

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 379 (2004) 381-394

www.elsevier.com/locate/laa

Nonnegative matrices A with $AA^{\sharp} \geqslant 0$

S.K. Jain ^{a,*}, John Tynan ^b

^aDepartment of Mathematics, Ohio University, Athens, OH 45701, USA
 ^bDepartment of Mathematics, Marietta College, Marietta, OH 45750, USA
 Received 5 August 2002; accepted 30 July 2003

Submitted by T.Y. Tam

Abstract

In this paper we obtain a decomposition of nonnegative matrices A such that $AA^{\sharp} \geqslant 0$. We then use this characterization to obtain the previous results known for nonnegative matrices A with $A^{\sharp} \geqslant 0$. We also consider nonnegative matrices A with $A - A^2 \geqslant 0$. © 2003 Elsevier Inc. All rights reserved.

Keywords: Nonnegative matrices; Group inverse; Monotone matrices; Idempotent matrices

1. Introduction

Nonnegative matrices with nonnegative group inverse have been studied by many authors (see for example [3.4.6.8.9]). In another paper [10], we considered nonnegative matrices A with AA^{\dagger} or $A^{\dagger}A$ nonnegative. In this paper, we prove analogous results characterizing nonnegative matrices A with AA^{\sharp} nonnegative. We give an example that shows that this class of nonnegative matrices A with AA^{\sharp} nonnegative is properly contained in the class of nonnegative A with A^{\sharp} nonnegative.

A matrix $A = (a_{ij})$ is called nonnegative if $a_{ij} \ge 0$ for all i, j and this is expressed as $A \ge 0$. A matrix A is called reducible if it is cogredient to $E = \begin{bmatrix} B & 0 \\ C & D \end{bmatrix}$, where B and D are square matrices, or A = 0. Otherwise, A is called irreducible. We denote the spectral radius of a matrix A by $\rho(A)$.

If there exists a matrix X such that AXA = A, XAX = X, and AX = XA, then this is referred to as the group inverse of A. If the group inverse exists, it is unique

^{*} Corresponding author.

E-mail addresses: jain@math.ohiou.edu (S.K. Jain), tynanj@marietta.edu (J. Tynan).

and denoted by A^{\sharp} . It is well known that the group inverse exists if and only if index A=1. We refer to a matrix X such that AXA=A and AX=XA as a $\{1,5\}$ -inverse of A and denote it by $A^{\{1,5\}}$. A matrix is called group-monotone if A^{\sharp} exists and is nonnegative. In this paper, we consider a weaker condition and only require that A and AA^{\sharp} be nonnegative.

In Section 2 we prove the main result and obtain as a special case the well-known characterization of nonnegative matrices A with A^2 nonnegative. In the last section we consider nonnegative matrices A with $A - A^2 \ge 0$.

The reader is referred to [1] for additional definitions and results on generalized inverses.

2. Main result

Theorem 1. Let A be a nonnegative $n \times n$ matrix of rank r. Then the following are equivalent:

- (i) There exists an $A^{(1.5)}$ such that $AA^{(1.5)} \ge 0$.
- (ii) There exists a permutation matrix P such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} XTY & XTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXTY & CXTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

where the diagonal blocks are square, T is a nonnegative $r \times r$ invertible matrix

$$X = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_r \end{bmatrix}, \quad Y = \begin{bmatrix} y_1^{\mathsf{T}} & 0 & \cdots & 0 \\ 0 & y_2^{\mathsf{T}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & y_r^{\mathsf{T}} \end{bmatrix},$$

 x_i and y_i are positive unit vectors such that $y_i^T x_i = 1$, and B, C are nonnegative matrices of impropriate size.

(iii) $AA^{z} > 0$.

