

JOURNAL OF **Algebra**

Journal of Algebra 275 (2004) 856-858

www.elsevier.com/locate/jalgebra

Semilocal CS matrix rings of order > 1 over group algebras of solvable groups are selfinjective

K.I. Beidar, a S.K. Jain, b.* Pramod Kanwar, and J.B. Srivastava

Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan
 Department of Mathematics, Ohio University, Athens, OH 45701, USA
 Department of Mathematics, Ohio University-Zanesville, Zanesville, OH 43701, USA
 Department of Mathematics, Indian Institute of Technology, Delhi 110016, India

Received 30 April 2003

Communicated by Kent R. Fuller

Keywords: CS-rings; finitely Σ -CS modules; Semilocal rings; Locally timte groups; Solvable groups; Linear groups

The following theorem is a sort of an addendum or a sequel to our earlier paper [1]. This result generalizes Theorem 4.3 in [1] to group algebras of solvable groups. For definitions and terminology the reader is referred to [1].

Theorem 0.1. Let K be a field and G be a group. Suppose one of the following conditions is satisfied.

- (a) G is a locally finite group.
- (h) The group algebra KG is semilocal and G is either a solvable group or a linear group.

Then the following are equivalent.

- $(1 \in M_{\mathbb{R}}(KG), n > 1, is a right CS-ring.$
- (2) $M_2(KG)$ is a right CS-ring.
- $\bigcirc \cup KG$ is right selfinjective.

Corresponding author

Famili addresses: kbeidar@yahoo.com (K.I. Beida), panto math ainot.edo (S.K. Jane), pkanwa@math.ohiou.edu (P. Kanwar), psrivas@maths.aid.enet.or (F.B. Sevestava)

^{002) 8093/8 -} see front matter = 2004 Elsevier Inc. All rights reserved did 10.1016/j.jalgebra.2003.06.008

(4) G is finite.

Proof. (1) \Rightarrow (2) is well-known [2, Lemmas 7.1 and 12.8].

Now let KG be semilocal and G be either solvable or linear. By [3, Section 3, p. 322]

```
J(KG) = N^*(KG)
= \{\alpha \in KG \mid \alpha S \text{ is nilpotent for every finitely generated subring } S \text{ of } KG\}.
```

In particular, J(KG) is nil. By [3, Theorem 1.5, p. 409], G is locally finite. But then by what we have proved above, KG is right selfinjective.

 $(3) \Rightarrow (1)$ follows from the fact that the matrix ring over a right selfinjective ring is again right selfinjective and right selfinjective rings are right CS-rings.

The equivalence of (3) and (4) is well-known [3, Theorem 2.8, p. 79].

Remark 1. The above proof shows that if R is a right CS-ring with unity 1 such that any two elements $a, b \in R$ are contained in a right selfinjective subring S having the same unity 1 then R is right continuous. In particular, if $R = M_2(T)$ for some ring T then R (and hence T) is right selfinjective.

Remark 2. It follows from Remark 1 that a group algebra of a locally finite group is right CS if and only if it is right continuous.

Remark 3. Theorem 0.1 is not true if the order of the matrix ring is not greater than 1. For example, the group ring of an infinite locally finite p-group over a field of characteristic p is a local right CS-ring but is not right selfinjective

Acknowledgment

The authors thank the referee for his helpful suggestions

References

- [1] K.I. Beidar, S.K. Jain, P. Kanwar, J.B. Srivastava, CS matrix rings over local rings, J. Algebra 264 (1) (2003) 251-261.
- [2] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending Modules, Pitman, London, 1994
- [3] D.S. Passman, The Algebraic Structure of Group Rings, Wiley, New York, 1977.
- [4] Y. Utumi, On continuous and selfinjective rings, Trans. Amer. Math. Soc. 118 (1965) 158–173.