Linear and Multilinear Algebra, 1984, Vol. 15, pp. 121-132 0308-1087/84/1502-0121 \$18.50/0 © 1984 Gordon and Breach Science Publishers, Inc. Printed in the United States of America

Linear Systems Having Nonnegative Least Squares Solution

S. K. JAIN and L. E. SNYDER

Department of Mathematics, Ohio University, Athens, Ohio 45701

(Received September 30, 1981; in final form January 17, 1983)

Necessary conditions are developed for a system of the form AX = B with A > 0 and B > 0 to have a least squares solution X which is nonnegative. Also it is shown that if a nonnegative matrix A has a nonnegative W-weighted $\{1,3\}$ -inverse for some nonnegative positive definite symmetric matrix W, then A has a nonnegative $\{1,3\}$ -inverse. As a consequence of this, a short proof is obtained of a recent theorem of Jain and Egawa concerning nonnegative best approximate solutions (SIAM J. ALG. DISC. METH., 3 (1982), 197-213).

1. INTRODUCTION

This papers continues the study of finding conditions such that the system AX = B, $A \ge 0$, $B \ge 0$, has a least squares solution which is nonnegative. A large number of papers have previously obtained sufficient conditions by characterizing λ -monotone nonnegative matrices. A theorem of Berman-Plemmons [4, Theorem 5] gives necessary and sufficient conditions for the case where B is the identity matrix. If $B = B^2$, AB = BA, and rank (AB) = rank A, then a necessary condition that the system AX = B has a least squares solution which is nonnegative was obtained by Egawa-Jain [5, Theorem 4.4]. The present paper generalizes further to the case when B has a nonnegative $\{1\}$ -inverse, rank (AB) = rank A, and $R(A) \subset R(B)$. The proof of this theorem (Theorem 1) does not depend on the thoerem of Egawa-Jain, but their theorem is obtained as a consequence of Theorem 1. The concept of W-weighted generalized inverse

has considerably simplified the computations. Theorem 2 gives a short proof of another theorem [5, Theorem 3.7] which states that if a nonnegative matrix A has a nonnegative W-weighted $\{1,3\}$ -inverse, where W is a nonnegative matrix corresponding to a positive definite symmetric bilinear form, then A also possesses a nonnegative $\{1,3\}$ -inverse.

2. NOTATION AND DEFINITIONS

All matrices considered are real.

 \mathbb{R}^m : the vector space of $m \times 1$ matrices over the reals \mathbb{R} .

 X^T : the transpose of the matrix X.

R(B): the range of an $m \times n$ matrix B, i.e., $\{y \in \mathbb{R}^m \mid y = Bx, \text{ for some } x \in \mathbb{R}^n\}$.

Let W denote a positive definite symmetric $n \times n$ matrix. The norm on \mathbb{R}^n induced by W is defined by

$$||x||_{W} = \sqrt{x^{T}Wx} , \qquad x \in \mathbb{R}^{n}.$$

Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. Then $x_0 \in \mathbb{R}^n$ is called a best approximate solution with respect to the norm $\|\cdot\|_W$ if $\|Ax_0 - b\|_W$ is minimum. If W = I, then $\|x\|_W$ is the usual euclidean norm of x and in this case a best approximate solution is commonly known as a least squares solution.

For X an $m \times n$ matrix, define a norm as follows:

$$||X||_2 = \sqrt{\operatorname{trace} X^T X} .$$

A matrix X is said to be a least squares solution of AX = B if

$$||AX - B||_2$$
 is minimum.

If A and X are $m \times n$ and $n \times m$ matrices, respectively, such that AXA = A, then X is called a {1}-inverse of A and is denoted by $A^{(1)}$. If X also satisfies $(AX)^T = AX$, then X is called a {1,3}-inverse of A and is denoted by $A^{(1,3)}$.

