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Abstract

In this paper we obtain a decomposition of nonnegative matrices A such that AA% = 0. We
then use this characterization to obtain the previous results known for nonnegative matrices A
with A% > 0. We also consider nonnegative matrices A with A — A2 > 0.
© 2003 Elsevier Inc. All rights reserved
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1. Introduction

Nonnegative matrices with nonnegative group inverse have been studied by many
authors (see for example [3.4.6.8.9]). In another paper | 10], we considered nonneg-
ative matrices A with AA” or A* A nonncgative. In this paper, we prove analogous
results characterizing nonnegative matrices A with- AA” nonnegative. We give an
example that shows that this class of nonnegative matrices A with AA” nonnegative
is properly contained in the class of nonnegative A with A" nonncgative.

A matrix A = (g;;) is called nonncgative il a;; > 0 for all i, j and this is ex-
B 0
C D
where B and D are square matrices. or A = (). Otherwise, A 1s called irreducible.
We denote the spectral radius of a matrix A by p(A).

If there exists a matrix X such that AXA = A, XAX = X.and AX = XA. then
this is referred to as the group inverse of A, If the group inverse exists. it is unique

pressed as A > 0. A matrix A is called reducible if itis cogredient o £ =
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and denoted by A=, Tt is well known that the group inverse exists il and only if index
A =1 Werefer to a matrix X such that AXA = A and AX = XA as a {1, 5}-
inverse of A and denote itby A0 A matrix is called eroup-monotone if A* exists
and is nonnegative. In this paper. we consider a weaker condition and only require
that A and AA~ be nonnegative.

In Section 2 we prove the main result and obtain as a special case the well-known
characterization of nonnegative matrices A with A= nonnegative. In the last section
we consider nonnegative matrices A with A — A 2 0.

The reader is referred to [ 1] for additional definitions and results on generalized
INVEISes.

2. Main result

Theorem L. Ler A be a nonnegative n x n matrix of vank r. Then the following are
equivalent:

() There exists an A" such thar AATY =0,

(1) There exists a pernutation matrix P such that

XTY Xrye 0 0

: 0 0 0 0
Apl
PAPT = CXTY CXryp 0 0
L 0 0 0 0
where the diagonal blocks are square. T is a nonnegative v x r invertible marrix,
Xy 0 07 o0 0
Y = 0 A . ‘ Y = 0 &I ‘
R S
0o - 0 x 0 - 0 v

vioand x; are positive unit vectors such that ‘\';.T xj = | and B, C are nonnegative
matrices of npropriate size.
Gy AA- - 0.

In particniar. under any of the above equivalent conditions.

X7y Xr-'vyb 0 0

. 0 0 0 0

o4z pT
PAP =1cxT-1y CXT-'YB 0 0
0 0 0 0

Proof. (i) = (ii): So. there exists an A" such that AA™Y > 0. Then, AA'Y iy
a nonnegative idempotent. So by Flor [S]. there exists a permutation matrix P such
that
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X vl o0
"J JB 0 ()} -l
5) T 0 0O 00 0
A AL pT Thore —
PAATTL =0y cyp o o) Wl =1 o 0
L 0 0 00 i ’ ’ "
0 - 0 x
cach x;. v; are positive vectors with \ x; = L. matrices B, C 2 0 and the zero’s in

the matrices are zero blocks of appmpnalL size. Note that rank /\A(l Y=rank J = r.

Next. we partiion PAPT" in conformity with PAA' U3 pTand let
"All Ap Az Al
An Axn Axn An
D T: 21 22 23 24
PAF A3 Axn Ayn An
LA41 A Ap A44J
Clearly. PAPTPAATY PT = PAPT and so.
(A A Al Al J JB 00 Al Al Ay A
A A Ay Ay 0 0 00 [Azn Ax Ay An
Ayl Az Axy Awn CJ CJB 0 0| A3 Ap Az Ay
| Au A Ap Ap 0 0 00 Aq Ag Agz Ay

This implics

_AI]J—E—AHC./ AnJB+ACIB 0 0 Ayl A Az Ay
Ay J + A»nCJ Ay JB+ AnCJB 0 ()" !»Agl A A3 A24‘|
A3l +AnCJ Az JB+ Axz3CJB 0 0 31 Az Asy Azg |

_A4g J+ ApCJ Ay JB+ ARCJB O OJ LA4| Agp Apz A44J

By cquating corresponding blocks we obtain A;3 = 0and Ajy =0fori =1.2,3.4
henee, A;p = A J.and Aj | JB = Ajpfori = 1,2, 3, 4. Hence,