In particular, under any of the above equivalent conditions,

$$PA^{z}P^{\mathsf{T}} = \begin{bmatrix} XT^{-1}Y & XT^{-1}YB & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ CXT^{-1}Y & CXT^{-1}YB & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Proof. (i) \Rightarrow (ii): So, there exists an $A^{(1.5)}$ such that $AA^{(1.5)} \geqslant 0$. Then, $AA^{(1.5)}$ is a nonnegative idempotent. So by Flor [5], there exists a permutation matrix P such that

S.K. Jain, J. Tynan / Linear Algebra and its Applications 379 (2004) 381-394

$$PAA^{(1,5)}P^{T} = \begin{bmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{where } J = \begin{bmatrix} x_{1}y_{1}^{T} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_{F}y_{F}^{T} \end{bmatrix}.$$

each x_i , y_i are positive vectors with $y_i^T x_i = 1$, matrices $B, C \ge 0$ and the zero's in the matrices are zero blocks of appropriate size. Note that rank $AA^{(1,5)} = \operatorname{rank} J = r$. Next, we partition PAP^T in conformity with $PAA^{(1,5)}P^T$ and let

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}.$$

Clearly, $PAP^{T}PAA^{(1.5)}P^{T} = PAP^{T}$ and so

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \begin{bmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}.$$

This implies

$$\begin{bmatrix} A_{11}J + A_{13}CJ & A_{11}JB + A_{13}CJB & 0 & 0 \\ A_{21}J + A_{23}CJ & A_{21}JB + A_{23}CJB & 0 & 0 \\ A_{31}J + A_{33}CJ & A_{31}JB + A_{33}CJB & 0 & 0 \\ A_{41}J + A_{43}CJ & A_{41}JB + A_{43}CJB & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}.$$

By equating corresponding blocks we obtain $A_{i3} = 0$ and $A_{i4} = 0$ for i = 1, 2, 3, 4 hence, $A_{i1} = A_{i1}J$, and $A_{i1}JB = A_{i2}$ for i = 1, 2, 3, 4. Hence,

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{12} & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \\ A_{31} & A_{32} & 0 & 0 \\ A_{41} & A_{42} & 0 & 0 \end{bmatrix}.$$

Since $PAA^{(1.5)}P^{T}PAP^{T} = PAP^{T}$ we get the following:

$$\begin{bmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \\ A_{31} & A_{32} & 0 & 0 \\ A_{41} & A_{42} & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \\ A_{31} & A_{32} & 0 & 0 \\ A_{41} & A_{42} & 0 & 0 \end{bmatrix}.$$

Thus

$$\begin{bmatrix} JA_{11} + JBA_{21} & JA_{12} + JBA_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJA_{11} + CJBA_{21} & CJA_{12} + CBA_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \\ A_{31} & A_{32} & 0 & 0 \\ A_{41} & A_{42} & 0 & 0 \end{bmatrix}.$$

This yields that $A_{2i} = 0$, $A_{4i} = 0$ for i = 1, 2. Hence, $JA_{11} = A_{11}$ and $A_{3i} = CJA_{11}$.

Therefore.

384

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{11}B & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CA_{11} & CA_{11}B & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

where $JA_{11} = A_{11} = A_{11}J$. Also, we have that rank $A = \operatorname{rank} A_{11} = r$.

We now consider $JA_{11} = A_{11}$. As above, we partition A_{11} in conformity with J and let $A_{11} = (A'_{ij})$. Then

$$\begin{bmatrix} x_1 y_1^{\mathsf{T}} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_r y_r^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} A'_{11} & \cdots & \cdots & A'_{1r} \\ \vdots & & & \vdots \\ A'_{r1} & \cdots & \cdots & A'_{rr} \end{bmatrix} = \begin{bmatrix} A'_{11} & \cdots & \cdots & A'_{1r} \\ \vdots & & & \vdots \\ A'_{r1} & \cdots & \cdots & A'_{rr} \end{bmatrix}.$$

So.

$$\begin{bmatrix} x_1 y_1^\mathsf{T} A_{11}' & \cdots & x_1 y_1^\mathsf{T} A_{1r}' \\ \vdots & & \vdots \\ x_r y_r^\mathsf{T} A_{r1}' & \cdots & x_r y_r^\mathsf{T} A_{rr}' \end{bmatrix} = \begin{bmatrix} A_{11}' & \cdots & A_{1r}' \\ \vdots & & \vdots \\ A_{r1}' & \cdots & A_{rr}' \end{bmatrix}.$$

