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GLOSSARY

Algebraically closed field: Field having no
proper algebraic extensions.

Algebraic extension: Extension of a field such
that each element of the extension satisfies
a nontrivial polynomial over the base field.

Basis (vecto space): Set of linearly indepen-
dent elements generating the space.

Dimension (vector space): Number of ele-
ments in any basis.

Division ring: Ring with unity in which each
nonzero element is invertible.

Homomorphism: Function from a ring to a ring
that preserves binary operations.

Ideal: A subring of a ring that is closed under
multiplication by elements of the ring and
those of the subring.

Integral domain: Ring in which the product of
nonzero elements is not zero.

Isomorphism: Homomorphism that is both 1-1
and onto.

Normal extension: Extension of a field such
that whenever it contains one root of an ir-
reducible polynomial over the base field,
then it must contain all the roots.

Splitting field (of a polynomial): Smallest ex-

" tension containing the roots of the poly-
nomial.
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A ring is an algebraic structure with two bi-
nary operations written additively and multipli-
catively such that it is an abelian group under
addition, it is a semigroup under multiplication,
and the multiplication is distributive over addi-
tion. For example, the set of integers Z and the
set of rational numbers Q are rings. If each non-
zero element of a ring has multiplicative inverse
and multiplication is commutative, then such a
ring is called a field, e.g., Q is a field. A vector
space is an additive abelian group whose ele-
ments, known as vectors, can be suitably multi-
plied by the elements, known as scalars, from
some field; and the multiplication of vectors
with scalars obeys natural laws, such as (x + y)a
= Xa + ya, X(a + B) = xa + xB, where x, y are
vectors and «, @ are scalars. The ordinary geo-
metric vectors, that is, directed line segments,
form a vector space over the field of real num-
bers.

I. Axioms, Examples, and Types of
Rings

The term ‘‘ring’” originated in the study of
arithmetic properties of integers and algebraic
integers (see Definition VII.6). Hilbert studied
the sets of the form Z[a] = {a + bala, b € 7},
where Z is the set of all integers and « is a root of
X+ px + q,p, q € Z and called such a set a
Zahlring (number ring). It was A. Franklin in
1914 who made a general study of the abstract
structure underlying such sets Z[a] and defined
the term ring (Definition 1.3) of which Z[«a] is a
concrete example.

It is essentially believed that the study of the
theory of rings and ideals was initially inspired
by attempts to solve Fermat's last problem by
several mathematicians, including Lamé (1795-
1870), Kummer (1810-1893), Dirichlet (1805-
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1859). and Dedekind (1831-1916). Later, the
problems in algebraic geometry gave turther im-
petus to the subject. [Se¢ ALGEBRALIC GEOME-
TRY.|

Whereas rings are algebraic structures with
two binary operations usually written additively
and multiplicatively satisfving certain laws.
(Definition 1.3). semigroups and groups are alge-
braic structures with one binary operation.

I.1 Definition. If (S. .) is a nonempty set
with a multiplicative binary operation such that

S1 (Associative law): alhe) = (ab)c

forall a, b. ¢ €S, then (S. .) or simply S is called
a (multiplicative) semigroup.

1.2 Definition. Suppose (G. .) is a semi-
group satisfying the following axioms:

G1 (Existence of identity): 3¢ € G such that
ae = a,Va € G

G2 (Existence of inverse): Va € G.3b € G
such that ab = e.

Then (G, .) or simply G is called a (multiplica-
tive) group.

It follows, as a consequence, that if G is a
group, then the element ¢ in axiom Gl is unique
and so is the element b in axiom G2. Further, it
follows that ae = a¢ = ea foralla € G, and ab =
e = ba. The element e is called the identity ele-
ment and is denoted by I (read as one): the ele-
ment b in G2 is called the inverse of a and is
denoted by a~!. If G is a group with binary oper-
ation written additively (i.e.. @ + b). then the
identity element is denoted by 0 (read as zero)
and the inverse of a is denoted by —a.

If (G, .) is a group satisfying the condition

ab = ba Va, be G

then G is called an abelian group. For an addi-
tive abelian group this condition shall read as
a+b=b+a.

1.3 Definition. Let (R. =, .) be a nonempty
set with two binary operations + and . satisfying
the following axioms:

R1 (R, +) is an additive abelian group;

R2 (R. -) is a multiplicative semigroup;

R3 (Left distributive law): a(b + ¢) = ab + ac,
(Right distributive law): (@ + b = ac +
bc:

forall a. b, c € R.

Then (R. =, ) or simply R is called a ring.
A ring R is called commutative if ab = ba for

z.. a. b € R. If a ring is not commutative, it is
cz.ied noncommutative.

A ring R is said to have unity or identity ele-
—-2nt if there exists ¢ € R such that ae = @ = ea
Z:rall @ € R. The element ¢ is generally denoted
=il
It follows from the ring axioms RI1-R3 that if
R is a ring, then, as one would expect,

(i) a0 =0 = 0a
(i) al(=bh) = —=(ab) = (—a)b
(i) alh — ¢) = ab — ac. la — b)e = ac —
be. forall a. . ¢ € R.

Now, a0 = a0 + 0) = a0 + «0 and so a0 +
i—=a0) = a0 or 0 = q0. Similarly. 0a = 0 and
other assertions.

Further. generalized distributive laws also

nold, that is, for all a,. a-, .... a,,. by, bs, ...
b, E R,
(iv) (ay ~ax+ = =a)h, + bs = - = b,
= (Ilb: T a-.b; AL (f!h.r =5 a;b; =+
@by + - + asb, + -+ anby + amba
+ o + ayb,

Next, if @ € R, then as a matter of notation

m times
—

(v) a@"=aa a (m, a posi-
tive inte-
ger)

m times

(vii ma=a+a+ - +a (m, a posi-
tive inte-
ger)

—m times

(vil) ma = (—a) + (—a) + - + (—a)
(m, a nega-
tive inte-
ger)

m times

(viiy am=a"'-a'----a”',if a has an
inverse a~!
(m. a posi-
tive inte-
ger)

(ix) a®=1,if1 €R.

(x) 0a = 0, where 0 on the left is the
number zero and 0 on the right is the
zero of the ring.