A Ap 00
papT _ |An An 0 0}

Ayl Ay 0 0

Ayl Ay 00
Since PAA'LI PTPAPT = PAPT we get the following:

FJ JB 0O 0 Ay A 00 Al A 0 0O
0 0 0 ()W Arp A 0 ] l>A71 A» 0 ()"
cJ CJB 0 0 Ayl Az 0 Ap 0 07
| 0 0 0 0 Ay Ay O ()J LA Ap 0 ()J

Thus

0 0 0 0 Arp A» O 0

JA|| + JBA> JAHL+JBA» 0O ()-’ Ay Ap 0O ()—|
CJAy) +CJBA>y CJA+CBA» 0O 0 - Azl A;z 0 0}
J LA Agpy 0 ()J

0 0 0
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This vields that A»;, = 0. Ay; =0 for 7 = 1.2, Hence. JA = Ay and Az =
CJ Ay

Therctore.

A 11 A il B 0 0
I 0 0 0 0

p) T
pars = CAy CApB 00
0 0 0O 0

where JA | = Ay = Ay J. Also, we have thatrank A = rank A} = 7.
W now consider J A = Ay, As above, we partition A in conformity with J
and let Ay = (A:’/)‘ Then

T ) ‘ , -
RN 0 - 0 Ay e A/i/' Al Al
0 : B :

0 0wy LAy AL LAy A

So.

N Y T A / /

,\]_\IAH AN Ay Alr AH A],-
L\»,,\gv AL oaatal Al A;'r_J

Equating corresponding blocks, we have .rj)'l.TAl’.,. = A;jn Because Ay = (A})

and rank Ay; = r. we must have for cach i. at least on¢ j such that A;/ is non-

sero To see this. consider the submatrix [xl.\'lTA’” PR xly\'lTA/“_], Clearly. we

have rank [ vF AL~ o v TA <L Irank [xvTA o xivrAl | =
AN ANEAT YAy ARIELY

0. then rank Ay, < r. a contradiction. Thus, rank [xL\'ITA/” cee e ,x‘].\'lTA/,,_] =1.

and this implics that not all of the A’l/. are zero. Therefore. as claimed. for each i.
there exists at least one j such that AI’:/ # 0. For convenience, we choose A}, # 0.
Then. rank A}, = 1. Thus, A}, = quTI where 111 and vy are vectors such that
cither iy 2 0 and vy = 0. or uyp <0 and vy < 0. We may assume that vy is a
unit vector. Then we have .\‘]‘\‘lTu I UITI = vlTl. So, we multiply by vy on the right
and get ,\:].\‘]sz =uyy. Butthen i) = .\‘I'ull 1s a scalar and so w1 is a multiple
of v, Tt follows then that if wy; = 0, then it is in fact a positive vector. If wyy <0,
then 2y < 0. Soletuy) = ijpx,. Now. we have that A'H = A1X] UITI =X 1*']T] where

:]TI = 21 l'{l. Thus. we have that l’]T| > 0. because if vy <0, then A1 < 0 and af

vy == 0. then 2y > 0. This process can indeed be repeated for cach A:/'/' So we
have
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T L
Xivy e e
/'\ 11 = ’ ’ .
G| T
L’\]lr‘l "Il/"r‘.
We next consider the equation A J = Ay, This gives us
inz’ill X}l'g ,x}v\'IT 0O - 0 _\‘|v’lTl X]I'/J_
0 B
: : : oo 0 : :
Ry l‘,/,-ll s xqed 0O - 0 .,,\',-»\',.TJ Lxl v,’_Tl cee e X v,’IJ
This implics that
r. T F o T T T
XPUXLY e XUy, B ¢ L
T T T T T T
LAy Y 'Hlyrr’x’ﬂ\rJ L"lvrl X[U,.,.J

So vl v = x el Multiplying by v on the left gives us vl =0l
Since o) = 1"1 | X1 is a scalar we have all“\'lT = viTl. Finally we now have that

LT LT ~ LT
CUIXY, @Ry, e XY,

- T P | .
Ay ey ®p2Xr ¥y s O Xr Yy,

where ¢;; are nonncgative constants. We then have

X 0 N oy o2 e Ay ‘IT 0 e 0
0 . S : 0
A=\ ) _ . .
S 0 Do : S
LO e 0y La,«l o e aJ Lo 0 _\-;?‘_J

=XTY.

say. Thus. because rank Ay = r. we must have that rank 7 2 r. But, T isanr x r
matrix. and so rank T = r. Thercfore T is invertible.
So. we have shown '
XTY XTrys 0 0

0 0 0 0
D 7 T g
rap CXTY CXTYB 0O 0
0 0 0 0

proving (1) => (ii).
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(1) = () So. there exists a permutation matrix 2 such that

( XTY  XTYB 0 ()w
T 0 0 0 0
T
par: = CXTy Ccxrvye 0 0;°
L 0 0 0 0
where the diagonal blocks are square, 7' 1s a nonnegative invertible matrix.

