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Necessary conditions are developed for a system of the form AX = B with A > 0 and
B > 0 to have a least squares solution X which is nonnegative. Also it is shown that if a
nonnegative matrix 4 has a nonnegative W-weighted {1, 3)}-inverse for some nonnega-
tive positive definite symmetric matrix W, then A has a nonnegative {1.3}-inverse. As
a consequence of this, a short proof is obtained of a recent theorem of Jain and Egawa
concerning nonnegative best approximate solutions (SIAM J. ALG. DISC. METH., 3
(1982). 197-213).

1. INTRODUCTION

This papers continues the study of finding conditions such that the
system AX = B, A > 0, B > 0, has a least squares solution which is
nonnegative. A large number of papers have previously obtained
sufficient conditions by characterizing A-monotone nonnegative ma-
trices. A theorem of Berman—Plemmons [4, Theorem 5] gives neces-
sary and sufficient conditions for the case where B is the identity
matrix. If B= B?, AB = BA, and rank (4B) = rank A4, then a neces-
sary condition that the system AX = B has a least squares solution
which is nonnegative was obtained by Egawa-Jain [5, Theorem 4.4].
The present paper generalizes further to the case when B has a
nonnegative {1)}-inverse, rank (4B)=rank A, and R(4)C R(B).
The proof of this theorem (Theorem 1) does not depend on the
thoerem of Egawa-Jain, but their theorem is obtained as a conse-
quence of Theorem 1. The concept of W-weighted generalized inverse
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122 S. K. JAIN AND L. E. SNYDER

has considerably simplified the computations. Theorem 2 gives a
short proof of another theorem (5, Theorem 3.7] which states that if a
nonnegative matrix 4 has a nonnegative W-weighted {1,3}-inverse,
where W is a nonnegative matrix corresponding to a positive definite
symmetric bilinear form, then 4 also possesses a nonnegative {1,3}-
inverse.

2. NOTATION AND DEFINITIONS

All matrices considered are real.

R™: the vector space of m X 1 matrices over the reals R.

X7 the transpose of the matrix X.

R(B): the range of an m X n matrix B, i.e., {y ER"|y = Bx, for
some x € R"}.

Let W denote a positive definite symmetric n X n matrix. The norm

on R” induced by W is defined by

lxlw =vVxWx , x eR".

Let A be an m X n matrix and b € R™. Then x, € R" is called a
best approximate solution with respect to the norm || - || 4 if ||[Axy —
blj, is minimum. If W= 1, then ||x||, is the usual euclidean norm of
x and in this case a best approximate solution is commonly known as

a least squares solution.
For X an m X n matrix, define a norm as follows:

(1 X1, = trace X 7X .

A matrix X is said to be a least squares solution of AX = B if
14X — B, is minimum.

If A and X are mX nand n X m matrices, respectively, such that
AXA = A, then X is called a {1}-inverse of 4 and is denoted by AN,
If X also satisfies (4X)T = AX, then X is called a {1,3}-inverse of 4
and is denoted by 4",

3. MAIN RESULTS

Lemma | If S is a nonnegative matrix such that JS = S, rank
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(ST) = rang S, and if

1Y 0 0
0 x

J= 22
0 0 eeoxyp T

Where Xi» Y are positive unit vectors with y, x =L 1l<ig r, then
,anyvnr 512*‘%027 e B, 0,
S = lexzvnr Bzzxz'-’zr BZrXZUrT
Brlxrvl BrZXrUZ Brr'xrvr
where By > 0 and the s are nonzery nonnegative ynjy vectors
Proof Let

no Sy S,

S SZI S22 SZr

S, S, ... S,
be a block Partitioning of § such that block multiplication with J is
possible. Then
l)’t AYH S, S,
,_V,T Srl Sr2 M Srr
l.yl l)’xs xl,leSIr
f.yl' I‘.yf S tee I'.yI'TS”'
Sy S YR
= 9§ = :

S 8, ... g
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Thus x,y7S,, = S,), x,»[S),= S5, and so on. It follows that for

each 1 < i, j < r, S, is of the form a,.jx,v,f, where each v, is a nonzero

nonnegative unit vector and «; > 0.
Next, we show that each column block

of S is also of rank |. Let s be the rank of S, and suppose some
column block is of rank 2 or more. Then there are s — 1 column
blocks which generate the column space of S, i.e. any column block
[S]/ can be expressed as

[S)Y=[S)"D,+ - +[S]""'D,_y.