1.4 Examples. Z: the ring of integers under
usual addition and multiplication; Q: the ring of
rational numbers under usual addition and multi-
plication: R: the ring of real numbers under

g
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usual addition and multiplication; C: the ring of
complex numbers under usual addition and mul-
tiplication; and Z/(n). Z,: the ring of integers
modulo n, where n is a positive integer. Let

d={..,a-2n,a-n,aa+n,a+2n, ..}

aclZ

Define @ = b if a — b is a multiple of n. Let
Z/(n) = {ala € Z}. Define addition and multipli-
cation in Z/(n) as follows:

a+b=a+b
b = ab
Then the set Z/(n) is a ring under binary opera-
tions defined above. The members of Z/(n) are
equivalence classes determined by the relation
“=" on Z defined by a = b if n|(a = b). Z/(n) is
also denoted by Z,. R,: the ring of n X n matri-

ces over R under usual addition and multiplica-
tion of matrices, that is, if

ang *voay G

Qiy, = anj O

and
[ by -+ by o b, |
B = b,‘i i bi_,:' o bin
bn] l'!’ﬂ,r' bm‘l
then
Cay + by a;+ by ai, + by,
B = a; + bil ai; + be_p ap, + bi’n
ag + bnl Apj + bn,- Any + bnn_

and
~ na n n 1
Z apbi Z acby Z ayby,
k=1 k=1 k=1
n n n
AB =| 3 auby Y auby > aubn
k=1 k=1 k]

n
z aﬂi‘bij

n n
E Anibiy 2 A bien
k=1 k=1 k=1

— =

If R is any ring, then the set of n X n matrices
with entries from R can similarly be made into a
ring R, , called the ring of matrices over R. R[x]:
the ring of polynomials ay + ajx + -+ + a,x"ina
variable x with coefficients a; € R, where n is
any nonnegative integer, under the usual addi-
tion and multiplication of two polynomials,
namely,

(ag + ajx + - + a,x"
+ (by + byix + -+ + b,x™)
= (ag + bo) + (a1 + b)x + (az + b)x?
o ane
and
(g + a\x + = + ax")(by + bax + ==+ + byx™)
= aoby + (aph, + aybp)x
+ (aohy + a1by + azbo)x* + -+

Similarly, if R is any ring, the polynomials ag
+ ax + -+ + a,x", a; € R, n = 0, form a ring
R[x].

P(A): the ring of all subsets of a set A under
addition and multiplication defined as follows:

a+b=(@Ub)—(anb)
i.e., a + b is the shaded area

a b

ab=anb
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i.e.. ab is the shaded area

where «. b & P(4). P(4) is a commutative ring
with identity (which is the whole set A). The
zero element is the empty set. This ring has a
property that x> = xand 2x = 0 forall x € R(A).
A ring R with the property x* = x forall x € Ris
called a Boolean ring. Such rings have found
some very interesting applications in electrical
engineering and computer science.

1.5 Definition. A ring R whose nonzero ele-
ments form a group under multiplication is
called a division ring. If, in addition. R is com-
mutative, then R is called a field.

Dedekind introduced the term Zahlkorper (=
number field) to denote a set of complex num-
bers satisfying the field axioms. The rational
numbers 0, the real numbers k. and the com-
plex numbers C are examples of fields. Also. the
set { € Claisarootof ay + aix = =+ + a,x" €
Z[x]}, called the set of algebraic numbers, forms
a field. It was E. Steinitz who first gave the ab-
stract definition of a field in 1910. In his impor-
tant paper ‘“The Algebraic Theory of Fields.”
he took up the task of investigating the common
properties underlying several concrete examples
constructed previously from the subsets of com-
plex numbers. A field can be finite too (consider,
e.g., Z(p), p prime). Wedderburn (in 1905)
showed that every finite division ring must be a
field.

An example of a division ring that is not a field
was first discovered by W. Hamilton (1843) as a
certain subset of the ring of 2 X 2 matrices over
C. now called the ring of real quaternions.

1.6 Ring of Real Quaternions. Let Q0 =
i3 g] | a.b € C}, where a, b denote the complex
conjugates of a, b, respectively. Itis easy to see
that if A = [_¢ ?]is a nonzero element of O, then
det A, the determinant of A, is a@ + bb # 0. and
so A~! exists. Q is not commutative, and hence
Qs a division ring. Systems such as Q, matrices
over C. were known earlier under the name hy-
percomplex systems.

I.7 Definition. A ring R is called an integral
domain if ab = 0, u. b € R implies ¢ = 0 or
b=0.

The ring of integers is an integral domain.
Every field and thus everv division ring is an
integral domain. If # > 1. the n X n matrices
over any field is not an integral domain. For let
a=[3.b=[0)).Thena #0.b # 0butab =

U]

ool = 0, the zero matrix.

1.8 Definition. If there exists a positive inte-
ger n such that na = 0 for each ¢ € R, the small-
est such positive integer is called the character-
istic of R. If no such positive integer exists. R is
said to have characteristic zero (or infinity ac-
cording to some authors).

Every integral domain has characteristic ci-
ther 0 or prime. The characteristic of Z/tn). the
ring of integers modulo #, is n.

1.9 Definition. Let R,.---. R, be a family of
rings. Then the cartesian product R = R, % -+ X
R, can be made into a ring by defining pointwise
addition and multiplication. This ring R is called
the direct product of R;. ..., R,.

If (R), i = 1.2,3, ....is an infinite family of
rings, then one can similarly define the direct
product IT R; of the family (R). i =1, 2, 3, ....
If S is a subring of IT R, such that each element
of S is a sequence with finitely many nonzero
terms, then S is called the direct sum of the
faénily (R), i =1, 2,3, ..., and is denoted by

ZR.

I. ldeals

Two distinguished subsets of a ring are sub-
rings and ideals (introduced by Kummer and
Dedekind in connection with Fermat's last prob-
lem). Subrings. as one would expect. is a subset
S of a ring R such that § itself is a ring under the
same binary operations as on R. Any subring S,
like any subgroup in a group. does not always
vield a canonical quotient ring. This is remedied
by introducing the notion of an ideal (analogous
to the normal subgroup in a group).

I1.1 Definition. A nonempty subset S of a
ring R is called a right (left) ideal if
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(i) a—-beSforalla, b €S, and
(i) ar€ES(racS)forallace s, reR.

A right ideal or a left ideal is a subring. But, in
general, not every subring is a right or left ideal.
For example, Z is a subring of @ but Z is not a
right or left ideal in @, Z and Z/(n) are the only
rings with unity having the property that each
subring is an ideal.

