
Modules which are invariant under
monomorphisms of their injective hulls

A. Al-Ahmadi1, N. Er2, S. K. Jain3

(1,3)Department of Mathematics, Ohio University, Athens, Ohio
(2)Department of Mathematics, The Ohio State University-Newark, Ohio

November 4, 2003

Abstract

In this paper certain injectivity conditions in terms of extensions
of monomorphisms are considered. In particular, it is proved that a
ring R is a quasi-Frobenius ring if and only if every monomorphism
from any essential right ideal of RR into R

(N)
R can be extended to RR.

Also, known results on pseudo-injective modules are extended. Dinh
raised the question if a pseudo-injective CS module is quasi-injective.
The following results are obtained: M is quasi-injective if and only if
M is pseudo-injective and M2 is CS. Furthermore, a uniform pseudo-
injective is quasi-injective. As a consequence of this it is shown that
over a right Noetherian ring R, quasi-injective modules are precisely
pseudo-injective CS modules.

1 Introduction

Throughout the paper rings are associative with identity and modules are
unitary (right) modules. Let M and N be two right R-modules over a ring
R. M is called (pseudo-)N -injective if, for any submodule A of N , every
homomorphism (resp. monomorphism) in HomR(A,M) can be extended to
an element of HomR(N, M). M is called quasi-injective (pseudo-injective)
if it is (pseudo-)M -injective. M and N are called relatively injective if M
is N -injective and N is M -injective. A submodule K of M is said to be a
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complement in M of a submodule B if K is a maximal submodule among
those which have zero intersection with B. Complement submodules of M
coincide with the submodules of M which do not have any proper essential
extension in M . Also, if A is a complement in M and B is a complement in
A, then B is a complement in M . A CS module is one in which complement
submodules are direct summands. M is called a continuous module if it is
a CS module and submodules of M isomorphic to direct summands of M
are again direct summands. If M is continuous and A and B are two direct
summands of M with A∩B = 0, then A⊕B is also a direct summand of M .
For other properties of complements and CS/ continuous modules and the
proofs of the above mentioned properties, the reader is referred to [5] and
[13].

In this paper a weaker form of pseudo-N -injectivity is considered and
it is proved, in particular, that a ring R is quasi-Frobenius if and only if
monomorphisms from essential right ideals of R into R(N) can be extended
to RR. Also it is shown that a module M is invariant under monomorphisms
of its injective hull if and only if every monomorphism from any essential
submodule of M can be extended to M . This extension property is used to
characterize when semi-prime/right nonsingular rings are SI (see [9]).

Pseudo-injectivity has been studied by several authors such as Dinh, Jain,
Singh, Teply, Tuganbaev and others (see [3], [12], [11], [17], [18], [19]). It was
first introduced by Jain and Singh [12]. Teply [18] constructed examples of
pseudo-injective modules which are not quasi-injective. In [3] Dinh raised
the question if a pseudo-injective CS module is quasi-injective. He stated in
[4] that the answer is affirmative if we assume further that M is nonsingular.
In this paper we prove the following: M is quasi-injective if and only if M
is pseudo-injective and M2 is CS. Every uniform pseudo-injective module is
quasi-injective. Consequently, over a right Noetherian ring R, quasi-injective
modules are precisely pseudo-injective CS modules.

2 Essentially pseudo-N-injectivity

In this section we consider a weaker form of pseudo-N -injectivity.

Definition 1 Let M and N be two modules. M is said to be essentially
pseudo-N-injective if for any essential submodule A of N , any monomorphism
f : A → M can be extended to some gεHom(N,M). M is called essentially
pseudo-injective if M is essentially pseudo-M-injective.
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Obviously any pseudo-N -injective module is essentially pseudo-N -injective,
but the converse is not true in general.

Example 1 Let p be a prime. The Z-module Z/p2Z is not pseudo-(Z ⊕
Z/p3Z)-injective since the obvious isomorphism ι : pZ/p3Z→ Z/p2Z can not
be extended to any element of Hom(Z⊕Z/p3Z,Z/p2Z), but it is essentially
pseudo-(Z⊕ Z/p3Z)-injective.

The following proposition provides a characterization of essentially pseudo-
N -injectivity.

Proposition 1 Let M and N be two modules and X = M ⊕N . The follow-
ing conditions are equivalent:

(i) M is essentially pseudo-N-injective;

(ii) For any complement K in X of M with K ∩N = 0, M ⊕K = X.