3. MAIN RESULTS

LEMMA 1 If S is a nonnegative matrix such that JS = S, rank

(SJ) = rank S, and if

$$J = \begin{bmatrix} x_1 y_1^T & 0 & \cdots & 0 \\ 0 & x_2 y_2^T & \cdots & 0 \\ \vdots & & & & \\ 0 & 0 & \cdots & x_r y_r^T \end{bmatrix}$$

where x_i , y_i are positive unit vectors with $y_i^T x_i = 1$, $1 \le i \le r$, then

$$S = \begin{bmatrix} \beta_{11} x_1 v_1^T & \beta_{12} x_1 v_2^T & \dots & \beta_{1r} x_1 v_r^T \\ \beta_{21} x_2 v_1^T & \beta_{22} x_2 v_2 T & \dots & \beta_{2r} x_2 v_r^T \\ \vdots & \vdots & & & \\ \beta_{r1} x_r v_1^T & \beta_{r2} x_r v_2^T & \dots & \beta_{rr} x_r v_r^T \end{bmatrix}$$
0 and the v.'s are now.

where $\beta_{ij} \ge 0$ and the v_i 's are nonzero nonnegative unit vectors.

$$S = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1r} \\ S_{21} & S_{22} & \dots & S_{2r} \\ \vdots & & & & \\ S_{r1} & S_{r2} & \dots & S_{rr} \end{bmatrix}$$

be a block partitioning of S such that block multiplication with J is possible. Then

$$JS = \begin{bmatrix} x_{1}y_{1}^{T} & & & \\ & \ddots & & \\ & & x_{r}y_{r}^{T} \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1r} \\ & \vdots & & \\ S_{r1} & S_{r2} & \dots & S_{rr} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1}y_{1}^{T}S_{11} & x_{1}y_{1}^{T}S_{12} & \dots & x_{1}y_{1}^{T}S_{1r} \\ \vdots & & & \\ x_{r}y_{r}^{T}S_{r1} & x_{r}y_{r}^{T}S_{r2} & \dots & x_{r}y_{r}^{T}S_{rr} \end{bmatrix}$$

$$= S = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1r} \\ \vdots & & & \\ S_{r1} & S_{r2} & \dots & S_{rr} \end{bmatrix}$$

Thus $x_1 y_1^T S_{11} = S_{11}$, $x_1 y_1^T S_{12} = S_{12}$, and so on. It follows that for each $1 \le i, j \le r$, S_{ij} is of the form $\alpha_{ij} x_i v_{ij}^T$, where each v_{ij} is a nonzero nonnegative unit vector and $\alpha_{ij} \ge 0$.

Next, we show that each column block

$$[S]^{j} = \begin{bmatrix} S_{1j} \\ S_{2j} \\ \vdots \\ S_{rj} \end{bmatrix}$$

of S is also of rank 1. Let s be the rank of S, and suppose some column block is of rank 2 or more. Then there are s-1 column blocks which generate the column space of S, i.e. any column block $[S]^j$ can be expressed as

$$[S]^{j} = [S]^{\alpha_1}D_1 + \cdots + [S]^{\alpha_{s-1}}D_{s-1}.$$

For notational convenience let us assume that $\alpha_1 = 1$, $\alpha_2 = 2$, ..., $\alpha_{s-1} = s - 1$. Then

$$\operatorname{rank} (SJ) = \operatorname{rank} \left(\left(\left[S \right]^{1} \left[S \right]^{2} \dots \left[S \right]' \right) J \right)$$

$$= \operatorname{rank} \left(\left[S \right]^{1} J \left[S \right]^{2} J \dots \left[S \right]' J \right)$$

$$= \operatorname{rank} \left(\left[S \right]^{1} J \left[S \right]^{2} J \dots \left[S \right]^{s-1} J \right) \leqslant s - 1,$$

since each [S]'J is of rank ≤ 1 . This contradicts the hypothesis that rank (SJ) = rank S = s. It follows now that each block column can be expressed in the form

$$\begin{bmatrix} \beta_{1j}x_1v_j^T \\ \vdots \\ \beta_{rj}x_rv_j^T \end{bmatrix}.$$

This completes the proof of the lemma.

Remark We can also write

$$S = U \mathcal{B} V^T$$

125

where

$$U = \begin{bmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & & & & \\ 0 & \dots & 0 & x_r \end{bmatrix}, \quad B = (\beta_{ij}),$$

$$V^T = \begin{bmatrix} v_1^T & 0 & \dots & 0 \\ 0 & v_2^T & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & v_r^T \end{bmatrix}$$

Let B be a nonnegative matrix such that $B^{(1)} \ge 0$. (Such matrices have been characterized in [7]). Then $BB^{(1)}$ is a nonnegative idempotent matrix. By Flor [6], we may assume without loss of generality in the lemma which follows that

$$M = BB^{(1)} = \begin{bmatrix} J & JD & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJD & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where

$$J = \begin{bmatrix} x_1 y_1^T & & \\ & \ddots & \\ & & x_r y_r^T \end{bmatrix},$$

 x_i , y_i are positive unit vectors such that $y_i^T x_i = 1$, $1 \le i \le r$, and C, D are nonnegative matrices of suitable sizes.