I1.2 Definition. A nonempty subset of a ring
that is both a right ideal and a left ideal is called
an ideal (also called two-sided ideal).

If R is commutative, every right or left ideal is
an ideal. (0) and R are ideals in any ring R, called
trivial ideals. If A is a right (or left) ideal in a ring
R such that A contains an invertible element a,
then A =R. Foraga~' =1 = a”'aimplies ] € A
and so r € A for all r € R, since A is a right (or
left) ideal. Thus A = R. In particular, a field has
no ideals other than (0) and R. Indeed, if R is
commutative ring with more than one element
and if R has no nontrivial ideals, then R is a field.

I1.3 Definition. A ring with no nontrivial
ideals is called a simple ring.

As remarked above, every commutative sim-
ple ring with more than one element is a field.
An example of a noncommutative simple ring is
the ring F, of n X n matrices overafield F, n > 1.

I1.4 Definition. If R is a ring with unity, the
right (or left) ideal aR (or Ra) is called a principal
right (or left) ideal. A ring is called a principal
right (or left) ideal ring if each right (or left) ideal
is principal.

IL.5 Definition. If R is a commutative ring,
then principal right (or left) ideal ring is called
principal ideal ring. If, in addition, R is an inte-
gral domain, then R is called a principal ideal
domain, usually called PID.

Examples of PID are Z and F[x]. The polyno-
mial ring D[x] over a commutative integral do-
main D is a PID iff D is a field.

I1.6 Definition. Let R be a ring and | be a
two-sided ideal. Let a, b € R. Define a relation
“="onRbya=bifa—bel Then " ="isan
equivalence relation (i.e., this is reflexive, sym-
metric, and transitive). Let @ denote the equiva-
lence class containing a. Thena = {a + x|x € I'}.
The set R/l (also written as R) of equivalence
classes can be made into a ring by defining @ + &

=g + b, ab = ab. This ring R/l is called the
quotient ring of R modulo I.

The zero element 0 of R/l is @ for any a € . If
1 € R then 1 is the unity element of R/l. If R is
commutative, then R/l is also commutative. The
right, left, or two-sided ideals of R/l are of the
form A/I, where A is a right, left, or two-sided
ideal of R containing .

I1.7 Definition. An ideal M in a ring R is
called maximal if M # R, and whenever M is
properly contained in an ideal N then N = R.

It thus follows that M is a maximal ideal iff
R/M s a simple ring. Thus, if R is a commutative
ring with unity, then M is a maximal ideal in R iff
R/M is a field. In particular, if R = F[x] is a
polynomial ring over a field F and p(x) is an irre-
ducible polynomial over F (i.e., p(x) € F, and if
plx) = pi(x)pa(x), pi(x), pa(x) € Flx] then p,(x) or
p2(x) € F) then (F[x])/(p(x)) is a field. This field
contains a carbon copy of F (usually identified
with F itself) and is called an extension of F. The
field of complex numbers may be looked upon as
the field (R[x])/(x* + 1) whose elements are of
the form {a + bx|a, b € R}, where £* = —1 (fis
usually written as V —1 or i).

I1.8 Definition. Let A, A,, ..., A, be afam-
ily of right (left, or two-sided) ideals of a ring R.
Then the smallest right (left, or two-sided) ideal
containing each A, is called the sum of A, A,,
vy, Ay written as A, + - + Ajor 25 AL

The sum of right ideals A;, A,, ..., A, is easily
seen to be the set {a; + a; + - + a,la; € A;}.

I1.9 Definition. The sumA = 2", A, of right
(left, or two-sided) ideals is called direct if each
element a of A can be uniquely expressed as a =
ay+a+ - +a,a€A. Ifthesum A= 2", A,
is direct, it is written as A = i1 Aj.

The following is a useful set of equivalent
statements for a sum to be direct:

() A=Z2L,A is a direct sum.
(2 If0=2_,a,a € A;,theng; =0, 1=
i=n.

B ANZL - A=0),1=i=n

Ill. Homomorphisms

Homomorphisms are mappings between alge-
braic structures preserving binary operations.

II1.1 Definition. Let R, S be rings and f: R
— S be a mapping such that f(a + b) = f(a) —
f(b) and f (ab) = f(a)f (b), for all ¢, b € R. Then
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fis called a ring homomorphism or simply
homomorphism from R to 5.

If £ is onto. then S is called @ homomorphic
image of R (under £). If fis 1-1. then R is said to
be embeddable in S tequivalently. S is said to
contain a carbon copy of R): in this case, R is
called isomorphic into S. If f is both I-1 and
onto. then fis called an isomorphism from R
onto S. and the ring R is said to be isomorphic
onto the ring S, written as R = S. Being ““isomor-
phic onto™” is an equivalence relation in the class
of rings. From an abstract point of view, isomor-
phic rings may be regarded as the same ring.

[11.2 Definition. Let ©# R — S be a homo-
morphism from a ring R to a ring S. The sets
Kerf={a €R|f(a) =0}.Imf={fla)a € R}are
called the kernel and the image of frespectively.

Ker fis an ideal of R but Im fis a subring of S.
Further. Ker f = (0)iff fis -1, and Im f = S iff f
is onto. The fundamental theorem of homomor-
phism states that it £ R— S is a homomorphism.
then R/Ker f = Im f. The other important theo-
rem about homomorphisms is the so-called cor-
respondence theorem: Let f: R — S be a homo-
morphism of a ring R onto a ring S. Then A —
f(A) defines a 1-l order-preserving correspon-
dence of the set of all right. left. or two-sided
ideals of R that contain Ker fonto the set of all
right, left. or two-sided ideals of S.

IfA,, A,. ... A,isafamily of ideals in a ring R
suchthat A, + A;=R.i#j.and | =i. j = n, then

‘N, A, = R/A; x R/A; x --- x R/A,. In particu-
lar. if a,, as, .... a, € R, then there exists a € R
such that @ = a; (mod A)) for all i. This is known
as the Chinese Remainder Theorem. Applying
the above to the ring of integers Z and ideals
(p5), --.. (pgr), where p; are distinct primes, €; =
0, one obtains Z/(m) = Z/p{) X == X Z/(py),
where m = p¢ -+ ps. The nontrivial ideals of
Z( pgy are (pH(pe), (pDIPE), ... (P~ p[) and
hence these are linearly ordered. that is, given
any two ideals A, B. either AC Bor B C A.