Proof. (i) ⇒ (ii) Let K be a complement in X of M with K ∩ N = 0,
and πM : M ⊕ N → M and πN : M ⊕ N → N be the obvious projections.
Note that M ⊕K = M ⊕ πN(K) so that πN(K) is essential in N .

Now define θ : πN(K) → πM(K) as follows: For kεK with k = m + n
(mεM, nεN), θ(n) = m. Then θ is a monomorphism by the K ∩ N = 0
assumption. Hence θ can be extended to some g : N → M , since M is
essentially pseudo-N -injective. Now let T = {n + g(n) : nεN}. It is easy to
see that M ⊕ T = X. Also, T contains K essentially by modularity. Since
K is a complement, this implies T = K. Now the conclusion follows.

(ii) ⇒ (i) Assume (ii). Let A be an essential submodule of N and
f : A → M be a monomorphism. Let H = {a − f(a) : aεA}. Obvi-
ously, H ∩ N = 0. Also note that M ⊕ H = M ⊕ πN(H) = M ⊕ A, which
is essential in X. Let K be a complement in X of M containing H. By the
previous argument and modularity H is essential in K, so that K ∩N = 0.
By assumption we have M ⊕ K = X. Now let φ : M ⊕ K → M be the
obvious projection. Then the restriction φ|N is the desired extension of f .
The proof is now complete.

Proposition 2 If M is essentially pseudo-N-injective, every direct sum-
mand of M is essentially pseudo-N-injective.
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Proof. Let X = M ⊕ N and assume M = M0 ⊕ A. Let K be a comple-
ment in M0 ⊕ N of M0 with K ∩ N = 0. Then M ⊕ K is essential in X.
Since K is a complement submodule, the preceding argument implies that K
is also a complement in X of M . Now by Proposition 1 M ⊕K = X. Then
M0 ⊕K = M0 ⊕N , which yields the conclusion again by Proposition 1.

The next example shows that essentially pseudo-N-injectivity is not in-
herited by direct sums.

Example 2 Let F be a field and R =

(
F F ⊕ F
0 F

)
. Consider the R-

modules N =

(
F F ⊕ F
0 0

)
, S1 =

(
0 0⊕ F
0 0

)
, S2 =

(
0 F ⊕ 0
0 0

)
. Then S1

and S2 are both essentially pseudo-N -injective. But since the identity map
of S1 ⊕ S2 obviously can not be extended to an element of Hom(N,S1 ⊕ S2,
S1 ⊕ S2 is not essentially pseudo-N -injective.

Proposition 3 Let M and N be two modules. Then the following conditions
are equivalent:

(i) M is N-injective ;

(ii) M is essentially pseudo-N/L-injective for every submodule L of N .

Proof. (i) ⇒ (ii) follows from [13, Proposition 1.3].

(ii) ⇒ (i) Assume M is essentially pseudo-N/L-injective for every sub-
module L of N . Let X = M ⊕ N , A ⊆ X with A ∩ M = 0 and K be a
complement in X of M containing A. Also let T = K∩N . Since (M⊕K)/K
is essential in X/K, then (M⊕K)/T is essential in X/T , and K/T∩N/T = 0.
Thus it is easy to see that K/T is a complement in X/T of (M ⊕T )/T . Now
by assumption and Proposition 1 we have (M ⊕T )/T ⊕K/T = X/T . Hence
M ⊕K = X. Then by [5, Lemma 7.5] M is N -injective.

Corollary 1 M is injective if and only if M is essentially pseudo-N-injective
for any cyclic module N .

Corollary 2 A nonsingular module M is injective if and only if it is essen-
tially pseudo-N-injective for any nonsingular cyclic module N .
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The following result generalizes [3, Theorem 2.2] and [11, Theorem 1].

Theorem 1 If M⊕N is essentially pseudo-N-injective then M is N-injective.

Proof. Call X = M⊕N . Let A and K be as in the proof of Proposition 3.
Let π : M ⊕N → N be the obvious projection. Then M ⊕K = M ⊕ π(K)
and thus π(K) essential in N . Note that K ∼= π(K). Pick any isomorphism
f : π(K) → K. By assumption f can be extended to some monomorphism
g : N → X. Then g(π(K)) = K is essential in g(N). But since K is
a complement in X, we must have K = g(N), whence π(K) = N . Thus
M ⊕K = X. Now the result follows by [5, Lemma 7.5].

Corollary 3 M is quasi-injective if and only if M2 is essentially pseudo-M-
injective.

