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Nonnegative Matrices Having
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Nonnegative matrices 4 whose Moore-Penrose generalized inverse A* is nonnegative and

has any one of the three equivalent properties (i) A4™ = A*A, (ii) A7 = A¥, the group
inverse, (iii) A* = p(A4), some polynomial in A4 with scalar coefficients, are characterized.
This characterization generalizes known results on nonnegative matrices 4 whose Moore-
Penrose generalized inverse is equal to some power of A.

1. INTRODUCTION

Let 4 be an m x n real matrix. Consider the Penrose {8] equations

AXA = A D
XAX =X 2
(AX)T = AX 3)
(XA)T = XA (4)

where X is an nxm real matrix and “T” denotes the transpose. Consider
(in the case that m = n) also the equations

A* XA = A* (1%

AX = XA ®)

where k is the smallest positive integer such that rank A4* = rank 4**1.

Let A be any nonempty subset of {1, 2, 3,4, 5, 1*}. X is called a 1-inverse of

A if X satisfies equation (i) for each ie A. In particular, the {1,2,3,4}-
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60 S. K. JAIN, V. K. GOEL AND E. K. KWAK

inverse of 4 is the unique Moore-Penrose generalized inverse and is denoted
as A%, The {1, 2, 3, 4}-inverse which satisfies (5) must be square. A {2, 5, 1%}-
inverse is called Drazin pseudoinverse. Drazin pseudoinverse of a matrix A
Is unique and is denoted as 42. A {1, 2, 5}-inverse of A (whenever it exists)
iIs called group inverse of 4 and is denoted as 4% Clearly, if 4% exists then
A7 = 4P, The characterizations of all nonnegative matrices whose A-inverse
is nonnegative for any subset A of {1, 2,3, 4} such that 1 € 1 are given in [31,
[4] and [9).

In this paper, our aim is to characterize ali nonnegative matrices 4 whose
{1,2, 3,4, 5}-inverse exists and is nonnegative. This is equivalent to the
characterization of all nonnegative matrices 4 whose Moore-Penrose
generalized inverse 4* is nonnegative and is equal to some polynomial
p(A) in A with scalar coeflicients, see [l, p. 164, Theorem 3 and p. 173,
Corollary 2]. Matrices having a nonnegative generalized inverse which is
equal to some polynomial in 4 are of importance in numerical analysis.
A nonnegative matrix 4 may have a nonnegative generalized inverse which is

not expressible as a polynomial in 4. For example, if 4 = ((1) (1)> then

At = <i 8) and 44" # A* 4, showing that 4* cannot be a polynomial in
A. Further, if p(4) is a polynomial with scalar coefficients then the matrix
equations X* = p(X) may not possess any nonnegative nontrivial solution
X such that X* > 0 (Example 3).

Theorem 2 of this paper characterizes all nonnegative matrices 4 whose
Moore-Penrose generalized inverse is a polynomial in 4 and is followed by
numerical examples which illustrate the characterization obtained in the
theorem. This theorem generalizes the known results for nonnegative
matrices 4 whose A¥ is 4 [2] or some power of A [7]. The generalization of
Berman’s theorem [2] is obtained in [7] by first obtaining nonnegative mth
roots of nonnegative idempotent symmetric matrices which is also of inde-
pendent interest. However, it does not appear possible to invoke either
technique given in [2] or root extraction technique obtained in [7] to study
the case when 4% is an arbitrary polynomial.

To study our present question we first obtain nonnegative solutions each
of rank r of simultaneous matrix equations

[xlyf 0 u, T 0

XY = . .
0 xyT { 0 uvT

|
e I S
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GENERALIZED INVERSES 61

where x;, y;, u;, and v, 1 < i < r are positive vectors of the same order
(Theorem 1). The proof of Theorem 1, among other lemmas, depend on the
following two lemmas proved in 7).