Equating corresponding blocks, we have $x_i y_i^T A'_{ij} = A'_{ij}$. Because $A_{11} = (A'_{ij})$ and rank $A_{11} = r$, we must have for each i, at least one j such that A'_{ij} is nonzero. To see this, consider the submatrix $[x_1 y_1^T A'_{11} \cdots x_1 y_1^T A'_{1r}]$. Clearly, we have rank $[x_1 y_1^T A'_{11} \cdots x_1 y_1^T A'_{1r}] \le 1$. If rank $[x_1 y_1^T A'_{11} \cdots x_1 y_1^T A'_{1r}] = 0$, then rank $A_{11} < r$, a contradiction. Thus, rank $[x_1 y_1^T A'_{11} \cdots x_1 y_1^T A'_{1r}] = 1$, and this implies that not all of the A'_{1j} are zero. Therefore, as claimed, for each i, there exists at least one j such that $A'_{ij} \ne 0$. For convenience, we choose $A'_{11} \ne 0$. Then, rank $A'_{11} = 1$. Thus, $A'_{11} = u_{11}v_{11}^T$ where u_{11} and v_{11} are vectors such that either $u_{11} \ge 0$ and $v_{11} \ge 0$, or $u_{11} \le 0$ and $v_{11} \le 0$. We may assume that v_{11} is a unit vector. Then we have $x_1 y_1^T u_{11} v_{11}^T = u_{11} v_{11}^T$. So, we multiply by v_{11} on the right and get $x_1 y_1^T u_{11} = u_{11}$. But then $\lambda_{11} = y_1^T u_{11}$ is a scalar and so u_{11} is a multiple of x_1 . It follows then that if $u_{11} \ge 0$, then it is in fact a positive vector. If $u_{11} \le 0$, then $\lambda_{11} < 0$. So let $u_{11} = \lambda_{11} x_1 = \lambda_{11} x_1 v_{11}^T = x_1 v_{11}^T$ where $v_{11}^T = \lambda_{11} v_{11}^T$. Thus, we have that $v_{11}^T \ge 0$, because if $v_{11} \le 0$, then $\lambda_{11} < 0$ and if $v_{11} \ge 0$, then $\lambda_{11} > 0$. This process can indeed be repeated for each A'_{ij} . So we have

385

$$A_{11} = \begin{bmatrix} x_1 v_{11}^{'T} & \cdots & \cdots & x_1 v_{1r}^{'T} \\ \vdots & & & \vdots \\ \vdots & & & \vdots \\ x_1 v_{r1}^{'T} & \cdots & \cdots & x_1 v_{rr}^{'T} \end{bmatrix}.$$

We next consider the equation
$$A_{11}J = A_{11}$$
. This gives us
$$\begin{bmatrix} x_1v_{11}^T & \cdots & x_1v_{1r}^T \\ \vdots & & \vdots \\ x_1v_{r1}^T & \cdots & x_1v_{rr}^T \end{bmatrix} \begin{bmatrix} x_1y_1^T & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_ry_r^T \end{bmatrix} = \begin{bmatrix} x_1v_{11}^T & \cdots & x_1v_{1r}^T \\ \vdots & & \vdots \\ x_1v_{r1}^T & \cdots & x_1v_{rr}^T \end{bmatrix}.$$

This implies that

$$\begin{bmatrix} x_1 v_{11}^{\prime T} x_1 y_1^T & \cdots & x_1 v_{1r}^{\prime T} x_r y_r^T \\ \vdots & & \vdots \\ \vdots & & & \vdots \\ x_1 v_{r1}^{\prime T} x_1 y_1^T & \cdots & x_1 v_{rr}^{\prime T} x_r y_r^T \end{bmatrix} = \begin{bmatrix} x_1 v_{11}^{\prime T} & \cdots & x_1 v_{1r}^{\prime T} \\ \vdots & & \vdots \\ \vdots & & & \vdots \\ x_1 v_{r1}^{\prime T} & \cdots & x_1 v_{rr}^{\prime T} \end{bmatrix}.$$