LEMMA 2 Let A, B be nonnegative square matrices such that $B^{(1)} > 0$. Then $R(A) \subset R(B)$, and rank (AB) = rank A iff

$$AE = \begin{bmatrix} K & KD_1 & KD_2 & KD_3 \\ 0 & 0 & 0 & 0 \\ CK & CKD_1 & CKD_2 & CKD_3 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where

$$E = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ C & 0 & I & 0 \\ 0 & 0 & 0 & I \end{bmatrix}, \qquad K = U \mathcal{B} V^T,$$

$$U = \begin{bmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & x_r \end{bmatrix}, \qquad V^T = \begin{bmatrix} v_1^T & 0 & \dots & 0 \\ 0 & v_2^T & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & v_r^T \end{bmatrix},$$

 $\mathcal{B} = (\beta_{ij})$ is some $r \times r$ matrix, x_i 's are positive unit vectors, v_i 's are nonzero nonnegative unit vectors, and D_1 , D_2 , D_3 are matrices of suitable sizes. (Note that some of the zero blocks may be absent.)

Proof Set $M = BB^{(1)}$. Then $R(A) \subset R(M)$, $M = M^2$, and thus A = MA, rank (AM) = rank A. As stated prior to Lemma 2, we shall take

$$M = \begin{bmatrix} J & JD & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJD & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Let us partition $A = (X_{ij})$, $1 \le i, j \le 4$, in such a way that the block multiplication of M with A can be performed. Then it follows from MA = A that

$$A = \begin{bmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ 0 & 0 & 0 & 0 \\ CX_{11} & CX_{12} & CX_{13} & CX_{14} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and $JX_{1j} = X_{1j}$, $1 \le j \le 4$. By computing AM, we get rank $(AM) = \text{rank } ((X_{11} + X_{13}C)J)$.

Now

rank
$$(X_{11} + X_{13}C)J = \text{rank } A = \text{rank } (X_{11} X_{12} X_{13} X_{14})$$

= rank $(X_{11} + X_{13}C X_{12} X_{13} X_{14})$
 $\geq \text{rank } (X_{11} + X_{13}C).$

550

Hence

$$\operatorname{rank}(X_{11} + X_{13}C)J = \operatorname{rank}(X_{11} + X_{13}C) = \operatorname{rank}AM = \operatorname{rank}A.$$

For

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ C & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$AE = \begin{bmatrix} X_{11} + X_{13}C & X_{12} & X_{13} & X_{14} \\ 0 & 0 & 0 & 0 \\ CX_{11} + X_{13}C & CX_{12} & CX_{13} & CX_{14} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$AE = \begin{bmatrix} X_{11} + X_{13}C & X_{12} & X_{13} & X_{14} \\ 0 & 0 & 0 & 0 & 0 \\ CX_{11} + X_{13}C & CX_{12} & CX_{13} & CX_{14} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} X_{11} + X_{13}C & (X_{11} + X_{13}C)D_1 & (X_{11} + X_{13}C)D_2 & (X_{11} + X_{13}C)D_3 \\ 0 & 0 & 0 & 0 \\ C(X_{11} + X_{13}C) & C(X_{11} + X_{13}C)D_1 & C(X_{11} + X_{13}C)D_2 & C(X_{11} + X_{13}C)D_3 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

since rank $A = \text{rank } (X_{11} + X_{13}C)$. Now $J(X_{11} + X_{13}C) = X_{11} +$ $X_{13}C$, and rank $(X_{11} + X_{13}C)J = \text{rank } AB = \text{rank } A = \text{rank } (X_{11} + X_{13}C)J = \text{rank } AB = \text{rank } AB$ $X_{13}C$). Hence by Lemma 1

$$X_{11} + X_{13}C = \begin{bmatrix} \beta_{11}x_1v_1^T & \beta_{12}x_1v_2^T & \dots \\ \beta_{21}x_2v_1^T & \dots & \\ \vdots & \dots & \vdots \end{bmatrix} = U\mathcal{B}V^T,$$

proving the "only if" part. The "if" part is a straightforward verification. This completes the proof.