X0 0 M0 0

X, and vy oare positive unit vectors such that ,\*,.Tx,' = |, and B.C are nonncgative
matrices ol appropriate size.
We may write
X
0

cX
Lo
say. This gives a full-rank factorization of PAPT because if r = rank PAPY =

rank X =rank F andr =rank PAPT =rank ¥ =rank 7Y =rank G. Now, we know
that it G F is invertible, then A exists. So, consider the following:

pap’ =

[7Yy TYB 0 0]=FG.

" —‘

0
cy = TYX =T

0]
{because Y X = [, the r x r identity matrix). By our hypothesis, T is invertible.

“hus. G F 1s invertible.
Therefore nave

GF=[TY TYB 0 0]

PA*PT _F(GF) -G

T X ] X\
= ,O ry rve o o]l Y 7Y TYB 0 0
CX CX
0] 0
X ] ; ‘
- C()X (T [Ty TYB 0 0]
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"y
_| 0 [17'y T 'YB 0 0]
cx |t
0
T xr'y  xT 'vyB 0 0
B 0 0 0 0
THexrly oXT7'vyB 0O 0
0 0 0 ()J

Thisx in wurn yields that

PAAPT = PAPTPA'PY = FGF(GF) G =F(GF)'G
i

X X

. [Ty TYB 0 ()][0 [Ty TYB 0 0]
cx Tex '
L0\ 0
[ X ] X

|0 (ry"'[TY TYB 0 0]= Oy ve o 0] =0
cx ' CX -
L0 0

So. we have shown that PAAPT > 0. and since P is a permutation matrix. we
obtain AA- > 0. This proves (ii) = (iii).
(i11) = (1); Obvious, [

The tollowing example illustrates that the class of nonnegative matrices A with
- . . . . - . . -+
A A~ nonnegative is properly contained in the class of nonnegative A with A+ non-
negative.

110 I -1 0
Example 2. Let A =10 1 0. Wecancasily verify that AF = [0 1 0| £0.
000 0 0 0
1 00
But clearlv. AA= = |0 1 0| =0
000

We next obtain the following corollary. analogous to the result that if there exists
anonnegative A then A7 = AU

Corollary 3. If A is a nonnegative matrix such that AAYY >0, then AAT =
13
/X{\( .
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Proof. By Theoren 1. there exists a permutation matrix such that

X1y XTYB 0 O
papT - 0 0 0 0

CXTY CXTYB 0O 0
L 0 0 0 ()J

as deseribed in the statement, and

J JB 0 0
PA 4( 1.5) f)’] — 0 () () ()

cJ ¢JB 0 0
|_() 0 (

-~

as shown in the proof.
Also. by Theorem |

’" X7y XT'vyB 0 0]
. 0 0 0 0
cpT
PATP =\ exrty CXT'vyB 0 0
0 0 0 0
So. we caleulate
partpa-p’
 XTY XTYB 0 0 XT 'y XT'vyB 0 0
B 0 0 0 0 0 0 0 0
TiCXTY CXTYB 0 ollcxrly CcxTr7'vyB 0 0
0 o 0 ol| o 0 0 0]
 XTYXT Y XTYXT 'yB 0 0
) 0 0 0 0
TN CXTYXT 'Y CXTYXT'YB 0 0
L 0 0 0 0]
e% XY 0 0 J JB 0 0
o 0 0 0| |0 0 0 0
TICXY CXYB O 0l " lcty cJB 0 0
|0 0 0 0 l 0 0 0 0

Thus. we have shown that PAAY PT = PAARPT and because P is a permu-
tation matrix. we have that A4~ = AANY proving the theorem. £

Now. il in addition we assume that A= is nonnegative. then we obtain the pre-
vious characterization of nonnegative matrices A with A% > 0 {7. Corollary 4.3,
p. 1T
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Corollary 4. If A is « nonnegative matrix of vank r such that A* = 0. then there
exists a permutation matrix P osuch that