For notational convenience let us assume that a;=1, ay=2,

.,a,_,;=s— 1. Then
rank (8J) = rank (([S]' [S]*... [S])/)
= rank ([S]'V S}V ... [S]V)

=rank ([S]'V [S)V ... [S]7 V) <s— 1,

since each [S]J is of rank < 1. This contradicts the hypothesis that
rank (SJ) = rank S = s. It follows now that each block column can
be expressed in the form

T
BUXIU,

;
7 %r Y

This completes the proof of the lemma.

Remark We can also write

S=UBVT"
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where

x, 0 0
0 x ... 0
0 0 x

o] O 0

pT 0 vy 0

0 O v

Let B be a nonnegative matrix such that B" > 0. (Such matrices
have been characterized in [7]). TherrBB ‘" is a nonnegative idempo-
tent matrix. By Flor [6], we may assume without loss of generality in
the lemma which follows that

J JD 0 0

M = BB(I) — 0 0 0 0
cJ ¢JD 0 of
0 0 00

where
xlyIT
J= .
xy

X,, y; are positive unit vectors such that y,’x, = 1,1<i<r,and C,D
are nonnegative matrices of suitable sizes.

LEMMA 2 Let A, B be nonnegative square matrices such that B > 0.
Then R(A) C R(B), and rank (AB) = rank A iff

K KD, KD, KD,
4E=| 0 0 0 0

CK CKD, CKD, CKD,

0o 0 "0 0

’
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where
I 0 0 0
E=|0 100 x=yzpy,
cC 0710
0 0 0 I
x, O 0 o] 0 0
T
U= 0 x, O, YT 0 Uy 7
0 0 x, 0 o o7

B = (By) is some r Xr matrix, x;s are positive unit vectors, v,'s are
nonzero nonnegative unit vectors, and Dy, D,, D, are matrices of
suitable sizes. (Note that some of the zero blocks may be absent.)

Proof Set M = BB'". Then R(4)C R(M), M = M2, and thus
A = MA, rank (AM) = rank A. As stated prior to Lemma 2, we shall
take

J JD 00
M=| 0 0 0 0]

cJ CID 0 0

0 0 00

Let us partition 4 = (X)), 1 <, j < 4, in such a way that the block
multiplication of M with 4 can be performed. Then it follows from
MA = A that
Xll XIZ Xl3 XM
4= 0 0 0 0
CX, CXy, CXy3 CXy

0 0 0 0
and JX; =X, 1 < j< 4. By computing AM, we get
rank (AM ) = rank ((X,, + X3C)J).
Now
rank (X, + X,3C) =rank 4 =rank (X, X,; X3 X 4)
=rank (X, + X;3C X, X3 X,4)
> rank (X, + X;3C).
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Hence
rank (X,, + X;C)J = rank (X, + X,3C)=rank AM =rank A.

For

O~O O
~ OO0

0
1
0
0

OMN O~

X+ X3¢ Xy XIJ X|4

AE = 0 0
CX\ + X,C CXyy C,\’,J CxH
0 0

L

X+ X;3C (X, + X,3C)D, (X1 + X3C)D; (X + X3C) Dy
0 0 0 0

0 0 0 0

since rank A =rank (X, + X;;C). Now J(X + X;3C)= X, +
X,,C, and rank (X, + X,;C)J = rank AB =rank A4 =rank (X, +
X,;C). Hence by Lemma |

T T
Bixivy  Biaxv;

X, + X,C=] Byuxo) ... = Uav’,

proving the “only if” part. The “if” part is a straightforward verifica-
tion. This completes the proof.