With $BB^{(1)}$ in the form in Lemma 2, the matrix $\mathcal{B} = (\beta_{ii})$ shall be referred to as the coefficient matrix of A with respect to B.

LEMMA 3 Let A, X be nonnegative matrices and let W be a nonnegative positive definite symmetric matrix such that

$$AXA = A,$$
$$(WAX)^{T} = WAX,$$

i.e. A has a nonnegative W-weighted {1,3}-inverse. Then A has a nonnegative {1,3}-inverse.

Proof $(WAX)^T = WAX \Rightarrow (AX)^T W = W(AX) \Rightarrow \text{ if the } i\text{th col-}$ umn of AX is zero, then the ith row of AX is also zero. Since AX and XA are idempotents, it follows from [6] that there exist permutation

matrices P, Q such that

where J, J', C', D', D have the usual properties when a nonnegative idempotent is represented in the Flor's form [6].

Set $L = PAQ^{T}$, $M = QXP^{T}$, and proceed as in the proof of Lemma 1 in [7]. It follows that

for some matrices Z, Z', X' (not necessarily nonnegative) where

$$L_{11}M_{11} = J, \qquad M_{11}L_{11} = J'.$$

Thus by Lemma 2 in [7], L_{11} has a nonnegative {1}-inverse $L_{11}^{(1)}$, and so $L_{11}Z = L_{11}L_{11}^{(1)}L_{11}Z = L_{11}Z_0$, $Z_0 \ge 0$.

Also, by Lemma 2 in [7], it follows (though not stated explicitly there) that $L_{11}^{(1,3)} \ge 0$. This implies that A has a nonnegative $\{1,3\}$ -inverse, namely

This completes the proof of the lemma.

In the following theorem V^T and E are matrices as in Lemma 2, and V^T denotes the matrix $(V^T V^T D_1 V^T D_2 V^T D_3)$ where D_1, D_2, D_3

are matrices of suitable sizes. We now prove

THEOREM 1 Let A, B be nonnegative matrices such that B possesses a nonnegative $\{1\}$ -inverse $B^{(1)}$, $R(A) \subset R(B)$, and rank (AB) = rank A. If the system AX = B has a least squares solution which is nonnegative and if $V'^TE^{-1} \ge 0$, then the coefficient matrix $\mathcal{B} = (\beta_{ij})$ of A with respect to B is of the following form

$$P\mathcal{B}Q^{T} = \begin{bmatrix} J' & J'D' \\ 0 & 0 \end{bmatrix} QE \begin{bmatrix} V \\ 0 \end{bmatrix} Q^{T},$$

where P, Q are permutation matrices of suitable sizes, and J' is a direct sum of matrices of following two types (not necessarily both):

(I) μab^T , $\mu > 0$, a, b are positive unit vectors.

(II)
$$\begin{bmatrix} 0 & \mu_{12}a_1b_2^T & 0 & \dots & 0 \\ 0 & 0 & \mu_{23}a_2b_3^T & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \dots & \mu_{r-1}a_{r-1}b_r^T \\ \mu_{r,1}a_rb_1^T & 0 & 0 & \dots & 0 \end{bmatrix},$$

 $\mu_{ij} > 0$, a_i, b_i are positive unit vectors, not necessarily of the same sizes, and $D' \ge 0$.

Proof By Lemma 2

$$AE = \begin{bmatrix} U \mathcal{B} V^T & U \mathcal{B} V^T D_1 & U \mathcal{B} V^T D_2 & U \mathcal{B} V^T D_3 \\ 0 & 0 & 0 & 0 \\ C U \mathcal{B} V^T & C U \mathcal{B} V^T D_1 & C U \mathcal{B} V^T D_2 & C U \mathcal{B} V^T D_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} U \\ 0 \\ C U \\ 0 \\ C U \\ 0 \end{bmatrix} \mathcal{B} (V^T V^T D_1 V^T D_2 V^T D_3) = U' \mathcal{B} V'^T, \text{ say.}$$