Ososfky proved in [15] that a ring R is semisimple Artinian if and only if
every cyclic right (left) R-module is injective.

Corollary 4 A ring R is semisimple Artinian if and only if every countably
generated right R-module is essentially pseudo-injective.

Proof. Let M be a cyclic right R-module. Then (M ⊕ R)(N) ∼= (M ⊕
R)(N)⊕(M⊕R)(N), which is countably generated, whence essentially pseudo-
injective. Thus (M ⊕R(N))2 is essentially pseudo-(M ⊕R(N))-injective. Then
by Theorem 1, (M ⊕R(N)) is quasi-injective, whence RR-injective. Therefore
M is injective. Now the conclusion follows by Osofsky’s theorem.

Corollary 5 ([3, Theorem 2.2]) If M ⊕ N is pseudo-injective then M and
N are relatively injective.

In what follows E(M) stands for the injective hull of M and we will
consider M as a submodule of E(M). Also we will use the notation EN(M)
for the submodule of E(M) generated by all the isomorphic copies of N .
Note that EN(M) is invariant under monomorphisms of End(E(M)) and
that ERR

(M) contains all elements of M with zero right annihilator in R.

Proposition 4 M is essentially pseudo-N-injective if and only if EN(M) ⊆
M .
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Proof. Assume EN(M) ⊆ M and let B be an essential submodule of N ,
and f : B → M be a monomorphism. There exists some monomorphism
g : N → E(M) such that g|B = f . By assumption g(N) ⊆ M . Thus g is the
desired extension of f , whence M is essentially pseudo-N -injective.

Conversely assume that M is essentially pseudo-N -injective. We will use
the same argument as in [13, Lemma 1.13]: Let h : N → E(M) be a
monomorphism. Let A = h−1(M). Then A is essential in N . Thus, by
assumption, the restriction h|A extends to some θ : N → M . Now assume
h(n) 6= θ(n) for some nεN . Then x = h(n)− θ(n) 6= 0. Since M is essential
in E(M), there exists some rεR such that 0 6= xr = h(nr) − θ(nr)εM . But
then h(nr)εM so that nrεA. This is a contradiction since θ|A = h|A. Now
the conclusion follows.

Corollary 6 M is essentially pseudo-injective if and only if it is invariant
under monomorphisms in End(E(M)).

Corollary 7 Let {Ai} be a family of submodules of a module N , B = ΣAi

and assume M is essentially pseudo-Ai-injective for each i. Then M is es-
sentially pseudo-B-injective.

Proof. Let f : B → E(M) be a monomorphism. Then f(B) = Σf(Ai).
By assumption and Proposition 4, f(B) is contained in M . Now the conclu-
sion follows again by Proposition 4.

The converse of the Corollary 7 does not hold in general.

Example 3 Let p be a prime. It is easy to see that the Z-module Z/p2Z is
not essentially pseudo-Z/p3Z-injective, but it is trivially essentially pseudo-
(Z⊕ Z/p3Z)-injective.

Corollary 8 Let E be an injective module and A be any submodule of E.
Then X = Σ{C|C ≤ E, C ∼= A} is essentially pseudo-injective.

Proof. First note that E(X) is a summand of E. As in the proof of
Corollary 7, for any monomorphism f : X → E(X), f(X) is contained in X.
The conclusion follows by Proposition 4.

Goodearl defined a right SI-ring to be one over which every singular right
module is injective ([9]). Such rings are precisely right nonsingular rings over
which singular right modules are semi-simple (see [5]).
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Theorem 2 Let R be a ring which is either right nonsingular or semi-prime.
The following conditions are equivalent:

(i) R is a right SI-ring;

(ii) Any two cyclic singular right R-modules are relatively essentially pseudo-
injective;

(iii) For any two cyclic singular right R-modules B and C, EB(C) ⊆ C.

Proof. (i) ⇒ (ii) Trivial.
(ii) ⇔ (iii) By Proposition 4.
(ii)⇒ (i) Assume (ii). Then cyclic singular right R-modules are relatively

injective by Proposition 3. So if C and M are singular right R-modules and
C is cyclic, then C is M -injective by the above argument and [13, Proposition
1.4]. This implies, by [5, Corollary 7.14], that all singular right R-modules
are semi-simple.

Now, if R is right nonsingular, the conclusion immediately follows by
the preceding remark and the above argument. Else, assume that R is
semi-prime. Since singular modules are semi-simple, Z(RR)2 = 0, whence
Z(RR) = 0. Now the conclusion follows by the above argument.