IV. Unique Factorization and
Euclidean Domains

Let R be a commutative integral domain with
unitv. Such a ring is also simply known as a
domain. If a. b are nonzero elements in R. we
sav that b divides a (or b is a divisor of a) and
that a is divisible by b (or a is a multiple of &) if
there exists in R an element ¢ such that a = bc.
This is written as bla or a = 0 (mod b). Thus. an
element « in R is a unit. that is, invertible iff « is

a divisor of 1. Two elements «. » = R are called
associates if there exists a unit « € R such that
a = bu. This means that ¢ and b are associates
iff alb and bla. An element b € R is called an
improper divisor of ¢ = Rif b is cither a unit or
an associate of a. A nonzero element a € R is
called an irreducible element if () « is not a unit,
and (ii) every divisor of « is improper. A non-
zero element p € Ris called a prime if (1) p is not
a unit. and (i) if plab. a. b E Rthenpaorplb. A
prime element is always irreducible but not con-
versely, for 2 = V3 is irreducible but is not
prime in the ring Z[V =53] = {a =~ b\ =S a. b €
Z;. However. an irreducible element in a com-
mutative principal ideal domain is always prime.

IV.1 Definition. A commutative integral do-
main with unity is called a unique factorization
domain (or briefly, a UFD) if it satisfies the tol-
lowing conditions: (i) every nonunit of R is a
finite product of irreducible factors. and (ii)
every irreducible element is prime. Indeed. it
follows then that the factorization into irreduc-
ible elements is unique.

Any principal ideal domain is a UFD. In par-
ticular, the ring of integers Z and the ring of
polynomials F{x] over a field F are both unique
factorization domains. The ring Z[V —5] is not a
UFD.since 9 =3-3=(2+ V=312 - V-3
and each of the elements 3,2 - V—=5.2 =V =3
is irreducible in Z[\V/ =3]. Further. if Ris a UFD
then the polynomial ring R[x] is also a UFD.
This yields, in particular, that Z[x] is a UFD.
Note, however. Z[x] is not a PID. since the ideal
(2, x) is not principal.

In a unique factorization domain R. one may
define a greatest common divisor (GCD) of a
pair of elements a, » € R as an element d € R
such that (i) dla and d'b, and (ii) if cla and c}b
then cld, ¢ € R. If Ris a UFD, then there exists a
GCD of any pair of elements that is uniquely
determined to within unit factors. denoted by
(a. b). Thus. (a. b) is a set in which any two
elements are associates. We write (¢. ) = ¢ 10
mean that (a. ») consists of all unit multiples of
¢. Two elements a. b in a UFD are called rela-
tively prime if (a. b) = 1. The following are
some interesting properties of the greatest com-
mon divisor: (1) c(a., b) = (ca, cb): (2) if (a. b) =
| and blac, then blc: (3) if (a. b) = 1 and if alc
and blc. then ablc: and (4) if (a. b) = 1 and
(a. ¢) = 1, then (a, bc) = L.

An important example of unique factorization
domain is a Euclidean domain, that is. a domain
admitting division algorithm.




VI. VECTOR SPACES 215

1V.2 Definition. A commutative integral do-
main with unity is called Euclidean domain if
there exists a function ¢: E — Z satisfying the
following axioms: (i) If a, b € E* = E — {0} and
bla, then &(h) = d(a), (i) For each pair of ele-
ments a, b € E, b # 0. there exists elements ¢
and rin E such that a = bg + r with ¢(r) < ¢(b).

IV.3 Examples. Z where ¢ is given by
&(n) = |n| (i.e., the absolute value of n); F[x], Fa
field, where & is given by &(f(x)) = degree of
Fx)if £f(x) # 0 and $(0) = —1; and Z[V 1] =
{a + bV=1la. b € Z}. where ¢ is given by
dm+n N =1)=m+ ni.

Every Euclidean domain is a PID. For if
A is a nonzero ideal in a Euclidean domain
R, A = (d) where ¢(d) is the smallest integer
in the set {¢(a)|0 # a € A}. Not every PID is
a Euclidean domain. The domain Z[V —19] =
{a + bV=19]a. b € Z and a, b are both odd or
both even} is a PID but not a Euclidean domain.

V. Rings and Fields of Fractions

Let R be a commutative ring with unity and S
a nonempty subset of R such that ab € § for all
a, b € S. Define a relation ~ on R X S by (a, s)
~ (a', s') iff 35" € S such that 5" (as’ — a’s) = 0.
**~" is an equivalence relation. Let Rs denote
the set of equivalence classes. Denote by als the
equivalence class containing (a, s) - Rs can be
made into a ring by defining a\/s; + as/sy =
as; + 3351!5152 and a]f.f] % (‘.‘2!"52 = H|ﬂ2fS|S:. The
ring Rs is called the ring of fractions with respect
to a subset S, or the localization of R at S. Sup-
pose 1 € S. Then there is a canonical homomor-
phism h: R — Rg given by A(a) = a/1 such that (i)
Ker h = {a € R|as = 0 for some s € §}; (ii) the
elements of A(S) are invertible in Rs; (iii) every
element of Rs can be written as h(a)/h(s), a € R,
s €S; (iv) if f R— R’ is any homomorphism of a
ring R into a ring R’ such that every element f(s),
s € S, is invertible in R’, then there exists a
homomorphism f': Rs— R’ such that the follow-
ing diagram is commutative

that is, f'h = f. This is also expressed by
saying that any such homomorphism f factors
through A.

By taking R to be a commutative integral do-
main, and S = R — {0}, one obtains that R is

embeddable in a field Rg, called the field of frac-
tions. Another interesting case occurs by taking
S = R — P, where P is any prime ideal (i.e., ab €
P,a,b € R=>a€Porb € P). In this case Rs
(also written as Rp) has a unique maximal ideal
given by {a/sla € P, s € S}. Such a ring (i.e., a
ring having a unique maximal ideal) is called a
local ring. The local ring Re(= Rs) is called the
localization at the prime ideal P.

Malcev (1937) gave an example of an integral
domain that is not embeddable in a division ring.
A necessary and sufficient condition that R be
embeddable in a division ring is aR N bR # 0 for
all0 # a, b€ R(orRa N Rb # 0forall 0 # a,
b € R). These conditions, discovered by Ore,
are known as right Ore-condition (or left Ore-
condition). For a commutative integral domain
these conditions are clearly satisfied.