Also, in the notation of Lemma 2,

$$M = BB^{(1)} = \begin{bmatrix} J & JD & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJD & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U'V_0'^T,$$

where $V_0^{'T} = (V_0^T \ V_0^T D \ 0 \ 0)$, and

$$V_0^T = \begin{bmatrix} y_1^T & & & \\ & y_2^T & & \\ & & \ddots & \\ & & & y_r^T \end{bmatrix}$$

We now show that the following nine statements are equivalent. Let $\mathcal{C} = \mathcal{B}V'^T E^{-1}.$

- (1) AX = B has a least squares solution which is nonnegative.
- (2) $A^{T}AX = A^{T}B$ has a nonnegative solution.
- (3) $A^T A X = A^T B B^{(1)}$ has a nonnegative solution. (4) $E^{-1T} V' \mathcal{B}^T U'^T U' \mathcal{B} V'^T E^{-1} X = E^{-1} V' \mathcal{B}^T U'^T U' V_0'^T$ has a nonnegative solution.
- (5) $\mathcal{C}^T W \mathcal{C} X = \mathcal{C}^T W V_0^{\prime T}$ has a nonnegative solution, where W $= U'^T U'$
 - (6) $(\mathscr{C}^T \sqrt{W})(\sqrt{W} \mathscr{C}) Y = (\mathscr{C}^T \sqrt{W}) \sqrt{W}$ has a nonnegative solution.
- (7) $(\sqrt{W} \mathcal{C}) Y = \sqrt{W}$ has a least squares solution which is nonnega-
 - (8) $(\sqrt{W} \mathscr{C}) Y = (\sqrt{W} \mathscr{C}) (\sqrt{W} \mathscr{C})^{(1,3)} \sqrt{W}$ has a nonnegative solution.
- (9) There is a nonnegative Y such that $\ell Y \ell = \ell$ and $(W \ell Y)^T$ $= W\mathscr{C}Y.$
- $(1) \Leftrightarrow (2)$ and $(6) \Leftrightarrow (7) \Leftrightarrow (8)$ are consequences of well known theorems.
 - $(3) \Leftrightarrow (4)$ follows by substitution.
- (5)⇔(6) depends on the existence of a nonnegative right inverse of $V_0^{\prime T}$, namely

$$\left[\begin{array}{c}V_0\\0\\0\\0\end{array}\right]$$

To show that (8) \Rightarrow (9), multiply the equation $(\sqrt{W} \mathcal{E})Y =$ $\sqrt{W} \mathscr{E}(\sqrt{W} \mathscr{E})^{(1,3)} \sqrt{W}$ on the right by \mathscr{E} to obtain $\sqrt{W} \mathscr{E} Y \mathscr{E} = \sqrt{W} \mathscr{E}$, and then multiply on the left by the inverse of \sqrt{W} . Next multiply the equation in (8) on the left by \sqrt{W} to obtain $W\mathscr{C}Y = \sqrt{W}(\sqrt{W}\mathscr{C})$ $(\sqrt{W} \mathcal{C})^{(1,3)} \sqrt{W}$. The right side is symmetric and so the left side is symmetric also. Now assume (9) holds. Then we have $(\sqrt{W} \mathcal{E})$ $(YW^{-1/2})(\sqrt{W} \mathcal{E}) = \sqrt{W} \mathcal{E}$. This implies $YW^{-1/2}$ is a {1}-inverse of $\sqrt{W} \mathcal{E}$. Next we show it is also a {3}-inverse. Consider:

$$\left(\sqrt{W} \,\mathcal{E} \, Y W^{-1/2}\right)^T = \left(W^{-1/2} (W \mathcal{E} \, Y) W^{-1/2}\right)^T$$

$$= W^{-1/2} (W \mathcal{E} \, Y)^T W^{-1/2}$$

$$= W^{-1/2} W \mathcal{E} \, Y W^{-1/2}$$

$$= \sqrt{W} \,\mathcal{E} \, Y W^{-1/2}.$$

Any $\{1,3\}$ -inverse Z of \sqrt{W} \mathscr{C} satisfies $(\sqrt{W} \mathscr{C})Z = \sqrt{W} \mathscr{C}(\sqrt{W} \mathscr{C})^{(1,3)}$. For $Z = YW^{-1/2}$ we have $\sqrt{W} \mathscr{C}YW^{-1/2} = \sqrt{W} \mathscr{C}(\sqrt{W} \mathscr{C})^{(1,3)}$ which gives us (8). Thus statement (9) and Lemma 3 imply that \mathscr{C} has a nonnegative $\{1,3\}$ -inverse.