So $x_1v_{11}^{\prime T}x_1y_1^T=x_1v_{11}^{\prime T}$. Multiplying by y_1^T on the left gives us $v_{11}^{\prime T}x_1y_1^T=v_{11}^{\prime T}$. Since $\alpha_{11}=v_{11}^{\prime T}x_1$ is a scalar we have $\alpha_{11}y_1^T=v_{11}^{\prime T}$. Finally we now have that

$$A_{11} = \begin{bmatrix} \alpha_{11}x_1y_1^T & \alpha_{12}x_1y_2^T & \cdots & \alpha_{1r}x_1y_r^T \\ \vdots & \vdots & & \vdots \\ \alpha_{r1}x_ry_1^T & \alpha_{r2}x_ry_2^T & \cdots & \alpha_{rr}x_ry_r^T \end{bmatrix},$$

where α_{ij} are nonnegative constants. We then have

$$A_{11} = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_r \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1r} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \alpha_{r1} & \alpha_{r2} & \cdots & \alpha_{rr} \end{bmatrix} \begin{bmatrix} y_1^T & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & y_r^T \end{bmatrix}$$
$$= XTY.$$

say. Thus, because rank $A_{11} = r$, we must have that rank $T \ge r$. But, T is an $r \times r$ matrix, and so rank T = r. Therefore T is invertible.

So, we have shown

$$PAP^{\mathsf{T}} = \begin{bmatrix} XTY & XTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXTY & CXTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

proving (i) \Rightarrow (ii).

(ii) \Rightarrow (iii): So, there exists a permutation matrix P such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} XTY & XTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXTY & CXTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

where the diagonal blocks are square, T is a nonnegative invertible matrix,

$$X = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_r \end{bmatrix}, \quad Y = \begin{bmatrix} y_1^{\mathsf{T}} & 0 & \cdots & 0 \\ 0 & y_2^{\mathsf{T}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & y_r^{\mathsf{T}} \end{bmatrix}.$$

 x_i and y_i are positive unit vectors such that $y_i^T x_i = 1$, and B, C are nonnegative matrices of appropriate size.

We may write

$$PAP^{\mathsf{T}} = \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix} = FG,$$

say. This gives a full-rank factorization of PAP^{T} because if $r = \operatorname{rank} PAP^{T} = \operatorname{rank} X = \operatorname{rank} F$ and $r = \operatorname{rank} PAP^{T} = \operatorname{rank} Y = \operatorname{rank} F$. Now, we know that if GF is invertible, then A^{T} exists. So, consider the following:

$$GF = \begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} = TYX = T$$

(because $YX = I_r$ the $r \times r$ identity matrix). By our hypothesis, T is invertible. Thus, GF is invertible.

Therefore nave

$$PA^{z}P^{T} = F(GF)^{-2}G$$

$$= \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} (T)^{-2} [TY & TYB & 0 & 0 \end{bmatrix}$$

S.K. Jain. J. Tynan / Linear Algebra and its Applications 379 (2004) 381–394

387

$$= \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \begin{bmatrix} T^{-1}Y & T^{-1}YB & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} XT^{-1}Y & XT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXT^{-1}Y & CXT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

This in turn yields that

$$\begin{split} PAA^{\sharp}P^{\mathsf{T}} &= PAP^{\mathsf{T}}PA^{\sharp}P^{\mathsf{T}} = FGF\left(GF\right)^{-2}G = F\left(GF\right)^{-1}G \\ &= \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \left(\begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \left(T\right)^{-1} \begin{bmatrix} TY & TYB & 0 & 0 \end{bmatrix} = \begin{bmatrix} X \\ 0 \\ CX \\ 0 \end{bmatrix} \begin{bmatrix} Y & YB & 0 & 0 \end{bmatrix} \geqslant 0. \end{split}$$

So, we have shown that $PAA^{\sharp}P^{\mathsf{T}} \geqslant 0$, and since P is a permutation matrix, we obtain $AA^{\sharp} \geqslant 0$. This proves (ii) \Rightarrow (iii).

$$(iii) \Rightarrow (i)$$
: Obvious. \square

The following example illustrates that the class of nonnegative matrices A with AA^{\sharp} nonnegative is properly contained in the class of nonnegative A with A^{\sharp} nonnegative.

