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NONNEGATIVE MINIMUM NORM LEAST SQUARES
SOLUTIONS OF AX = B
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1. Notation and definitions. Lct A denote an m X n matrix and X
denote an n X m real matrix. Consider the equations: (1) AXA4 = 4,
(2 XAX = X, (3) (4X)T = AX, (4) (XA)T = XA, and (5) AX = X4,
where T denotes the transpose. Let A denote a nonempty subset of
{1,2,3,4,5}). Then X is called a A-inverse of A if X satifies equation
(i) for cach i € A. A Minverse of a matrix A is denoted by A™. A
{1, 2, 3, 4)-inverse of A is the unique Moore-Penrose inverse of 4 and is
denoted by At. A {1, 2, 5}-inverse of 4 exists if and only if m = n and
rank A = rank A2 A {1, 2, 5}-inverse is called a group inverse and is
denoted by 4#. The group inverse A# isa polynomial in 4. A=0
means that all entries of 4 are nonnegative, and R(A4) denotes the range

of 4.

2. ExaMPLE. In this section we give an example for which the
minimum norm least squares solution for the system AX = I fails to be
nonnegative, but for which the system 4X = B does have a nonnegative
minimum norm least squares solution for some nonnegative idempotent

matrix B.
Let uur 0 00 1/\/5 0
0 0 0 O /\/5 0
A=B= CcUUT 0 0 O , where U = 0 1/4/2
0 000 0 1/4/2

-

C=(1234). Itcan be shown that 4*, which is the minimum norm
least squres solution of AX = I, is not nonnegative but that At4, which
is the minimum norm least squares solution of AX = 4, is nonnegative.
It is also of interest to note that 44t * O for this example.
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3. RESULTS

LEMMA 1. Let A be any square matrix and E be an idempotent matrix,

(©) If R(4) © R(E), then EA = A.

(i) If AE = EA and rank A = rank (AE), then R(A4) C R(E) and so
A = EA.

ProoF The proof is straightforward.

LeMMA 2. If A, B are square matrices such that rank (AB) = rank A,
BA = AB, and B# exists, then

(i) (A1BAY* = (AtBA)t = AtB#A and

(if) (AA1B)* = B#4 A1B.

Proor. Itis a consequence of lemma 1 that BB#4 == A. The veri-
fication of (i) and (ii) follows from direct computation using this fact

together with AB = BA.

The theorem proved below gives the form of a nonnegative minimum
norm least squares solution of 4X = B, where 4, B are nonnegative
matrices satisfying certain conditions including B# > 0. The charac-
terization of nonnegative matrices B for which B# > 0 is given in [4].
The theorem below generalizes the known result when B = I, 7).

QOur theorem gives necessary conditions in ~order that a solution X, to
the minimization problem:
min || AX—B |,

is also a solution of the constrained minimization problem.

min | AX—B|, X >=0.

THEOREM 1, Let A, B be nonnegative matrices such that B# = 0,
AB = BA, and rank AB = rank A. If AX = B has a nonnegative mini-
mum norm least squares solution, then there are permuiation matrices P,
Q such that

All
0

0
0
PAQT =1 74, 0
0

o
SO OO0
o O OO
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X, X,T 00
0 0 00
and QXPT =1 0 00
0 0 00

where some zero blockes may not appear and Ay, X,,, are direct sums of
matrices of the following two types (not necessarily both):

() BxyT, B > 0, x and y positive unit vectors

T dn r 0 BieX1Vy 0 0 0 1
0 0 BaaXa¥s O 0
. . o
. . 0

BaxayI 0O 0 J

Bi; > 0, x;, ¥y positive unit vectors not necessarily of the same size.
Equivalently A{, >0, X, > 0.

Proor. Itis known that the minimum norm least squares solution of
AX = Bis given by X, = A'B, ([1], p. 119). By lemma 2, (4X))* > 0
and (X,4)#* = (X,4)t = 0. Then by [3] and [4] there exist permutation
matrices P,, Q, such that

J JD 00
0O 0 00
PAXPI=| ¢y cip 0 0
0 0 00
J, 00 0
0 00 0
and 0X42T=| 0 o o o
0 00 0

where J and J, are direct sums of matrices of types (I) and (II) (not
necessarily both) and C, D 2 0.

Let L = P,AQT, M = Q. X,P{
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Then
J JD 00
0 0 00
LM=| ¢y ¢cip 0 o
0 0 00
and
J,0 00
0 0 0 0
ML=1 1960 0 0
00 0O

Using the same argument as in Lemma 1 of [5], we obtain

L, L,U 0 0

0 0 0 0
L = 0 0 0 0 and

0 0 00

M, 000

0 00 0
M=| pyy. 00 0

0 00 0

where L,;;M;, = J and ML, = J,.
Arguments similar to the proof of lemma 2 in [6] can be used to
obtain permutation matrices 2,, Q, such that
PanQ,T and QzMuP,T
are direct sums of matrices of types (I) or (II). The proof depends on
the fact that each row of the block partitioned matrix has one and only

one nonzero block, likewise for the columns. The details are rather
techanical although straight forward.

Finally for

[P, 0 0 07
0 100

P=190 o s o [and
L0 00 0
[Q; 0 0 07
0 100

=10 o0 710 }
0 00 0|
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PAQT and QX,PT have the desired form. This completes the proof.

If the matrix B satisfies a somewhat weaker hypothesis than commut
ing with 4, then the following theorem gives the form of the matrix A.
However in this case we are unable to yield the form of the solution.

THEOREM 2. Let A, B be nonnegative matrices such that B# > 0,
R(A) C R(B), and rank 4 = rank AB. If the system AX = B has a non-
negative minimum norm least squares solution, then there are permutation

matrices P, Q such that
J

0
PAQ = | s
0

O OO
(==l
OO OO

where J is a direct sum of matrices of the types (I) and (II) as in

Theorem 1.
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