Lesva A7, Lemma 2] Let 4, C,, . . ., C, be nonnegative matrices such that
AC;=0(CiA=0),i=1,..,nand XA+Z_; C;Y; >0 (AX+Zr_, Y,C,
> 0) for some nonnegative matrices X, Y;, 1 < i < n. Then A = Oorall C;'s
are zero.

Lesva B [7, Lemma 3] Let A, B, C, and D be nonnegative matrices of orders
mxn, nxm, nxm, and mxn respectively such that AC = 0 = DB and each
entry on the diagonal of BA+ CD is nonzero. Then the j-th column of A is zero
if and only if the j-th row of B is zero.

If in addition, AB = 0, then 4 = 0 = B.

If a matrix A4 is a direct sum of matrices 4;, then A; shall be called sum-
mands of A. The diagonal of any matrix shall mean the main diagonal and a
vector shall mean a column vector. A matrix 4 = (a;;) will be called 0-
symmetric if it satisfies the following: a;; = 0 if and only if a;; = 0. Clearly,
every positive matrix and every symmetric matrix is 0-symmetric. We shall
denote the set of all permutations on {1,2,. .., n} by S,. For any matrix 4,
|4} denotes the determinant of 4. For all other terminology and notations
the reader is referred to [1].

2. PRELIMINARY RESULTS

LemMMA | A nonnegative solution of simultaneous matrix equations
X, 0 Y, 0
XY = . , YX =
0 X, 0 Y,
where X, Y; are positive square matrices of the same orders, is of the form
X=(4y, Y=(By), 1<ij,k<r
where the matrix blocks A;; and B i« have the following properties:
1) A;;, By; are square matrices of the same order as that of X,.
i) Aigy # 0, Byiyi #0, Ay =0 =B, Vk #a(i), | <i<r for some
g€eS,.
1ii) AisiyBoiyi = Xiy Bigr(yAa-10iyi = Y.

Proof By partitioning the solutions, X, ¥ of the above system of equations
into matrix blocks appropriately we can assume that X = (4 i) Y = (B
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62 S. K. JAIN, V. K. GOEL AND E. K. KWAK

where 4;;, B;; are square matrices of the same orders as that of X,. We now
proceed to establish (ii) and (iii). Clearly, by hypothesis

X;= % ApBy  VI<j<r (6)

ByAy =0 Vi k (N
From Egs. (6) and (7) and Lemma A, we get
X;=A;B; forsomel, 1</<r
and
Ay =0= B Vk#I
Thus there is one and only one nonzero block in each row of X and in each
column of Y. Since

Y, 0
YX =
0 Y,

there is one and only one nonzero block in each column of X and in each
row of Y. This gives a permutation ¢ in S, such that Ajoy # 0, Byjy; # 0
and A4y, = 0= B,; for all k # o(j). Clearly, AioyBoiyi = Xiy Big_y(iy
A, 1iyi = Y, as desired.

(e m) =0 %)

be nonnegative matrices (not necessarily square) partitioned into blocks of
appropriate orders such that

c 0 D 0
XY_(O o)’ YX‘(O 0>

where C, D are square matrices of the same orders having no zero entry on the
diagonals. Then F= G =L =M =0, EK=C,KE = D, HN = 0 = NH.

LEMMA 2 Let

Proof Clearly, we have
EK+FM =C, ME=KF=MF=0 ®8)
KE+LG =D, GK = EL =GL = 0. ©))
Then Lemma B yields M = 0 = Fand L = 0 = G. But then we also get
EK = C, KE = D, NH = 0 = HN, completing the proof.

Remark 1 As a consequence of the above lemmas we can rederive
Theorem 2 in [7]. So, let A™ be a symmetric idempotent matrix. Then by
Flor [6] there exists a permutation matrix P such that
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GENERALIZED INVERSES 63
M x,xT 0 7
0
(PAPT)(PA™ 'PTy = pA"PT = = (PA™ 'PTYPAPT).
0 x.xT
i 0 0]
Lemma 2 then yields
FxgaT 0
E 0 )
T — m_ . , Hm — 0
PAP [0 H] where FE
|_ 0 x,.x¥

Then by the above Lemma | and Lemma 6 in [7] we get the desired result.