Example 2. Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. We can easily verify that $A^{\sharp} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \not\geqslant 0$.

But clearly, $AA^{\sharp} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \geqslant 0$.

We next obtain the following corollary, analogous to the result that if there exists a nonnegative $A^{(1.5)}$ then $A^{\sharp} = A^{(1.5)}$.

Corollary 3. If A is a nonnegative matrix such that $AA^{(1,5)} \ge 0$, then $AA^{\sharp} = AA^{(1,5)}$.

388 S. K. Jain, J. Tynan / Linear Algebra and its Applications 379 (2004) 381–394

Proof. By Theorem 1, there exists a permutation matrix such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} XTY & XTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXTY & CXTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

as described in the statement, and

$$PAA^{(1.5)}P^{\mathsf{T}} = \begin{bmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

as shown in the proof.

Also, by Theorem 1

$$PA^{\Xi}P^{\mathsf{T}} = \begin{bmatrix} XT^{-1}Y & XT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXT^{-1}Y & CXT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So, we calculate

$$\begin{split} PAP^{\mathsf{T}}PA^{\mathsf{S}}P^{\mathsf{T}} & = \begin{bmatrix} XTY & XTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXTY & CXTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} XT^{-1}Y & XT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ CXT^{-1}Y & CXT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} XTYXT^{-1}Y & XTYXT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ CXTYXT^{-1}Y & CXTYXT^{-1}YB & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} XY & XYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXY & CXYB & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJB & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \end{split}$$

Thus, we have shown that $PAA^{(1.5)}P^{T} = PAA^{\sharp}P^{T}$, and because P is a permutation matrix, we have that $AA^{\sharp} = AA^{(1.5)}$, proving the theorem. \square

Now, if in addition we assume that A^{\sharp} is nonnegative, then we obtain the previous characterization of nonnegative matrices A with $A^{\sharp} \geqslant 0$ [7, Corollary 4.3, p. 111].

Corollary 4. If A is a nonnegative matrix of rank r such that $A^{\sharp} \geqslant 0$, then there exists a permutation matrix P such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CJ & CJB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

where B.C are nonnegative matrices of appropriate size, the diagonal blocks are square matrices and J is a direct sum of the following types (not necessarily both):

(I) $\beta x y^{\mathrm{T}}$, $\beta > 0$, x, y are positive unit vectors of the same size and $y^{\mathrm{T}}x = 1$.

(II)
$$\begin{bmatrix} 0 & \beta_{12}x_1x_2^{\mathsf{T}} & 0 & \cdots & 0 \\ 0 & 0 & \beta_{23}x_2x_3^{\mathsf{T}} & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & \ddots & \beta_{d-1}x_{d-1}x_d^{\mathsf{T}} \\ \beta_{d}(x_dx_d^{\mathsf{T}} & 0 & \cdots & \cdots & 0 \end{bmatrix}$$

with $\beta_{ij} > 0$: x_i , y_i are positive unit vectors, x_i , y_i are of the same size with $y_i^T x_i = 1$, x_i , y_j , $i \neq j$ are not necessarily the same size.

Proof. Because we have that A and A^{\sharp} are nonnegative, AA^{\sharp} is nonnegative, and so by Theorem 1, we have a permutation matrix P such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} XTY & XTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ CXTY & CXTYB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where the diagonal blocks are square, T is a nonnegative invertible matrix,

$$X = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_r \end{bmatrix}, \quad Y = \begin{bmatrix} y_1^{\mathsf{T}} & 0 & \cdots & 0 \\ 0 & y_2^{\mathsf{T}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & y_r^{\mathsf{T}} \end{bmatrix},$$

 x_i and y_i are positive unit vectors such that $y_i^T x_i = 1$, and B, C are nonnegative matrices of appropriate size.