With BB'Y in the form in Lemma 2, the matrix & = () shall be
referred to as the coefficient matrix of A with respect to B.

LEMMA 3 Let A, X be nonnegative matrices and let W be a nonnega-
tive positive definite symmetric matrix such that
AXA = A,
(WAX)" = WAX,
i.e. A has a nonnegative W-weighted {1,3}-inverse. Then A has a

nonnegative {1,3}-inverse.

Proof (WAX)T = WAX =(AX)"W = W(4X)= if the ith col-
umn of AX is zero, then the ith row of 4X is also zero. Since AX and
XA are idempotents, it follows from [6] that there exist permutation

C(X, + X3C) CX\ + X;3C)D, CXy + X;3C) D,y C(X,, + X3C)D5 |
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matrices P, Q such that

J JD 0 0
paxpT=|0 0 0 0 4nq
0 0 00
0 0 00
Jo J'D 00
x40T=| O o 00}
QXAQ™ =\ iy curpr 0 0
L o 0 00

where J, J’, C’, D’, D have the usual properties when a nonnegative
idempotent is represented in the Flor’s form [6].

Set L= PAQT, M = QXPT, and proceed as in the proof of Lemma
1 in [7]. It follows that

L, L,Z 0 0 M, M,Z" 00
(=10 o oo0| m=| 0 0 0 0
0o 0 00 X'M, X'M,Z'" 0 0
0O 0 00 0 0 0 0

for some matrices Z, Z’, X’ (not necessarily nonnegative) where
LM =J, ML,=J"

Thus by Lemma 2 in [7), L,, has a nonnegative {l}-inverse L}, and
so L, Z=L,L\VL,\Z=LZy, Z,2 0.

L, L,Z, 0 0
PAQT = 0 0 0 0,
0 0 00

0 0 00

Also, by Lemma 2 in {7), it follows (though not stated explicitly there)
that L{}» > 0. This implies that 4 has a nonnegative {1,3}-inverse,

namely
it
AN =T 0
0

coo ©

coo ©

co0O ©
o

0

This completes the proof of the lemma.
In the following theorem V7 and E are matrices as in Lemma 2,
and V7 denotes the matrix (V7 V7D, V™D, V'D;) where Dy, D,, D,
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are matrices of suitable sizes. We now prove

THEOREM | Let A, B be nonnegative matrices such that B possesses a
nonnegative {1}-inverse B'", R(A) C R(B), and rank (AB) = rank A.
If the system AX = B has a least squares solution which is nonnegative
and if V''E~' >0, then the coefficient matrix % = (By) of A with
respect to B is of the following form
paQT=[J JD’ E[ V.] i
7= TP eE ¥ e

where P, Q are permutation matrices of suitable sizes, and J' is a direct
sum of matrices of following two types (not necessarily both):

(I) pab’, p >0, a, b are positive unit vectors.

-
0 #1207 0
0 0 pa3arby
(I : ,
0 0 0 cee w_ja,_ b7
ab 0 0 ce 0

by > 0, a;, b; are positive unit vectors, not necessarily of the same sizes,
and D’ > 0.

Proof By Lemma 2
Nz u#v'nD, U#V'D, URBV'D,

AE = 0 0 0 0
cuzxkvT cu®sv'D, CUBV'D, CU#BV'D,
L 0 0 0 ’ 0
[ v
= O lB(vT VD, VD, VD) = U'BV'T, say.
CcU
. 0
Also, in the notation of Lemma 2,
J JD 0 0
M=BB(|)= 0 0 00 ___U/V/T’
¢J ¢JD 0 0
0 0 00
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where VT = (V] V4D 0 0), and