Remark 2 Indeed if a polynomial p(d) = 0, A+ ... +2,4™, where a,
are scalars, is an idempotent symmetric matrix one can also obtain somewhat
similar characterization of A.

THEOREM 1 Let X, Y be nonnegative matrices (not necessarily square) each
of rank r such that

Ml 0 'I
0
XY = .
0 xyr
L 0] 0
and
2UH 0 il
0
YX = .
0 et
L 0 0]

where x;, v, u;, and v, 1 <i<r are positive vectors of the same order
(x; and x;, i # J, are not necessarily of the same order). Then

4 0 B 0
X‘(o 0)’ Y"(o o)
such that the following are true:
1) A = (A4;)), B = (B,) where the blocks A,; and B;; are square matrices of

the same order as that of x;yT, and all A, j» B are zero except when j = o(i),
l'= o7 '(k) for some 6 €S, 1 <i,j,k1<r.
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64 S. K. JAIN, V. K. GOEL AND E. K. KWAK

i) Aigiiy = “iki_lxivr(i): and By = ﬁiua(i)y;'r, where of; =1, k, =
IUZ(.‘)“,(.')|= [yIxi.

il) There exists a permutation matrix P such that PXPT is a direct sum of
matrices of types (not necessarily all)

a) A;; = ak; 'x ], where o(j) = j

b) 0 C, 0 ... 0
0 0 C,, 0
0 0 0 Cyia
Cy 0 O 0
where
Cii+l =Ajiji+l =ajikj—‘1xjiv;€“ ifi<d,
Cdl = Ajdj1 = ajdk.;ilxjdv}-l

and d is the length of a cycle (j, . .. j;) occurring in the disjoint decomposition
of o.

c) A zero matrix.
and PYPT is a direct sum of matrices of types (not necessarily all)

a") B;; = puyl, where a(j) = j

b") 0 0 ... 0 D,
D,, 0 0 0
0 D;, 0 0
0 0 Dy, O
where

Di+“ = Bji+|ji = ﬁjiuji+ly:'i-i lfl <d
Dy; = By, = B;u;,y],
and d is the length of a cycle (j, . . . j;) occurring in the disjoint decomposition
of 0.

(¢) a zero matrix.

X1 )y 0 TN 0
Proof Set C = .. and D =
0 xyT. 0wl
Then as in Lemma 2, X = <§ 13) , Y = ({f ]8> where EK = C, KE = D,

HN = 0 = NH. Since rank X =r =rank C < rank E < rank X, H = 0.
Similarly, N = 0. Also by Lemma 1, E = (4;;), K = (B;;) where the matrix
blocks satisfy (i). Since E (or K) is of rank r and there is one and only one
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GENERALIZED INVERSES 65

nonzero block in each row and column of E (or K), each 4,y (or B,;;) is of
rank 1, I < i < r. But then 4, = abT, and B,(;,; = c,dl where a,, b;, ¢,
and d; are nonzero vectors. Since A,,;yB,y and B,yiA,;) are positive
matrices we can indeed choose a;, b,, ¢;, and d; as positive vectors. In order to
prove (ii) we note that

AisiyBainyi = xiyF (10)

and
B,y pyAs-riy = upl. (1D

Therefore from (10) a,(bTc)df = x;37 whence a; = y; |bTc,| 'x; and
d; = p7 'y, where p; is an arbitrary positive number. Similarly from (11) we
get Co-1y = Ay, and bg-1(;y = A7 U |dI-1(;y az-1(;)| " v, where 4, is an arbitrary
positive number. Thus

Aia(i) = lui(;'a(i)lb;rcil ldira.'[)—linZu) (12)
B,y = )v(i)#i_lud(i)y;r' (13)
If we put k; = |bF¢,| |d]a,], then the relations (10)~(13) give
k; = |U:(i)uo(i)| = |)’.'Txil-

Also by setting «; = pi}_;(il) and B; = A, i ' we obtain (i1).