So, what we need to do is show that XTY = J as described in our hypothesis.

Now, A^{\sharp} nonnegative implies that $XT^{-1}Y \geqslant 0$. But then, we have $YXT^{-1}YX \geqslant$

0. This implies that T^{-1} is nonnegative because YX = I.

Now T^{-1} nonnegative trivially implies that T has one and only one nonzero entry in each row and each column, which is the "same" as a permutation matrix with the

exception that the nonzero entries need not be one. Then, since every permutation in S_n , the symmetric group of n elements, can be expressed as a product of disjoint cycles, it follows that there exists a permutation matrix P such that PTP^{-1} is a direct sum of Type (I) and Type (II) matrices. Furthermore, because

$$X = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x_r \end{bmatrix}, \quad Y = \begin{bmatrix} y_1^{\mathsf{T}} & 0 & \cdots & 0 \\ 0 & y_2^{\mathsf{T}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & y_r^{\mathsf{T}} \end{bmatrix},$$

it follows that there exists a permutation matrix Q such that $QXYQ^{-1}$ is a direct sum of Type (I) and Type (II) matrices, proving our result. \Box

3. Nonnegative matrices A with $A - A^2 \ge 0$

390

Since A^2 is a polynomial given by $A(q(A))^2$, where λ $(1-\lambda\,(q(\lambda)))$ is the minimal polynomial of A and $AA^2=A(q(A))$, it is natural to ask a more general question as to when A(p(A)) is nonnegative, where p(X) is any polynomial. In this section we consider a special case p(X)=I-X and ask as to when $A-A^2\geqslant 0$. This result is of independent interest because it generalizes Flor's theorem on nonnegative idempotents. We show that if A is an irreducible matrix with $\rho(A)=1$, then $A-A^2\geqslant 0$ implies $A=A^2$. Clearly, in general, A need not be idempotent if $A-A^2\geqslant 0$. We are unable to give a complete characterization for reducible matrices. Theorem 7 gives a necessary condition for any nonnegative matrix A with $A-A^2\geqslant 0$. We close with an example that shows that the conditions obtained in Theorem 7 are not sufficient. The next known lemma is part of the folklore of irreducible matrices.

Lemma 5. If $A \ge 0$ is irreducible. $B \ge 0$, then AB = 0 or BA = 0 implies that B = 0.

We first prove the following lemma.

Lemma 6. Let $A \ge 0$ be an irreducible matrix such that $\rho(A) = 1$. Then $A \ge A^2$ if and only if $A = A^2$.

Proof. Let B = I - A. Because $\rho(A) = 1$ we know that B is an M-matrix.

Also, we know that because A is nonnegative, $1 \in \operatorname{spec}(A)$ and therefore, $0 \in \operatorname{spec}(B)$. This implies that B is singular. Clearly, A irreducible implies that B is irreducible. So, by [2, Theorem 4.16, p. 156], B is almost monotone, i.e., $Bx \geqslant 0 \Rightarrow Bx = 0$.

Let $X^{(i)}$ denote the *i*th column of the matrix X. Set $x = A \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = A^{(1)}$.

Then.

$$Bx = (I - A)A \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = (A - A^2) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = (A - A^2)^{(1)} \ge 0$$

by hypothesis. But then, we must have that $(A - A^2)^{(1)} = 0$. Similarly, we can show that $(A - A^2)^{(i)} = 0$, for all i. Thus, we have just shown that $A - A^2 = 0 \Rightarrow A = A^2$.

The converse is clear.

We now prove our main result, giving a necessary condition for nonnegative matrices A with $A - A^2 \ge 0$.