VI. Vector Spaces

Directed line segments in a plane or space are
used to represent velocity, force, etc. Such a
physical quantity is thus represented by a line
segment OP, of the appropriate length and direc-
tion, drawn from the origin 0 of coordinates. If
the end point P has coordinates (a;, a,), the vec-
tor OP is completely determined by these coor-
dinates and we may write vector OP = (a,, a»).
Any ordered pair of real numbers a,, a; defines a
vector in a plane in this way.

Ifa = (a;, a;) and b = (b, by) are two vectors
in a plane, then the sum of a and b is formed by
adding the components, thatis, a + b = (a; +
b,, a; + b,). This corresponds to the parallelo-
gram law

Rlgq + b, a5 +bs)
Qlb 1, by) 1+bq, a3+ by

B Plaq,asp)

a

Furthermore, on multiplying a by a real number
«, one obtains another vector ea = (aa,, aa,).
These geometric interpretations have motivated
the study of abstract vector spaces, which is the
most applicable branch of abstract algebra stud-
ied under the title ‘‘linear algebra.”’

V1.1 Definition. Let V be an additive abe-
lian group, F a field, and suppose for each a € F,
x € V there is a unique element ax € V satisfying
the following axioms:

Vi1 alx + y)
V2 (e + B)x

oax + ay

ax + Bx
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V3 (afB)x = alfBx)
V4 lx = x

forall «. B € Fand x. v € V. Then V is called a
vector space over F. The elements of V are
called vectors and the elements of F are called
scalars. ax is generally called the scalar multipli-
cation of a with x.

V1.2 Examples. In the following examples F

denotes any field.

F: the vector space of n-tuples (a;. a2, ...
a,). a; € F where addition and scalar multiplica-
tion are pointwise. For # = 2 and 3. one obtains
the usual vector space of directed line segments
in a plane and space. respectively.

F{x]: the vector space of polynomials in x
over F where addition and scalar multiplication
are the usual operations on polynomials.

Fr<n: the vector space of tn X n matrices with
entries from F. where addition and scalar multi-
plication are the usual operations on matrices. In
particular, the vector spaces F"*' and F'*" are
generally denoted by F" and F*. respectively.
without any ambiguity as the context always
makes it clear whether the elements are written
as column vectors or as row vectors.

VS: the vector space over F consisting of all
mappings from a set § to a vector space VoverF
where addition and scalar multiplication are
usual operations on mappings. that is, given f:
S—V.g:S— V,and a € F, s € §, define
f+ g aft S—= Vby (f+ 2)s) = f(s) + gls),
(af)(s) = af(s).

From the vector space V*, one obtains a large
family of vector spaces. For example, § =
{1,2, ..., n}. V = F gives the vector space F*; § =
{, 2, .., m x{1, 2, ..., n}, V = F, gives the
vector space F"*"; § = [a. b] and V = R gives
the vector space of all real-valued functions on
the closed interval [a. #], and so on.

V1. 3 Definition. Let V be a vector space
over a field F. A subset W of V is called a sub-
space of V if W is itself a vector space over F
under the same operations, that is. addition and
scalar multiplication, as in V.

It follows that a nonempty subset W of a vec-
tor space V over Fis a subspace iff for all x. ¥ €
Wand « € F, we have x — vy € Wand ax € W.

Let V be a vector space over a field Fand S be
a nonempty subset of V. Then any element of V
of the form a,x; + = + @u¥n. G ES, & E F.is
called a linear combination of elements of S. A

subset S is said to be a lincarly independent set if
tor every finite sequence of distinet elements
Xpe cen Xy Of S, apry + - + X, = 0.0, € F.
implies each , = 0. A subset S ot V is called
linearly dependent if S is not linearly indepen-
dent. that is. there exists a finite sequence of
distinct elements x; . .... x,, of S such that ax; +
= X, = 0. £ F. and at least some «; = 0.
A vector space V over a field F is said to be
senerated by a subset S of Vif cach element of V
is a linear combination of a finite number of ele-
ments in S. For example. the vector space Fix] is
generated by S = {l, x. x*. x', -*}. Another ex-
ample is the subset S = {(1.0, .... 0}, .... (0, ...
0, 10 0, ....0), .... (0.0, .... 0. D}. which gener-
ates F'. Although the whole set V always gener-
ates V. the interest lies in some kind of a “*mini-
mal™" subset.

V1.4 Definition. A subset S of a vector
space V is called a basis if § generates Vand S is
linearly independent.

The first fundamental result in the theory of
vector spaces is that every vector space has a
basis. Furthermore. if S and $' are two bases of a
vector space V, then [S| = |S', that is, they have
the same cardinality. If S is a basis of V, then
the cardinality of S is called the dimension of V,
written as dim V. A vector space V is said to be
finite or infinite dimensional according as dim V
is finite or infinite. If a vector space V is gener-
ated by a finite subset S, then there exists a lin-
early independent subset X of S that generates V.

VIl. Algebraic Extensions of a Field

The theory of fields is the richest and perhaps
the most useful branch of algebra. Its usefulness
lies in providing analytic tools for problems in
geometry, number theory. coding theory. and its
richness in the profundity and variety of results
obtained.

Let F be a field and F[x] the ring of polynomi-
als in x over F. Flx] is a principal ideal domain
and hence a unique factorization domain. Thus.
M is a maximal ideal in F{x] iff M = (p(x)) where
p(x) is an irreducible polynomial, that is. p(x) =
fix)glx) where f(x). g(x) € Flx] implies f(x) or
2(x) € F. Irreducible polynomials over a field
play an important role in field theory. Let f(x) €
F(x] be a polynomial over F and let E be a field
containing F as a subfield. @ € E is called a zero
or root of f(x) = @y + a1x + - + aax” if ay +
@ + -+ + a," = 0. This is expressed by saying
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f(a) = 0. By division algorithm, it follows that if
ais a root of f(x), then x — « is a factor of f(x).
Thus, a polynomial f(x) € Flx] having a root « €
F must be reducible over F (i.e., not irreducible).
However, if f(x) € F[x] is reducible, it is not
necessary that f(x) has a root in F. [Consider,
e.g., (x* + D(x* + 1) € Rlx].] In a special case, if
f(x) € Fx] is a polynomial of degree at most 3,
then f(x) is reducible over F iff f(x) has a root in
F. An interesting result for reducibility of poly-
nomials over @ is Gauss's lemma, which states
that f(x) € Q[x] is reducible over Q iff it is re-
ducible over the ring Z. A criterion for testing a
polynomial f(x) € Z[x] to be irreducible is due to
Eisenstein. The Eisenstein criterion states that if
flx)=ay+ ax + - + a,x" € Z|[x], and if there
exists a prime p such that plag. ... plaa.-.
pla,.p*lay. then f(x) is irreducible over Z, and
hence over Q. In particular, x* + 5x% + 10x* +
10x + 5 € Z[x] is irreducible over Q.