To prove (iii) we recall that any permutation o € S, can be expressed as a
unique product of disjoint cycles, i.e. ¢ = (iy ... i) (ji...Js) - .., where
o(iy) = iy, ..., 0(iy) = i, and similarly for j’s etc. It is clear that corres-
ponding to each cycle of length d, there is a dxd minor of X with 4,
Asiiye?iys - - » Age-1(iy; 88 its nonzero entries (X being regarded as (r+1) x
(r+1) matrix whose entries are blocks). By interchanging rows and columns
of X suitably we can bring the rows and columns of each such minor adjacent
to each other. Also this interchange of rows and columns transforms X into
PXPT for some permutation matrix P. This proves that PXP7 is a direct sum
of types (a), (b) and (c) stated in the theorem. More specifically, type (a)
shall correspond to cycles of length 1 and type (b) shall correspond to cycles
of length d > 1. Similarly, we can prove that PYPT is a direct sum of types
(a"), (b’) and (c").

3. MAIN THEOREM

THEOREM 2 Let A, A be nonnegative matrices such that A* = p(A) where
p(A) = 0, A™+ ... +od™, a; # 0, m; = 0. Then there exists a permutation
matrix P such that PAPT is a direct sum of matrices of the Jollowing three types
(not necessarily all):

5
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66 S. K. JAIN, V. K. GOEL AND E. K. KWAK

D) BxxT, where B > 0, Zm,a;fm*! = 1, and x is a positive unit vector

10 0 Biax X% 0 . 0
0 0 Basxoxt L. 0

0 0 0 coe PuacyaXaxT
BarxgxT 0 0 .. 0

where x; are positive unit vectors, x; and X, [ # j, are not necessarily of the
same order, and By,, Bas, . . ., B4y are arbitrary positive numbers with d # 1
such that their product f8,,f,5. .. B4, is a common root of the following system
of at most d equations in t

D = (14)
d)(mi+ 1)

gpmit 1=K — g ke{l,...,d—1} (15)
di(mi+1-k)

where the summation in each of the above equations runs over all those m; for
which d| (m;+1-k), k = 0,1, ... d—1, with the convention that if there is
no my for which d|(m;+1-k), ke {l,...,d—1} then the corresponding
equation is absent. (Naturally, the possible values of d are divisors of m;+1.
Among these divisors we shall discard those divisors d for which the above
system of equations has no common positive solution.)

III) A zero matrix.

In particular, if all «; > 0 then B in type (I) and the product Bi2Bas. . Bay
in type (II) are unique. Further, in this case the positive integer d, i.e. the
rank of a matrix of type (II), must divide each m;+1.

Conversely, if 4 is a nonnegative matrix and P is a permutation matrix
such that PAPT is a direct sum of matrices of the following three types
(not necessarily all).

I') pxx™, B > 0, x is some positive unit vector.

1) 0 Biax:x% 0 0
0 0 Byx,x] ... 0

0 0 0 voe Baoyaxg xT
BarxxT 0 0 0

where f,; > 0, x; are positive unit vectors.

Iy A zero matrix.

Then A* > 0 and is equal to some polynomial in 4 with scalar coefficients.