Theorem 7. Let $A \ge 0$ with $\rho(A) = 1$. If $A - A^2 \ge 0$ then there exists a permutation matrix P such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{r1} & A_{r2} & \cdots & A_{rr} \end{bmatrix}.$$

where each A_{ii} is irreducible or a 1×1 zero matrix. If for all i, $A_{ii} \neq 0$, then there exists an i such that $A_{ii} = A_{ii}^2$ and $A_{ij} = 0$ for j < i, $A_{ki} = 0$ for $r \geqslant k > i$. The latter statement holds for each A_{ii} with $A_{ii} = A_{ii}^2$.

Proof. By the Frobenius normal form there exists a permutation matrix P such that

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{r1} & A_{r2} & \cdots & A_{rr} \end{bmatrix}.$$

where each A_{ii} is irreducible or a 1×1 zero matrix. If there exists a k such that $A_{kk} = 0$, then we are done, so suppose that for each i, $A_{ii} \neq 0$,

We proceed by induction on r. For r = 2, let $PAP^{T} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$. Then since $\rho(A) = 1$, either A_{11} or A_{22} has the same spectral radius.

Now, we know that $A - A^2 \ge 0$ and so

$$\begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} - \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \geqslant 0.$$

This implies that

$$\begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11}^2 & 0 \\ A_{21}A_{11} + A_{22}A_{21} & A_{22}^2 \end{bmatrix} \geqslant 0.$$

which in turn yields

$$\begin{bmatrix} A_{11} - A_{11}^2 & 0 \\ A_{21} - A_{21}A_{11} - A_{22}A_{21} & A_{22} - A_{22}^2 \end{bmatrix} \ge 0.$$

So, finally we have that

$$A_{ii} \geqslant A_{ii}^2$$
 and $A_{21} - A_{21}A_{11} + A_{22}A_{21} \geqslant 0$.

Now, by Lemma 6, either A_{11} or A_{22} is idempotent.

Without loss of generality, suppose that A_{11} is idempotent. Consider the inequality

$$A_{21} - A_{21}A_{11} - A_{22}A_{21} \ge 0$$

We then multiply this inequality by A_{11} on the right to obtain

$$A_{21}A_{11} - A_{21}A_{11}^2 - A_{22}A_{21}A_{11} \geqslant 0.$$

Then, because A_{11} is idempotent, we have

$$A_{21}A_{11} - A_{21}A_{11} - A_{22}A_{21}A_{11} \ge 0$$

which implies that

$$-A_{22}A_{21}A_{11} \geqslant 0.$$

And so, $A_{22}A_{21}A_{11} = 0$ because all the matrices are nonnegative.

But, we know that A_{22} and A_{11} are irreducible. So using Lemma 5, we conclude that $A_{21} = 0$.

If A_{22} is idempotent, we would proceed as above and get the same conclusion, proving the result for r = 2.

Now suppose that the result holds for all positive integers < r. We will show that it is true for r.

Assume

$$PAP^{T} = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{r1} & A_{r2} & \cdots & A_{rr} \end{bmatrix}.$$

Then $A - A^2 \ge 0$ yields that $A_{ii} \ge A_{ii}^2$ for all r. Also, at least one of the A_{ii} 's has a spectral radius equal to 1. Therefore, by Lemma 6 we have some i such that $A_{ii} = A_{ii}^2$. If $i \ne r$, then consider the matrix

S.K. Jain, J. Tynan / Linear Algebra and its Applications 379 (2004) 381-394

303

$$B = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{r-1,1} & A_{r-1,2} & \cdots & A_{r-1,r-1} \end{bmatrix}.$$

By the induction hypothesis, we have that $A_{ij} = 0$ for j < i, $A_{ki} = 0$ for $r - 1 \ge k > i$.