If F is a subfield of E, then E is called an exten-
sion field of F, or simply an extension of F. If E is
an extension of F, then trivially E is a vector
space over F. The dimension of E over F is usu-
ally written as [E : F], called the degree of E over
F. If [E: F) < =, then E is called a finite exten-
sion, else E is called an infinite extension of F.
Suppose there is a nonzero homomorphism of a
field F to E. Choose a set S disjoint from F and
having the same cardinality as that of E — F. Let
K = F U S. Then K can be made into a field by
defining addition and multiplication in an obvi-
ous way so that F is a subfield of K and K = E.
Thus, K is an extension of F. Identifying F with
its copy in E, it is common to say that E is an
extension of F. Given an irreducible polynomial
p(x) over a field F, the field E = (F[x])/(p[x])
contains a carbon copy of F (under the embed-
dinga—a=a + (p(x)), a € F) and so E is an
extension of F. Identifying F with its image in E,
it then follows that the polynomial p(x) = ao +
ajx + -+ + ag,x" hasaroot ¥ = x + (p(x)) in E.
Therefore, every irreducible polynomial (hence,
every polynomial) over F has a root in some
extension of F, a result usually known as
Kronecker's theorem.

VII.1 Definition. Let E be an extension of a
field F. An element a € E is said to be algebraic
over F if there exist elements ag, dy, ..., @, (n =
1) of F, not all zero, such that ayp + aja + - +
a,a" = 0. In other words, an element o € F is
algebraic over F if there exists a nonconstant
polynomial p(x) € F[x] such that p(a) = 0.

The following is a basic result for an algebraic
element. Let E be an extension of a field F and
« € E be algebraic over F. Let p(x) € F[x] be a
polynomial of least degree such that p(a) = 0.
Then (i) p(x) is irreducible over F; (ii) if g(x) €
F(x] is such that g(a) = 0, then p(x)|g(x); (iii)
there is exactly one monic polynomial m(x) €
F[x] of least degree such that m(a) = 0; and (iv)
Flx)/(p(x)) = Fla] = F(a) and [Flal: F] = n.
where n is the degree of p(x). [In other words, if
« is algebaic over F, the polynomials in « over F
forms a field and hence coincides with the small-
est subfield F(a) of E containing « and F.] The
unique monic polynomial m(x) € F[x] of least
degree satisfied by « is called the minimal poly-
nomial of a over F.

VIL.2 Definition. Let E be an extension of a
field F. If each element of E is algebraic over F,
then E is called an algebraic extension of F.

IfE is a finite extension of Fand « € E, then 1,
a, ..., «" must be linearly dependent over F,
where [E: F] = n. Thus, ay + qya + -- + a,a" =
0, a; € F, and not all a; are zero. Therefore, « is
algebraic over F, and hence E is algebraic exten-
sion of F. But not every algebraic extension
must be finite extension. For example, Q(V2,

V3, ..., Vp, ...), where p is prime, is an alge-
braic extension of @, but it is not a finite exten-
sion.

Let E be an extension of F and a, b € E be
algebraic over F. Then [F(a): F] < =, and regard-
ing b to be algebraic over F(a), [F(a, b): F(a)] <
o, thus [F(a, b): F] < «. In particular, a = b, ab,
alb (if b # 0) are all algebraic over F. Therefore,
the subset of E consisting of all algebraic ele-
ments over F forms a subfield of E called the
algebraic closure of F in E. A useful fact about an
algebraic extension E of F is that any embedding
of E into itself over F (i.e., which keeps each
element of F fixed) is an automorphism. (A 1-1
homomorphism of a field onto itself is called an
automorphism of the field.)

By Kronecker’s theorem every polynomial
f(x) over a field F has a root in some extension E
of F. This implies that there exists an extension
K of F that contains all the roots of f(x).

VIL.3 Definition. If X is an extension of F
such that [K: F] is least with the property that K
contains all the roots of f(x) € F[x], then K is
called a splitting field of f(x) over F. Splitting
field of a polynomial is unique up to isomor-
phism.
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VII.4 Definition. A ficld K is called algebrai-
cally closed if it possesses no proper algebraic
extensions.

For any field K the following are equivalent:
(1) K is algebraically closed. (ii) every irreducible
polynomial over K is of degree 1. (iii) every non-
constant polynomial over K factors into linear
tactors in K[x]. and (iv) every nonconstant poly-
nomial has at least one root in K.

VIL.5 Definition. Let E be an extension of a
field F. E is called an algebraic closure of Fif (i) E
is an algebraic extension of F. and (i) E is alge-
braically closed.

It requires technical details to prove the exis-
tence and uniqueness (upto isomorphism) of al-
gebraic closure of a field. The algebraic closure
of a field F is generally denoted by F. The alge-
braic closure of R is C. The elements of the alge-
braic closure © are called algebraic numbers,
that is, @ € C is an algebraic number if « is
algebraic over Q.

VIL.6 Definition. An element a« € C is
called an algebraic number (algebraic integer) if
« is a root of a polynomial (a monic polynomial)
over Z.

VIIl. Normal and Separable

Extensions

Let (fi(x))zn be a family of polynomials of
degree =1 over a field F. By a splitting field of a
family (£(x))e» of polynomial over F is meant
an extension E of F such that all the polynomials
fi(x) split into linear factors in E[x], and E is gen-
erated over F by their roots. Also, E is unique
(upto isomorphism). The following are equiva-
lent statements: (i) E is splitting field of a family
of polynomials over F, (ii) every irreducible
polynomial in F[x] that has a root in E splits into
linear factors in E[x], and (iii) every embedding
of E into F that keeps each element of F fixed is
an automorphism of E.

VIII.1 Definition. An extension E of a field
Fis called normal extension of F if E satisfies any
one of the equivalent statements mentioned
above.

C is a normal extension of R. but R is not a
normal extension of @ since there exists an irre-
ducible polvnomial x* + 2 € Q[x] that has one
root in R but does not split into linear factors
in R[x].