Proof Let 4 and A4 be nonnegative matrices such that 4+ = p(A)
where p(d) = a A"+ ... +ad™, oa; #0, m; > 0. Then AA* = A+ A
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GENERALIZED INVERSES 67

Also since 44" is a symmetric idempotent matrix, by Flor [6], there exists a
permutation matrix Q such that
mX X 0

(QAQTN(QAT Q) =(QAA* Q)= . =(Q470TN(Q4Q")
0 x,.xT
0 0]

for some integer r, where x; are positive unit vectors. We may note that rank
(QAQT) = rank (QA4* Q") = rank (QAA* QT) = r. We now set X = QAQ7
and ¥ = QA* Q7 and invoke Theorem 1 to obtain a permutation ¢ in S, and
a permutation matrix P such that PAPT is a direct sum of matrices of the
following three types (not necessarily all)

a) Bix;x] where B; > 0, j = a(}j), X; Is a positive vector

JITNJ
b) 0 C, 0 ... 0
0 0 Cyp 0
0 0 0 Ciory
Cy 0 0O 0

where
Ciiv1 = ﬁj;xjixjrnv i<d p;,>0
Car = BiuX;. %], Bia>0
dis the length of a cycle (j, . . .j,) occurring in the disjoint decomposition of o,
and x;’s are positive unit vectors.

¢) A zero matrix.
Also A4 4 = A implies

G A™MP 24 L oA™Y = 4, (16)
Clearly, all summands .S of PAPT must satisfy equation (16), i.e.
a SMF4 L 4o S™2 = §, 7

Let S = fxx” be a summand of type (a) for some positive number § and
unit positive vector x. Since xx” is an idempotent matrix Eq. (17) implies

G b L et = ], (18)
Next let
0 Biax xT 0 0
0 0 Basx,x? ... 0
S = |
0 0 0 coo Pagaxe xT

BarxxT 0 0 ... 0
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68 S. K. JAIN, V. K. GOEL AND E. K. KWAK

be a summand of type (b) for some positive numbers f;; and unit positive
vectors x;. Then Eq. (17) implies

a, SMTI L L g STt = 54 (19)
Clearly, forall 1 € &k < d—1 we have
Sk =
r 0 0 wix Xl 0 0 ]
0 e 0 0 WorpaXoXFia . 0
0 0 0 0 . Wy kaX gk Xy
Wakr11Xa—ks1X] 0 0 0 0
L 0 e WX xy 0 0 . 0 ]

where wi; = By By for i <j, wip = Biwr- . Ba-raBar. - - Bj-1j for
i>j’ [ # d’ and de = ﬁdl" 'Bj—lj) also
xyxT 0 7

S = (:812/323- . 'Bdl)

0 . XX
Hence S = (B,,...B4)?S*, where ¢ = pd+k, 1 < k < d. Now by Eq. (19)
we have

x,x] 0
a, Smtiy g Smt =
0 Xgx7

By comparing the entries in the first row of above matrix equation we get

> 4Bz .- Ba)m i =1 (20)

d|(me+ 1)
and
%(Byz - -+ Ba)™H TR =0, i<k<d-l1 @n
di(mi+1—k)

with the convention that if there is no m; such that d| (m;+1—k) for some
ke {l,2,...,d—1} then the corresponding equation is absent.

In particular, let us assume all «; > 0. Then by Descarte’s rule of signs in
the theory of algebraic equations and intermediate value theorem in analysis
B is the only positive root of the equation

a ™t L ™t = 1

Therefore, B in type (I) is unique. Similarly, the product 8,,8,3...8,, in
type (II) is unique. Let d be the rank of a matrix in type (II). Then 4 must
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GENERALIZED INVERSES 69

divide each (m;+ 1). Otherwise, let d does not divide some m;+ 1. Then there

exists an integer ke {1,2,...,d—1} such that d|(m;+1—k). Hence by
Eq. (21)
Z O“1’(.312 v .Bdl)((m{+x—k),ld) =0
d#1
dimi+1-k

which is impossible since «; > 0. Hence d divides each (m;+1) as desired.
This completes the proof.

To prove the converse, we first note that for each of the types (I), (II")
and (II') of matrices S, S* = 0 and S*S = SS*. Thus if PAPT is a direct
sum of matrices of types (I'), (II') and (III), then (PAPT)™ = 0 and (PAPT)
(PAPT)* = (PAPT)*(PAPT), thatis, A* > Oand A4* = A* A. This implies
AT = AP, a polynomial in 4, completing the proof.