We need only show that $A_{ri} = 0$. As before, $A - A^2 \ge 0$ yields that

$$A_{ri} - (A_{ri}A_{ii} + A_{r,i+1}A_{i+1,i} + \cdots + A_{rr}A_{ri}) \geqslant 0.$$

So now, using $A_{ij} = 0$ for j < i, $A_{ki} = 0$ for $r - 1 \ge k > i$, we obtain

$$A_{ri} - A_{ri}A_{ii} - A_{rr}A_{ri} \geqslant 0.$$

Multiply on the right by A_{ij} to obtain $A_{ij} = A_{ij} + A_$

$$A_{ri}A_{ii} - A_{ri}A_{ii}A_{ii} - A_{rr}A_{ri}A_{ii} \geqslant 0$$
,

which implies that

$$A_{ri}A_{ii} - A_{ri}A_{ii}^2 - A_{rr}A_{ri}A_{ii} \geqslant 0.$$

This yields $-A_{rr}A_{ri}A_{ii} \ge 0$.

Thus $A_{rr}A_{ri}A_{ii} = 0$. Also, we know that A_{rr} and A_{ii} are irreducible, and so $A_{ri} = 0$.

If r = i, we use

$$B = \begin{bmatrix} A_{22} & 0 & \cdots & 0 \\ A_{32} & A_{33} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{r2} & A_{r3} & \cdots & A_{rr} \end{bmatrix}$$

and similarly show that $A_{r1} = 0$. \square

The following example illustrates the importance of all of the matrices on the diagonal of the Frobenius normal form being nonzero.

Example 8. Let $A = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$. Clearly, $A = A^2$ and $\rho(A) = 1$. For this matrix, we have that $A_{22}^2 = A_{22}$. yet $A_{21} = 2 > 0$.

We now provide an example showing that the condition obtained in the above theorem is not sufficient.

394 S.K. Jain, J. Tynan / Linear Algebra and its Applications 379 (2004) 381–394

Example 9. Let

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ \frac{1}{10} & 0 & \frac{1}{2} & 0\\ \frac{1}{10} & 0 & \frac{1}{10} & \frac{1}{2} \end{bmatrix}.$$

Clearly, the spectral radius is one. Also, the irreducible blocks on the diagonal are $\left[\frac{1}{2}\right]$, $\left[\frac{1}{2}\right]$, and $\left[\frac{1}{2}\right]$. The only idempotent block is $\left[1\right]$, and it satisfies the conclusion of the theorem that all entries below and to the left of this block are zero. However.

$$A - A^{2} = \begin{bmatrix} \frac{1}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & \frac{1}{4} & 0\\ -\frac{1}{100} & 0 & 0 & \frac{1}{4} \end{bmatrix}$$

is not nonnegative.

Acknowledgement

We express our sincere thanks to the referee, whose helpful remarks have led to a better presentation of our material.

References

- A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.
- [2] A. Berrin, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.
- [3] A. Bert, in, R.J. Plemmons, Monotonic by and the generalized inverse, SIAM J. Appl. Math. 22 (1972), 55-161.
- [4] A. Berman, R.J. Plemmons, Matrix group monotonicity, Proc. Amer. Math. Soc. 46 (1974) 355–359.
- [5] P. Flor. On groups of nonneaive marrices, Compositio. Math. 21 (1969) 376–382.
- [6] E. Haynsworth, R.J. Wall, Group inverses of certain nonnegative matrices, Linear Algebra Appl. 25 (1979) 271–288.
- [7] S.K. Jain. Linear systems having nonnegative best approximate solutions—a survey, in: Algebra and its Applications, Lecture Notes in Pure and Applied Mathematics 91, Dekker, 1984, pp. 99–132.
- [8] S.K. Jain, V.K. Goel, Nonnegative matrices having nonnegative Drazin pseudoinverses, Linear Algebra Appl. 29 (1980) 173–183.
- [9] S.K. Jain, E.K. Kwak, V.K. Goel, Decomposition of nonnegative group-monotone matrices, Trans. Amer. Math. Soc. 257 (2) (1980) 371–385.
- [10] S.K. Jain, J. Tynan, Nonnegative rank factorization of nonnegative matrices A with either $A^{\dagger}A \ge 0$ or $AA^{\dagger} \ge 0$. Linear Multilinear Algebra 51 (2003) 83–95.