exist some k € I, k # i (unless n = 2) such that e;Re, # 0.
Hence, there exists a permutation ¢ on I={l,...,n} such that e;Rey; # 0 and
o)) # ifor all i € I. Write ¢ = ¢1¢2...¢x, a composition of disjoint cycles. Since R
is indecomposable, k =1 and ¢ is a cycle. Renumbering if necessary, we can write
¢(D)=i+1,fori=1,...,n—1, and ¢"(1) = 1. Therefore, for each i € I, we may
consider the sequence of homomorphisms ea;;:e; 1R — ¢,R as follows:
eu,R—>e,_1R— ... eR—>e R—e,R Now, for each ie{l,...,n—1},
Ima;y ) = S; is simple. Moreover, for each i <j,i,je(l,...n}, eiRe; #0 if i=j or
i =j— l(modn). By Lemma 3.2, each ¢;R has length two. Hence we have proved
(1)=>(3). Now, assume (3) holds. If R is not simple artinian then, by (3), R is right
continuous and there exist orthogonal primitive idempotents ey, .. .e, in R such that
e;Re; # 0 if and only if either i = or i = j(modn), each ¢;R has length two and
R = @7 ,e;R. By Lemma 3.2, e;Re; is a division ring for all i € {1, ...n}. By Lemma
3.2, S; = ejRe;;1. Thus S; can be viewed as a left vector space over ¢;Re; and a right
vector space over e;;1 Reiy . Denote each division ring e;Re; by D; and each vector
space e;Re;y1 by V1. We will show that dim( va"+1o.-+|) = 1. Let ¢; be the unit
matrix in M whose only nonzero entry is the (i,/) entry and equals 1. Then
eiM=(0...0D;V;;110...0) = ¢e;R. It is easy to check that the proper M-sub-
modules of e;M are precisely (0...0 W;;+10...0) where W, is a right D;;,-sub-
space of V1. Therefore, it is clear that the e;M has no non-trivial summands.
Since e; M, being isomorphic to ¢;R, is quasi-continuous it follows that it is uniform
as a right M-module. Thus, V;;;; is uniform as a right D;;-module. Hence,
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dim(V; i+1 DM) = 1. Finally by defining V; 11 Vit1,i02 =0, i € I, we get the following
matrix representation of R:
Dy Vi
Dy Vs

Dy V¥
R= @?zle,-R = 3 34

Vn—l.n
an Dn

= Mn(Dly cooDp; Vg, o, Vn—l,m an)-

This proves (4).

Now, assume (4) holds. If R is simple artinian then (5) holds trivially. Assume R
is square free and isomorphic to the matrix ring M. It is easy to check that the only
proper M-submodules of e;M are (0...0 W11 0...0), where Wy is a right D;y-
subspace of V; 1. As dim(V 4 D.-+n) =1, it is clear that e;M is uniform. It is also
clear that e;M is not isomorphic to any of it’s proper submodules. It follows that
each e;M is continuous. It is easy to check that Soc(e;M) =(0...0 Vi 0...0).
Therefore, as M is square free, there is no nonzero homomorphism from a proper
right ideal of e;M to a right ideal of e;M for i # j. Hence, for i # j, e;M-injective.
Hence M is right continuous.

Now, let a, m be two nonzero elements of M. For i=1,...,n, there exist d;,

A; € D; and v; 41, Wiis1 € Vi1 such that

d 2 Ay wp
d vn Ay wy
d; v A3 w
a= 3T and m = 3 Wi
Vn—1,n . - Wn-in
Vni dy Wni A,

Fori=1...n—1,defined; = Ai“d,-A,-, if A; #£ 0, and §; = 0 otherwise. Define u; ;31 =
A7\dywi i if A; #0 and w1 =0 otherwise. Define s; = viir1 Apr1— Wiig18iga if
A;#0 and s = diwiip1 + Viis1 A — wiiv18ip1 If A;=0. For i=n, define
tni = A7 dywyy if A, #0 and s, = VA —wad if A, #0, and sy =vmbi+
d,,W,,l - W,,|31 if An =0

It is straightforward to verify that ma = s + am’, where

0 5 S up
0 5 8 un
0 = 8 u
5= 3 and m' = 3K
Sn—1 . . Up—1,n
Sn 0 Uny n

Now, as Soc(e;M) = (0...0V;410...0), Soc(M) consists of all matrices in M with
zero diagonal. Thus, ma € Soc(M) + aM. Hence every right ideal of M containing

the Soc(M) is two-sided, proving (5).
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Now, suppose (1) holds. Let I be a right ideal of R isomorphic to a summand eR
of R where ¢2 = ¢ € R. If e is primitive then, by Lemmas 3.1 and 3.2, eR has only
one proper right ideal S = Soc(eR). Since eR is indecomposable, I is indecompo-
sable. Let fR be a closure of I in R, where f2 = f € R. Then fR is indecomposable
and again, by Lemmas 3.1, 3.2, fR has only one proper right ideal 7 = Soc(fR). As
eR is not simple, [ is not simple. Thus, I = fR. Now suppose ¢ is not primitive. As R
is quasi-continuous and has finite uniform dimension (Theorem 3.6), we can write
eR=fIR®...®fiR, where the f; are primitive idempotents. There exist sub-
modules I; of I, i=1,...k,such that =1, &...® I; and I; = f;R. By the above
arguments, each /, is a summand of R. Since R is quasi-continuous, it follows that
Ic® R. Hence R is continuous. Thus, (2) holds. [J

ExaMPLE 3.9. In the above Theorem, the left dimension of V;;;; over D; is not
necessarily 1, as the following example shows.