_\-'lll.?. Definition. An irreducible polvno-
mial p(x) in Flx] is called a separable polynomial
if all its roots are simple. that is. each root is of
multiplicity one. Any polvnomial f(x) € Fix] is
called separabie if all its irreducible factors are
separable. A polvnomial that is not separable is
called inseparable.

VIIL3 Definition. Let E be an extension of a
field F. An algebraic element e« € E is called
separable if the minimal polynomial of « over F
is separable. An algebraic extension E of a field F
is called separable extension it each element of E
is separable over F. An algebraic extension E of
a field F is called inseparable if it is not sepa-
rable.

Letf(x) = ay ~ ajx = =+ = q,x" € Flx]. Define
Sy =a, = 2ax = - + pa,x"'. An element «
in E, an extension of F, is a multiple root iff
S'(a) = 0. In particular. if £(x) is an irreducible
polynomial over F. then f(x) has a multiple root
iff f"(x) = 0. However, if the characteristic of F
is zero, f'(x) = 0 implies gy = ar = -+ = @, = 0,
yielding that f(x) = a, a contradiction. since f(x)
is irreducible. Therefore. each irreducible poly-
nomial over a field of characteristic zero has dis-
tinct roots. Consequently. any algebraic exten-
sion of a field of characteristic zero is separable.

Let K = F(x) be the field of rational functions
in x over a field F of characteristic 3. Then the
polynomial y* — x € K[y] is an irreducible poly-
nomial and has all its roots equal, say, each be-
ing «. Hence. K(a) is an inseparable extension
of K.

VIII.4 Definition. An extension E of a field
Fis called simple extension if E = F(a) for some
a € E.

A necessary and sufficient condition that a fi-
nite extension E of a field F is simple is that there
are only a finite number of intermediate fields
between F and E. A useful and interesting result
is that a separable finite extension is always sim-
ple. Also. a simple algebraic extension Fla) is
separable over F iff « is separable over F.
Whether *‘transitivity’” holds for separable ex-
tensions, that is, if F C E C K are three fields
such that E is a separable extension of F, K is a
separable extension of E, is it true that K is a
separable extension of F? The answer is in the
affirmative. This is, however, not true, if *‘being
separable,” is replaced by “*being normal.™

VIILS Definition. A field F is called perfect
if each of its algebraic extensions is separable.
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All fields of characteristic zero are perfect. A
field K of characteristic p # 0 is perfect iff K» =
K, that is, iff every element of K is the pth root of
some element of K. In particular, finite fields are
perfect.

IX. Finite Fields

Finite fields, that is, fields having a finite num-
ber of elements are of special interest in applica-
tions to problems in information theory and
combinatorial geometry. A finite field, also
called a Galois field, with g elements is generally
denoted by GF(g). Coding theory makes a good
deal of use of GF(2") by representing the ele-
ments of this field as strings of 0 and 1.

Let F be a finite field. Then the characteristic
of F is prime p, and F contains a copy of Z/(p)
(under the mapping sending 1 to 1). Regarding F
as a vector space over Z/(p), it follows that [F| =
p" for some positive integer n. Furthermore, any
nonzero element of a finite field F with p" ele-
ments must satisfy x*"~! = 1, since F — {0} is a
multiplicative group with p" — 1 elements. Thus,
F is a splitting field of x”" — x over its prime
subfield F, (=Z/(p)). (A field is called prime if it
has no proper subfields.) Thus, any two fields
with p" elements are isomorphic. Indeed, for
each prime p, the roots of the polynomial x*" — x
over Z/(p) are all distinct and form a field with p”
elements. An important result of practical inter-
est to information theorists is that there exists an
irreducible polynomial of any given degree n
over a finite field. This fact follows from a result
that F — {0} is a multiplicative cyclic group and
so if E is a finite field F, then E = F(a), where a is
the generator of E — {0}. Hence, if m(x) is the
minimal polynomial of « over F, then m(x) is an
irreducible polynomial of degree [E: F]. Finite
fields are perfect and each finite extension is a
normal extension. The group of automorphisms
of a finite field GF(p") is cyclic of degree n gen-
erated by ¢ where ¢(x) = x”.

X. Fundamental Theorem of Galois
Theory and Application
Let E be an extension of a field F. G(E/F) de-

notes the group of automorphisms of E leaving
each element of F fixed.

X.1 Definition. Let E be a field and H a sub-
group of the group of automorphisms of E. Then
the set Ey = {x € Ejo(x) = x, for all o € H} is

called the fixed field of the group of auto-
morphisms H.

Let E be a field, G a finite group of auto-
morphisms of E, and F = Eg. The fundamental
theorem of Galois theory states that

H— Eq. K — G(E/K)

define an order-preserving bijection between the
set of subgroups of G and the set of subfields of
E containing F.

For a finite separable extension E of F, the
following three statements are equivalent: (i) Eis
a normal extension of F, (ii) F is the fixed field of
G(E/F), and (iii) [E: F] = |G(E/F)|.

X.2 Definition. Let f(x) € F[x] be a polyno-
mial over F, and E the splitting field of f(x). The
group G(E/F) is called the Galois group of f(x)
over F.

An important special case of the fundamental
theorem of Galois theory gives that if F is a field
of characteristic zero and if G(E/F) is a Galois
group of a polynomial f(x) € F[x], then for any
subfield K of E containing F, the mapping K —
G(E/K) sets up a one-to-one correspondence
from the set of subfields of E containing F to the
subgroups of G(E/F) such that (i) K = Egy; (ii)
for any subgroup H of G(E/F), H = G(E/Ey); (iii)
[E: K] = |G(E/K)|, [K: F] = index of G(E/K) in
G(E/F); (iv) K is a normal extension of F iff
G(E/K) is a normal subgroup of G(E/F); and (v) if
K is a normal extension of F, then G(K/F) =
G(E/F)/G(E/K).

The impetus to develop theory of fields in this
direction originated from the necessity of finding
necessary and sufficient conditions that a poly-
nomial of degree 5 over Q is solvable by *‘radi-
cals.”

X.3 Definition. A polynomial f(x) € Q[x] is
said to be solvable by radical if its splitting field
E is contained in Q(ey, ..., «,), where aft € Q,
al € Qlay, ..., &), 2 =i = r, and n; are posi-
tive integers. [An extension such as Q(q, ...,
a,) of Q is called a radical extension of Q.]