Hence there exists permutation matrices P, Q such that

$$P\mathscr{E}Q^T = \begin{bmatrix} J' & J'D' \\ 0 & 0 \end{bmatrix},$$

where J' is a direct sum of matrices of types (I) and (II) (not necessarily both), $D' \ge 0$. Then

$$P\widehat{\mathcal{B}}V^{\prime T}E^{-1}Q^{T} = \begin{bmatrix} J^{\prime} & J^{\prime}D^{\prime} \\ 0 & 0 \end{bmatrix},$$

yields

$$\begin{split} P\mathcal{B}Q^T &= \begin{bmatrix} J' & J'D' \\ 0 & 0 \end{bmatrix} \cdot \left(QE(V'^T)_R Q^T \right) \\ &= \begin{bmatrix} J' & J'D' \\ 0 & 0 \end{bmatrix} \left(QE\begin{bmatrix} V \\ 0 \end{bmatrix} Q^T \right) \\ &= \begin{bmatrix} J' & J'D' \\ 0 & 0 \end{bmatrix} QE\begin{bmatrix} V \\ 0 \end{bmatrix} Q^T, \end{split}$$

completing the proof.

Remark With the notation of the above theorem, if B is a nonnegative idempotent matrix such that AB = BA, then $V'^TE^{-1} \ge 0$. We show that \mathcal{B} has indeed $\{1,3\}$ -inverse. Now from (1) and (2), after cancellation and groupings, we obtain that X is a least squares solution of AX = B if and only if

$$\mathscr{B}^T W \mathscr{B} Z = \mathscr{B}^T W$$
, where $Z = V'^T E^{-1} X (V_0'^T)_R \ge 0$.

Then as in the proof of the theorem we obtain that \mathcal{B} has a nonnegative W-weighted $\{1,3\}$ -inverse, and hence \mathcal{B} has a nonnegative $\{1,3\}$ -inverse (Lemma 3). Thus one obtains the theorem of Egawa and Jain [5, Thoerem 4.4] as a consequence of our theorem.

The concept of W-weighted generalized inverse also enables us to give a nice short proof of the following.

THEOREM 2 [5, Theorem 3.7] Let A be an $m \times n$ nonnegative matrix. Let W be a positive definite symmetric bilinear form over \mathbb{R}^m whose associated matrix with respect to standard basis is nonnegative. Suppose Ax = b has a nonnegative best approximate solution with respect to W for all $b \ge 0$. Then Ax = b has a nonnegative best approximate solution with respect to the euclidean norm.

Proof It is known that $||Ax - b||_{\infty}$ is minimized if and only if $A^TWAx = A^TWb$. Together with this it follows from the hypotheses of the theorem that there exists a nonnegative matrix X such that $A^TWAX = A^TW$. Then an argument just like the proof of Theorem 1 yields AXA = A and $(WAX^T = WAX)$, and hence by Lemma 3 there exists a nonnegative $\{1,3\}$ -inverse of A. Consequently for each b > 0, Ax = b has a nonnegative least squares solution.

Acknowledgments

The authors would like to thank the referees for helpful suggestions and comments.

References

- [1] Adi Ben-Israel and Thomas N. E. Greville, Generalized Inverses: Theory and Applications, John Wiley & Sons, New York, 1974.
- [2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- [3] —, SIAM J. Appl. Math. 22 (1972), 155-161.
- [4] _____, Inverses of nonnegative matrices, Linear and Multilinear Algebra 2 (1974), 161-172.
- [5] Y. Egawa and S. K. Jain, Nonnegative matrices A such that Ax = b has nonnegative best approximate solution, SIAM J. Alg. Disc. Math. 3 (1982), 197-213.
- [6] P. Flor, On groups of nonnegative matrices, Compositio Math. 21 (1969), 376-382.
- [7] S. K. Jain and L. E. Snyder, Nonnegative λ-monotone matrices, SIAM J. Alg. Disc. Math. 2 (1981), 66-76.