Remark 3 Let A be nonnegative matrix and p(4) = o, 4™ + ... +x, A",
x; # 0, m; 2 0 such that p(4) = 0, Ap(A4) is 0-symmetric, Ap(4)A = A,
and rank 4 = rank p(d4). Thea similar arguments as in Theorem 2 yield that
there exists a permutation matrix P such that PAPT is a direct sum of matrices
of the following three types (not necessarily all)

i) fxyT, where x and y are positive vectors with y"x = 1, and f is some
positive number satisfying T, a;,fm*+ 1 = 1

1) 0 BraxyT 0 0
0 0 BZJ'\’Zyg‘ - 0

0 0 0 coo Bacraxg 7
BaixayT 0 0 0

where x; and y; are positive vectors of the same order with yTx; = 1, x; and
x;, I # J, are not necessarily of the same order, and other restrictions on the
choice of d and f’s remain the same as in Theorem 2.

1it) A zero matrix.

4. NUMERICAL EXAMPLES

Now we proceed to give numerical examples to illustrate our Theorem 2.

Example 1 Let A be a nonnegative square matrix such that
At = =247 +24%—5SAT +6A.
By Theorem 2, there exists a permutation matrix P such that PAPT is a direct
sum of matrices of types (I), (II) or (III). We first determine type (I). This
type of matrices are of the form Bxx” where —28°+28° 5% +68!% = 1,
ie. Bis aroot of f(t) = 6112 —58+215—213— 1. Now

J@0) = (1= D)g(®),
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70 S. K. JAIN, V. K. GOEL AND E. K. KWAK

where g(£) = Se8(3 + 12+ e+ D+ 2030+ D+ 41194 ... +1). Clearly, g(¢)
has no positive solution. Hence f = 1 is the only positive solution of f(¢),
and thus xx7 is the only possible form of matrices in type (I).

Next we determine the matrices in type (II). Recall that the type (II)
contains matrices of rank d (d # 1) and the possible values of o are divisors
of (m;+1). Here, m;, =2, my, =4, my =7, m, = 11. So possible values of
d(d#1)are 2,3, 4,5, 6,8, and 12. Among these values of & we discard
those values for which the system of Egs. (14) and (15), that is,

attmt DA (14)
dl(m;+ 1)
apptmt 1R ke{l,...,d-1} (15)
d{(mi+1—k)
has no common solution. (Here o; = ~2, a; = 2, a3 = a, = 6). We

show below that d cannot be equal to 3, 4, 5, 6, 8, 12. If 4 = 3, then the above
system of equations becomes
—2r4+61* =1
215t =0
which clearly do not have a common positive solution, showing d = 3 is not
possible.
If d = 4, then the above system of equations becomes

—512 4663 =1
2t =0
—2t9 = 0.

Again there is no common solution to the above system, proving that d
cannot be equal to 4. We can dispose of other values of 4 similarly. Hence
the only possible value of d is 2. In this case, the system of equations becomes
—5t*+61° = 1
=2t +2t%2 = 0.
Clearly, ¢t = 1 is the only common positive solution. Thus the matrices of
type (1I) will be of the form

0 ax,x¥
bx,xT 0 /)’

where a >0, 6 >0 and ab =1, and x,, x, are positive unit vectors.
Therefore, PAPT is a direct sum of matrices of the form (not necessarily all):

i) xx”, where x is a positive unit vector
i) ( 0 axx]
bx,x] o/’

\

a>0,b>0,ab =1, and x,, x, are positive unit vectors.
1ii) A zero matrix.