In other words, a polynomial f(x) € F[x] is
solvable by radicals if each root of f(x) can be
obtained by using a finite sequence of operations
of addition, subtraction, multiplication, divi-
sion, and taking n;;, roots, starting with elements
of F.

The major application of the fundamental the-
orem of Galois theory is that if F is a field of
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characteristic zero. then a polynomial fx) <
Flx] is solvable by radicals iff its Galots group is
solvable. [A group G is said to be solvable if
there exists a finite chain

e} =G,CGCCG G, =6C

of subgroups of G such that G; is a normal sub-
aroup of G,.; and G, Gy is abelian. 0 =i=n —
1. Itis well known that S, the symmetric group
of degree . is not solvable if n > 4.) There were
4 number of attempts made earlier by many
mathematicians including Gauss to find a for-
mula for solving a polynomial of degree 5 by
radicals. Abel in 1824 showed the impossibility
for such a formula. It was in 1830 that Galois
gave necessary and sufficient conditions in
terms of solvability of the Galois group. For ex-
ample. the Galois group of x* = 2 € Qx| is D..
the dihedral group of degree 4. Since D is a
solvable group. x* — 2 is solvable. as it is well
known that all polynomials of degree =4 are
solvable by radicals. If one considers the poly-
nomial 2x° = 5¥* + 5 € Q[x] which has exactly
three real roots in [— 1. 11. [1. 2], [2. 3]. it follows
that its Galois group is Ss. [If f(x) € Q[x] is an
irreducible polynomial over Q@ of degree p, p
prime. having exactly two nonreal roots in C.
then the Galois group of f(x) is S,.] Since S is
not a solvable group. it follows that f(x) is not
solvable by radicals.

In this connection a question naturally arises:
given a finite group G, does there exists f(x) €
Q[x] whose Galois group is G. The general prob-
lem remains unsolved for about 100 years except
for some special cases like symmetric groups,
alternating groups, and solvable groups (thus
groups of odd orders), for which the answer 1s
known to be in the affirmative.

X!l. Ruler and Compass
Constructions

The theory of fields provides solution to many
ancient geometric problems. Among such prob-
lems are

1. To construct, by ruler and compass. a
square having the same area as that of a given
circle.

2. To construct, by ruler and compass. a
cube having twice the volume of a given cube.

3. To trisect a given angle by ruler and com-
pass.

4. To construct, by ruler and compass. a
regular polygon having n sides.

In the days of Euclid the only use of a ruler
was to draw a line or line segment joining two
given points and the only use of a compass was
to draw a circle (or an ar¢) having a given point
as its center and passing through another given
point. Thus. a figure constructibie by ruler and
compass is completely determined by a set of
points. If § is a nonempty subset of the Euclid-
ean plane R*, then a line tor circle) is said to be
constructible from § if it is the line through two
distinct points in § (or it is the circle passing
through a point of § with its center at another
point of §). A point is constructible from § if it is
a point common either to two distinct lines con-
structible from S. or to a line and a circle each
constructible from S, or two distinct circles con-
structible from S. Let P, be a subset of B* having
at least two distinct points. Let P, be the set of
all points constructible from P,. Then P 2 Py.
The process can be continued to obtain an infi-
nite sequence (P,). n = 0. 1. 2. ... of subsets of
R? such that P,., 2 P,. for each n. Let P =
U, P,. A point, line, or circle constructible from
P is usually called constructible from Py.

A real number « is constructible from Q if the
point (x, 0) is constructible from © x Q@ C &~
Suppose that the coordinates of points of a cer-
tain subset P of - lie in a field K. Then the
equations of a line and a circle obtained from P
are respectively of the form ax + by + ¢ = 0,
and x2 + y2 + 20x + 2A +d=0,a. b, c. f g,
d € K. Thus, the coordinates of the point of
intersection of two such distinct lines lie in K.
Also, the coordinates of the points of intersec-
tion of such a line and such a circle or of two
such distinct circles lie in K(Va), a > 0, a € K.
It follows then that if « € R is constructible from
@, then there exists an ascending chain

Q=KQCK]C"‘CK,,

of subfields of R such that () « € K, (i) K; =
K. i(a). o} € K_,. 1 =i=n.Thus, [Ki: Ki-i] =
2. and so [K,: @] = 2. Therefore if u € R 15
constructible from Q it is necessary that there
exists a subfield K of R containing « such that [K:
Q] is a nonnegative power of 2. Another impor-
tant fact is that the numbers constructible from
© form a subfield of E.

Two immediate consequences of the above
are (i) it is impossible to construct a square
whose area is equal to the area of a circle of unit
radius by using ruler and compass only, and (i1)
it is impossible to construct a cube whose vol-
ume is two times the volume of a given cube of
unit side by using ruler and compass only. For,



XI. RULER AND COMPASS CONSTRUCTIONS 221

if a is the side of a square to be constructed in
(i), @* = . This implies a is not algebraic over
Q, since = is not algebraic over Q and so [Q(a):
Q] # 2™ for any nonnegative integer m. a € Cis
called a transcendental number if « is not alge-
braic over Q. For (ii), if « is the length of the side
of the cube to be constructed, then @®> = 2, and
so a satisfies the minimal polynomial x> — 2 over
Q. This means [Q(a): Q] = 3 # 2™ for any non-
negative integer.

An angle is constructible if its vertex is a con-
structible point and if each of its sides contains a
constructible point other than the vertex. Itis an
important consequence of the definition that an
angle « is constructible iff cos « is a construct-
ible number or equivalently (cos «, sin a),
(cos a, 0), or (0, sin a) is a constructible point (of
course iff sin « is a constructible number). This
yields a = 20° is not constructible, and so an
angle of 60° cannot be trisected by ruler and
compass (if @ = cos 20°, a satisfies the minimal
polynomial x3 — 3x — 1 € Q[x]).

Regarding the problem of constructing a regu-
lar polygon of n sides by ruler and compass, it is
clear that if this can be done, then the angle 2/n

subtended at its center by a side must also be
constructible. It is known by apealing to results
in Galois theory that a regular polygon of n sides
is constructible by ruler and compass iff ¢(n) is a
power of 2, where ¢ is the Euler function. In
particular, 7-gon is not constructible by ruler
and compass. If p is prime, then a p-gon is con-
structible by ruler and compass iff p = 2" + |
for some nonnegative integer h. (Primes of the
form 2™ + | are called Fermat primes.)
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