3 Pseudo-injectivity

Proposition 5 Let M and N be two modules and X = M ⊕N . The follow-
ing conditions are equivalent:

(i) M is pseudo-N-injective;

(ii) For any submodule A of X with A ∩ M = A ∩ N = 0, there exists a
submodule T of X containing A with M ⊕ T = X.

Proof. (i)⇒ (ii) Assume (i) and let A satisfy the assumptions of (ii). Also
let πM and πN be as in the Proposition 1, and define θ : πN(A) → πM(A)
as follows: θ(πN(a)) = πM(a), for aεA. Then, by assumption, θ extends to
some gεHom(N,M). Let T = {n + θ(n)|nεN}. Then we have M ⊕ T = X
and A ⊆ T , as required.

(ii) ⇒ (i) Assume (ii). Let B be a submodule of N and f : B → M be
a monomorphism. Call A = {b − f(b)|bεB}. Then A ∩ M = A ∩ N = 0.
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Now , by assumption, there exists a submodule T of X containing A with
M ⊕ T = X. Let π : M ⊕ T → M be the obvious projection. Then the
restriction π|N is the desired extension of f .

Jain and Singh proved in [12, Theorem 3.7] that for a nonsingular mod-
ule M with finite uniform dimension, the following conditions are equiv-
alent: (i) M is pseudo-injective; (ii) M is invariant under any monomor-
phism(”isomorphism” in the terminology of [12]) of End(E(M)) (i.e. M is
essentially pseudo-injective by Corollary 6). The following result extends it
to any module with finite uniform dimension.

Theorem 3 A module M with finite uniform dimension is pseudo-injective
if and only if it is essentially pseudo-injective.

Proof. Let M be essentially pseudo-injective and A be a submodule of M
with a monomorphism f : A → M . Call B = f(A). Pick, by Zorn’s Lemma,
two submodules A′ and B′ of M such that A⊕ A′ and B ⊕ B′ are essential
in M . Now, E(M) = E(A) ⊕ E(A′) = E(B) ⊕ E(B′) and E(A) ∼= E(B).
Then by [13, Theorem 1.29] and since M has finite uniform dimension, we
have E(A′) ∼= E(B′). Thus A′ and B′ have isomorphic essential submodules
U ⊆ A′ and V ⊆ B′. Then A ⊕ U and B ⊕ V are essential submodules of
M . Let φ : U → V be any isomorphism. Then there exists an isomorphism
θ : A ⊕ U → B ⊕ V such that θ|A = f . By assumption θ extends to some
gεEnd(M). Obviously, g|A = f . Therefore the conclusion follows.

Note that, in [1, Theorem 2.1] Alamelu gives a proof of the equivalence
in Theorem 3 without the finite dimension assumption. However the proof
is incorrect. In summary, the proof states that, for a module M which is
invariant under monomorphisms of its injective hull, and for any monomor-
phism f : N → M where N is a submodule of M , f can be extended to
a monomorphism f” : E(M) → E(M). This is not correct as the follow-
ing example shows: Let M be any directly infinite injective module with
M = N ⊕ B where M ∼= N and B is nonzero. Also let f : N → M be
any isomorphism. Obviously f can not be extended to a monomorphism in
End(E(M)).

In [6] and [7] Er studied the modules in which isomorphic copies of com-
plements are again complements. These are called SICC-modules in [7]. The
following result was proved in [12] for nonsingular modules, but the proof
works for an arbitrary pseudo-injective module as well.
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Lemma 1 (Jain and Singh [12, Lemma 3.1]) If M is pseudo-injective then
submodules of M isomorphic to complements in M are again complements.

Proof. Let K be a complement in M and A be a submodule of M with
an isomorphism f : A → K. Then f extends to some gεEnd(M) by assump-
tion. Pick, by Zorn’s Lemma, a complement A′ in M essentially containing
A. Then the restriction g|A′ is obviously a monomorphism. Hence K = g(A)
is essential in g(A′). Since K is a complement this implies K = g(A′), whence
A = A′. The conclusion follows.

Remark Modules in which submodules isomorphic to complements are
complements always decompose into relatively injective summands by [7,
Lemma 4]. So Corollary 5 also follows from that result and Lemma 1. It is
proved in [3, Corollary 2.8] that a pseudo-injective CS module is continuous.
This result also follows from Lemma 1 and the definition of CS.