T

Yr

We now show that the following nine statements are equivalent. Let
& =BVTE
(1) AX = B has a least squares solution which is nonnegative.
(2) ATAX = ATB has a nonnegative solution.
(3) ATAX = ATBB‘" has a nonnegative solution.
@ E-\TvaTUTU BV TE T X = ETV'BTUTU VT has a
nonnegative solution.
(5) €TWEX = ¢TWV,T has a nonnegative solution, where W
=U"U".
©) (ETVWHYWW €)Y = (6TYW W has a nonnegative solution.
() YW €)Y = /W has a least squares solution which is nonnega-
tive.
@) (JW €)Y = (JW €)W ¢)"IW has a nonnegative solution.
(9) There is a nonnegative Y such that ¢Y¢ = ¢ and (WweY)h
= WY,
(1)<=>(2) and (6)«=(7)«(8) are consequences of well known theo-
rems.
(3) <> (4) follows by substitution.
(5)«>(6) depends on the existence of a nonnegative right inverse of
V(;T, namely
Vo
0
0
0
To show that (8)=>(9), multiply the equation (VW €)Y =
VW ¢ (W €)' YW on the right by € to obtain IWEYE =W ¢,
and then multiply on the left by the inverse of VW . Next multiply the
equation in (8) on the left by VW to obtain WEY =W (W ¢)
(/W €)W . The right side is symmetric and so the left side 1s
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LEAST SQUARES 131
symmetric also. Now assume (9) holds. Then we have VW ©)
(YW ~Y2(JW ¢)={W ¢. This implies YW ~'/* is a {1}-inverse of
VW €. Next we show it is also a {3}-inverse. Consider:

(W EYw =) = (w1 wey w2y
=W\ wey) w2
=w " weyw /2
=/Weyw /2
Any {1.3}-inverse Z of JW ¢ satisfies (YW €)Z = VW ¢ (JW €Y.
For Z= YW ™'/ we have YW ¢ YW~ V2 =W ¢ (JW ¢ "> which
gives us (8). Thus statement (9) and Lemma 3 imply that ¢’ has a

nonnegative {1,3}-inverse.
Hence there exists permutation matrices P, Q such that

peoT =Y J’D’]’

o"=[% 75

where J' is a direct sum of matrices of types (I) and (II) (not
necessarily both), D’ > 0. Then

P.J/')V’TE“QT=[J' J'D’ ]

0 0
yields
paQT =0 TP (QE(V Q")

[J' J'D'] V T

= E
1 0 0 _(Q [O]Q )
[J J'D") Vot

= E s
o "o J° {O]Q

completing the proof.

Remark With the notation of the above theorem, if B is a nonneg-
ative idempotent matrix such that AB = BA, then VTE=' > 0. We
show that £ has indeed {1,3}-inverse. Now from (1) and (2), after
cancellation and groupings, we obtain that X is a least squares
solution of AX = B if and only if

BTWRBZ=RB™W, where Z=VTE 'X(Vi")g > 0.
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Then as in the proof of the theorem we obtain that % has a
nonnegative W-weighted {1,3)-inverse, and hence % has a nonnega-
tive {1,3)-inverse (Lemma 3). Thus one obtains the theorem of
Egawa and Jain {5, Thoerem 4.4] as a consequence of our theorem.

The concept of W-weighted generalized inverse also enables us to
give a nice short proof of the following.

THeOREM 2 [5, Theorem 3.7} Ler A be an m X n nonnegative matrix.
Let W be a positive definite symmetric bilinear form over R" whose
associated matrix with respect to standard basis is nonnegative. Suppose
Ax = b has a nonnegative best approximate solution with respect 10 W
for all b > 0. Then Ax = b has a nonnegative best approximate solution
with respect to the euclidean norm.

Proof It is known that ||Ax — b, is minimized if and only if
ATWAx = ATWhb. Together with this it follows from the hypotheses
of the theorem that there exists a nonnegative matrix X such that
ATWAX = ATW. Then an argument just like the proof of Theorem 1
yields AXA = A and (WAXT = WAX, and hence by Lemma 3 there
exists a nonnegative {1,3}-inverse of 4. Consequently for each b > 0,
Ax = b has a nonnegative least squares solution.
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