J JB 0 0
0 0 0 0
cJ C¢JB 0 O
0 0 0 0

PAPT =

where B. C are nonnegative matrices of appropriate size. the diagonal blocks are
square matrices and J is a divect sum of the following types (not necessarily both):

th /3.\‘_\‘I B > 0.x. v are positive unit vectors of the same size and .\*Tx = 1.

i 0 ﬂl 2-\.1«\"31_ () L. 0 -
0 0 fraxaxy
(1) : - - 0
0 o Ba X1y
;_,H(/Iv\}/xl] 0 C. L. 0 )

with B > 01 x;.\; are positive unit vectors. x;, v; are of the same size with _\41.l X =
Loxy v 0 5 jare not necessarily the same size.

Proof. Because we have that A and AF are nonncgative, A AF is nonncgative. and so
by Theorem 1. we have a permutation matrix P such that

XTY XTYs 0 0

0 0 0 0
ApT -
PAP" =\ cxry cxTvB 0 o)
L 0 0 0 0
where the diagonal blocks are square. 7' is a nonnegative invertible matrix.,
0 0 o0 0
X 0 x oy - 0 Vo »
S 0 P
0 - 0 x 0 - 0

x; and v; are positive unit vectors such that v/x; = 1. and B. C are nonnegative
matrices of appropriate size.

So. what we need to do is show that XTY = J as described in our hypothesis.

Now. A~ nonnegative implies that XT7'Y > 0. But then. we have YXT dyx >
(. This implics that 7" is nonnegative because Y X = 1.

Now 7! nonnegative trivially implies that 7 has one and only one nonzero entry
in cach row and cach column. which is the “same™ as a permutation matrix with the

T,
i i
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excepuon that the nonzero entries need not be one. Then, since every permutation
in S,,. the symmetric group of # elements. can be expressed as a product of disjoint
cyeles. it follows that there exists a permutation matrix P such that PTP ™! is a
dircct sum of Type (I and Type (ID) matrices. Furthermore. because

M0 0 o0

L T
v 0 5 . 0 ¥

R § T |
o o0 . Lo . 0 ]
it follows that there exists a permutation matrix Q such that QXY Q ! is a direet
sum of Type (I and Type (I1) matrices. proving our result. [

3. Nonnegative matrices A with A — A2 >0

Since A* is a polynomial given by A(g(A))~, where A (1 — A (¢(1)) is the mini-
mal polynomial of A and AA® = A(g(A)). it is natural to ask a more general ques-
tion as to when A(p(A)) is nonnegative. where p(X) is any polynomial. In this
scction we consider a special case p(X) = I — X and ask as to when A — A = 0.
This result is of independent interest hecause it generalizes Flor’s theorem on non-
negative idempotents. We show that if A is an irreducible matrix with p(A) = 1.
then A — A% > 0 implies A = A2, Clearly. in general. A need not be idempoient if
A — A7 > 0. We are unabie to give a complete characterization for reducible ma-
trices. Theorem 7 gives a necessary condition for any nonnegative matrix A with
A — A7 = 0. We close with an example that shows that the conditions obtained in
Theorem 7 are not sufficient. The next known lemma is part of the folklore of irre-
ducible matrices.

Lemma 5. /f A = 0 s irreducible. B 2 0. then AB = 0 or BA = 0 implies that
= ()

We first prove the following lemma.
Lemma 6. Ler A = 0 be an irreducible matrix such that p(A) = 1. Then A = A°
ifand onlvif A = A°. ' :

Proof. Let B =17 — A. Because p(A) = 1 we know that B 1s an M-matrix.

Also. we know that because A-is nonnegative. | € spec(A) and therefore. 0 €
spec(B). This implies that B is singular. Clearly. A irreducible implics that B is
irreducible: So. by |2. Theorem 4.16. p: 156]. B is almost monotone. i.c.. Bx = 0 =
By = 0. S
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1
0
Let X' denote the ith column of the matrix X, Setv = A | | = AP,
0
Then.
1 1
0 , 10 o
By = ([ - A)A =(A-A)| . |=(A-A") =0
0 0

by hypothesis. But then. we must have that (A - Az)m = (. Similarly. we can
show that (A — AZ)H> = 0. for all 7. Thus. we have just shown that A — A = 0 =
A= A0

The converse s clear

We now prove our main resull, giving a necessary condition for nonnegalive ma-
. . LI
trices A with A — A~ 22 0.