Let F be any field, F(x) is the field of rational functions over F on the variable x.
Let ¥V = F(x) be the F(x)-bimodule with left action of F(x) on ¥V given by f(x).
g(x) = fix*)g(x) and the right action given by multiplication in F(x). Consider the

ring
Fxy V 0
R=] 0 Fx V
Vv 0 FXx)

where V2 =0. This ring satisfies all the conditions in Theorem 3.6 but

Let
D, Vin
Vai Dy

M =M,Di,...,Dn Va1, oo . Vane1, Vin) = Ve ,

Vn,n—l Dn

where for i = 1...n, D; is a division ring and V., is a D;;; — D; bimodule. Notice
that, as we did before, when dealing with subscripts we are considering addition
modulo # on the set {1, ..., n} rather than on {0,...,n — 1}.

It is straightforward to see that M’ is a ring under the usual matrix addition and
multiplication if we assume that Vi ; Vi1 =0fori=1...n

Certainly, there is a symmetric, left-handed version of Theorem 3.8 to char-
acterize left continuous indecomposable left & rings in terms of rings of the form
M =M, (Dy,...,Dy; Va1, ... Va1, Vin), as follows.

THEOREM 3.10. Let R be an indecomposable, non-local ring. Then the following
conditions are equivalent:

(1) R is left continuous and a left m-ring;

(2) R is either simple artinian or isomorphic to a ring of the form
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M, = M;(Dlv Tevy D", V21, LR} Vn,n-—ly Vln)
for some natural number n and with entries such that dim(p,,, Viy1,:) = 1.
Proof. Similar to that of Theorem 3.8. [J

However, it is important to point out that one can also characterize right con-
tinuous, indecomposable, non-local rings in terms of rings of the form M’, as follows.

THEOREM 3.11. Let R be a right continuous, indecomposable, non-local ring. Then
the following conditions are equivalent:

(1) R is aright m-ring

(2) R is either simple artinian or R is square free and there exist orthogonal pri-

mitive idempotents f\, . .., fn in R such that fiRf; # 0 if and only if either i = j

or i = j+ 1(modn), each fiR has length two and R = ®}_fiR;
(3) R is either simple artinian or R is square free and isomorphic to a ring of the
form

Dl Vln
Vo D»

y V: D
M = Mn(Dly cees Dy, Var .o Vn.n—l» Vln) = 32 V433

Vn,n—l Dn

for some natural number n and dim(Viy1,i,) = 1.

Proof. Suppose (1) holds. Assume R is not simple artinian. By Theorem 3.8, R is
right continuous, square free and there exist orthogonal primitive idempotents
ei,...e, in R such that e;Re; # 0 if and only if either i =j or i = j — 1(modn), each
e;R has length two and R=@} ;R Define fi=e, ;1. Then fiRfj=
en-i+v1Renjr1 # 0if and only if eithern —i+1=n—j+lorn—i+ l=n—j+1-
1(modn) if and only if either i=j or i=j+ l(modn). Hence the sequence
e.R—> e, .\R— ...> eR—> e R—> e,R is the same as the sequence fiR —
/2R = ... — foR — fiR. This gives rise to the matrix representation M’ of the ring
R. A proof similar to the proof of Theorem 3.8 will prove the equivalence of all the
statements in Theorem 3.11.

COROLLARY 3.12. If R is indecomposable are non-local, then the condition of being
a right g-ring is equivalent to being a left g-ring.

Proof. A right handed version of [4, Theorem 3] states that an indecomposable,
non-local right g-ring is either simple artinian or a ring of the form

DV
D Vv
M,(D, V)= .o i
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_where D is a division ring and ¥ is a null algebra over D with dim(pV)=1=
dim(Vp). Following the proof of Theorem 3.11, it is easy to check that an
indecomposable, non-local, right g-ring R is either simple artinian or a ring of the
form

D vV

with D and V as above. By [4, Theorem 3}, M, (D, V) is a left ¢g-ring. [J

If the ring R in Theorem 3.8 is both a left and right 7-ring, then both the left
and right dimensions of Vi1, over D; and D respectively, are equal to one and R
is a (two-sided) g-ring, as the following Theorem shows:

THEOREM 3.13. Let R be a right continuous, indecomposable, non-local ring. Then
the following conditions are equivalent:

(1) R is a right and left n-ring;

(2) R is a left quasi-continuous right st-ring;

(3) R is either simple artinian or isomorphic to a ring of the form

M = Mn(Dlv vy Dnr Vl21 ey Vn—l,m an)!

for some natural number n and with entries such that dim(Viii1, )=
. i+
1 = dim(p, Vi i+1):
(4 R isaright g-ring,
(5) Ris aright and a left g-ring.

Proof. Clearly (1) implies (2). Now suppose (2) holds. Then R is a right n-ring.

By Theorem 3.8(4), R is either simple artinian or of the form M,(D,,...Dp;
Vias s Vaetans Var). If R is simple artinian then (3) holds trivially. Otherwise, every

o)

left summand Re; & . | where ¢; is the unit matrix e;, has as its only
1
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[

submodules Re; and ‘columns’ of the form | W,_,; | where W,_; is a D,_-sub-
0

\ o
space of Vi1, Therefore, Re; is indecomposable and, since it is also left
quasi-continuous, the dimension of ¥;_,; is left D;_j-space is 1, proving (3). Now,
suppose (3) holds. Let 0 # x € V1. Then Vi = xD;.1 = Dix. The assignment
d — d if and only if dx = xd’ defines a ring isomorphism between D; and D, . Hence
D's are all isomorphic and we can view them as a division ring D. It is now easy to
check that the V7 are all isomorphic as well. Hence R is a right g-ring (4, Theorem 3],
proving (4). Now (4) = (5) is clear by Corollary 3.12, (5) = (1) is trivial. (]
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