We may remark that in this case 4% = 4, i.e. the given polynomial
64" —547 +24%*—2A? reduces to A.
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GENERALIZED INVERSES 71

Example 2 Let A be a nonnegative matrix with a nonnegative generalized

inverse

AT =245 —(511/16)4T —8A4°+ 3242
The matrices of type (I) are of the form BxxT, where f is a positive root of
h(t) = 211 —(511/16)t8—8¢7 +32¢3— 1. Now by the Descarte’s rule of signs
A(t) can have at most three positive roots. But by intermediate value theorem
A(t) has at least three (hence exactly three) positive roots in the intervals
(0.31, 0.32), (0.95, 0.96) and (1.41, 1.42).

Next to determine matrices of type (II) we proceed as in example 1 and
discard all the divisors 4 of (m;+ 1) except when d = 2, 4. For d = 2, the
system of Eqgs. (14) and (15) becomes

28— (511/16)¢* = 1

—8:2+32t = 0.
The only positive common solution of above equations is ¢t = 2. For d = 4,
the system of Eqgs. (14) and (15) becomes

2 —(511/16)t2 = 1

—8 +32 =0.

The only positive common solution of above equations is t = 4. Thus PAPT
is a direct sum of matrices of the form (not necessarily all):

1) BxxT, where B is a positive root of A(¢) and x is a positive unit vector

T
i) ( Bx(:xr “x(‘))‘z) ,
o« >0,8>0,a8 =2, and x,, x, are positive unit vectors.
0 oayyl O 0
iii) 0 0 Byl O
0 0 0 YY3¥a
SyayT 0 0 0

x>0,8>0,9>0,6>0, afyd = 4, and y,, y,, 3, Y4 are positive unit
vectors.

iv) A zero matrix.

In the next example we show that if p(1) is a polynomial with scalar
coefficients then the matrix equation X* = p(X) may not possess any non-
negative nontrivial solution X such that X* > 0.

Example 3 Consider

p(A) = —2215-3217 826+ 22,
In case X* = p(X) has a solution containing a summand of type (I), then
Sty = =216 328 87 +13
must have a positive root which is not true. To look for solutions of X+ =
p(X) in matrices of type (II), we proceed as in example 1 and 2. It can be
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72 S. K. JAIN, V. K. GOEL AND E. K. KWAK

verified that no divisor d of (m;+1) is acceptable. Thus the only possible
solution is the trivial solution X = 0.

We close this example by a remark that if all the coefficients of p(4) are
positive then X* = p(X) always possesses a nontrivial nonnegative solution.

Remarks 1) Emilie Haynsworth and J. R. Wall have in their paper
“Group inverses of certain nonnegative matrices”, to appear in Linear
Algebra and Applications, among others, characterized nonnegative matrices
A with A% = A* k is some positive integer.

2) In our other paper “Decomposition of nonnegative group-monotone
matrices”, submitted for publication, we have obtained a decomposition of
nonnegative matrices having nonnegative group inverses. This decomposition
characterizes all nonnegative matrices with nonnegative group inverses and
provides a new approach to the solutions of problems relating to such
matrices.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications,
Wiley, New York (1974).

[2] A. Berman, Nonnegative matrices which are equal to their generalized inverse, Linear
Algebra and Appl. 9 (1974), 261-265.

(3] A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J.
Appl. Math 22 (1972), 155-161.

{4] A. Berman and R. J. Plemmons, Inverses of nonnegative matrices, Linear and Multi-
linear Algebra 2 (1974), 161-172.

[5] R. E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5
(1968), 182-197.

{6] P. Flor, On groups of nonnegative matrics, Compositio Math. 21 (1969), 376-382.

[7]1S. K. Jain, V. K. Goel and Edward K. Kwak, Nonnegative m-th roots of nonnegative
0O-symmetric idempotent matrices, Linear Algebra and Applications, to appear.

[8] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955),
406-—413.

{91 R. J. Plemmons and R. E. Cline, The generalized inverse of a nonnegative Matrix,
Proc. Amer. math. Soc. 31 (1972), 46-50.

483