Theorem 7. [et A 2 Owith p(A) = 1. I A — A" = O then there exists a permuld-
tion matrix P such that

Ay 0 0

papt = | A An
E E 0
A/'l ‘41'3 T Arr

where each Aj; Is irreducible or a 1 x 1 zevo matrix. If for all i. A;; # O, then there
exists an i such that A;; = A[z’ and A;j =0 for j <i, Ay; =0 forr =k > 1. The
latter statement holds for each Aj; with Aj; = Al.zl.h

Proof. By the Frobenius normal form there exists a permutation matrix P such that

An 0 .0
papT _ [ A A
| : ; 0
LA)‘] Ar'l T Arr

where cach A;; s reductble or a 1 x 1 zero matrix. I there exasts a &k such that
A = 0. then we are done. so supposc that for each i, A;; # 0.
Al 0

T Ao . i N » - D o PAPT —
We proceed by induction on r. For r =2, let PAP = |:AZI A

} . Then

since p (A) = 1. either Ay or A»» has the same spectral radius.
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v 5
Now, we Know that A4+ 4= 2= 0 and so

fAn 0] Ay O 17a, 0
A Ang fAy An Ay An

This 1ms

r r
S O . 0l 0
R R 22
LA An] Andn T AnAn Ay
which i turn vields
™ h
- Ay 0
AL , L=o.

Az = A A - 4

N NS 2 NP . v gl
So.inatly we have that

and  Asy — Ay Ay — A»nAy = Ol

Now. by Leimmz 6. cither A or Asn s idempotent.,

Without toss ol ¢

A= AnAn — AnAy 20

Ve then mulioly this inequality by A+ on the right 10 obtain

ol N
Ay A - Az AT — AnAxiAy 2 0.
Then hecouse Aj isdempotent, we have
AnA — AvAy = AnAnAn 20

R I B T A
WOHICH Pes that

And <o, = ( becausse
Buot we

ihat A>; = 0.

[t A>s s idempotent. we would nroceed as above and get the same conclusion,

proving the resolt for v = 2.

Now suppos: that the resull holds for all positive integers < r. We will show that

e for e

I i

Aossuime

: : . 0
i'Arl A"Z T Arr

.—

has a spectral radius equa

Bl N . .
Aip = A7 I+ 1. then consider the matrix

nerafity. suppose that Apg s idempetent. Congider the i

‘i the matrices 2re nennegative,

ROW il A2z and Ay are Irreducible. So using Lemma 5, we conclude

LA . - . . N

Then A = A- 2 0 vieids that Ay > A7 for all ro Also, at least one of the Aj's
i to 1. Therefore, by Lemma 6 we have some @ sach that
to 1. Therefere. by Lemma 6 we ha ne 1 osuch thai
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Al 0 e 0

Any Az

: : 0
i‘/‘\)rl,l A A1y ]_l
By the induction hypothests. we have that A;; = Ofor j < i Ay = Odorr — 1 2

A o>,
We need only show that A,; = 0. As before. A — A% > 0 yiclds that

b =

Ap = AGA + A A+ FALA) 200

Sonow. using Ay; = 0for j <i. Ay; =0forr — 1 2 k > i. we oblain
Avi = ApiAii — A Ar 2 O

Multiply on the right by A;, 10 obtain
Ay A — AL AGA — A A AL 2 0,

which implhes that B

2]

A Ay — Ay A,, A AL A 20

This vields —AAGA; 2 0.

Thus A,, A A; = 0. Also. we know that A,, and A;; arc irreducible, and so
A = 0.

Ifr = 1. weuse

Aw 0 0

A Ay ‘%
]

: : " 0
l;A/'Z Ay o Ay
and simitarly show that A, = 0. O

The following example illustrates the importance of all of the matrices on the
diagonul of the Frobentus normal form being nonzero.

0 > . .
Example 8. Let A = [, ])} . Clearly. A = A- and p (A) = 1. For this matrix.

we have that A2, = A, vet Ay =2 > 0.

We now provide an example showing thai the condition obtained in the above
theorem is not sufficient.
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Example 9. ¢t

P00 o
(|0 oo
A= | | -

’ 50 Lo J

1 | |

.m0 w2

Clearly. the spectral radius 1s one. Also. the irreducible blocks on the diagonal are
[%J [1]. H] and [é] The only idempotent block is | 1], and it satisties the con-
clusion of the theorem that all entries below and to the left of this block arce zero.
However.

|
L0 0 0
W] 0 000
S O R ()
| |
|~ 00 1J

Is not nonnegative.
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