Dinh [3] raised the question whether a CS module M which is pseudo-
injective is quasi-injective, and stated in [4] that the answer is affirmative
when M is furthermore nonsingular. Now we present some partial answers
to Dinh’s question.

Theorem 4 M is quasi-injective if and only if M is pseudo-injective and
M2 is CS.

Proof. Assume M is pseudo-injective and M2 is CS. Let M1 and M2 be
two isomorphic copies of M and X = M1 ⊕M2. Note that M is continuous
by the preceding remark.

First let A be any complement in X with A∩M1 = 0 and A∩M2 essential
in A. There exist submodules V and V ′ of M2 such that V ⊕ V ′ = M2

and V contains A ∩ M2 essentially. Also since M2 is CS by assumption,
we have A ⊕ A′ = X for some submodule A′ of X. Since V is a direct
summand of a continuous module, V is continuous (see [13]), whence it has
exchange property by [13, Theorem 3.4]. Since V ∩ A is essential in A we
have V ∩A′ = 0. Thus we must have V ⊕A′ = X. Hence A is isomorphic to
a summand, namely V of M2.

Now let C be a submodule of X such that C ∩ M1 = 0 and pick, by
Zorn’s Lemma, a complement K in X of M1 containing C. Again by Zorn’s
Lemma, choose a complement K1 in K of K ∩M2 and a complement K2 in
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K of K1 containing K ∩M2. Note that K ∩M2 is essential in K2 and that
K1 and K2 are complements in X by [5, 1.10]. By Proposition 5 there exists
some submodule T of X containing K1 with M1 ⊕ T = X. Then T ∼= M
and K1 is a complement in T , whence K1 is isomorphic to a complement in
M2. Also by the preceding paragraph K2 is isomorphic to a complement of
M2 too. Now consider the usual projection π : M1 ⊕ M2 → M2. We have
M1 ⊕ (K1 ⊕ K2) = M1 ⊕ (π(K1) ⊕ π(K2)), where π(Ki) ∼= Ki. Hence by
continuity of M2 and the above argument, π(K1) ⊕ π(K2) is a summand of
M2. Now, since K is a complement of M1, M1⊕K = M1⊕π(K) is essential in
X. Then π(K) is essential in M2. Also, by choice of Ki, K1⊕K2 is essential
in K. Then π(K1) ⊕ π(K2) is essential in π(K), hence in M2. This implies
that M2 = π(K1) ⊕ π(K2) = π(K). Thus M1 ⊕K = X. Now it follows by
[5, Lemma 7.5] that M1 is M2-injective. The proof is now complete.

The following is a key result.

Lemma 2 The following conditions hold:

(i) A uniform pseudo-injective module M is quasi-injective.

(ii) Let M =
⊕

iεI Mi be a direct sum of uniform modules Mi. M is quasi-
injective if and only if it is pseudo-injective.

Proof. (i) Let A be a submodule of M and f : A → M be a nonzero
homomorphism. If Ker(f) = 0 then f can be extended to an element of
End(M) by assumption. So assume Ker(f) 6= 0. Let δ = iA − f , where
iA : A → M is the inclusion map. Since Ker(f) 6= 0 and M is uniform,
Ker(δ) = 0. Then by pseudo-injectivity assumption δ can be extended to
some gεEnd(M). Now 1− g is obviously an extension of f . The conclusion
follows.

(ii) Let M be pseudo-injective. Then, by Corollary 5, M(I − i) is Mi-
injective for all iεI. Now by part (i) and since direct summands of pseudo-
injectives are obviously pseudo-injective, each Mi is quasi-injective. There-
fore M is quasi-injective.

Theorem 5 Over a right Noetherian ring R, a module M is quasi-injective
if and only if M is a pseudo-injective CS-module.

Proof. Let M be a pseudo-injective CS module. Then M is a direct sum
of uniform submodules by [14]. Now the result follows by Lemma 2.
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Before proving the next result, note that R is called a right countably
Σ-CS ring if R

(N)
R is a CS module.

Theorem 6 The following conditions are equivalent for a ring R:

(i) R is a quasi-Frobenius ring;

(ii) Every projective right R-module is essentially pseudo-RR-injective;

(iii) R
(N)
R is essentially pseudo-RR-injective;

(iv) R is a right countably Σ-CS ring with finite uniform dimension and RR

is essentially pseudo-injective.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious, and (i) ⇒
(iv) follows from the fact that every injective module is CS, and (iii) ⇒ (i)
follows by Theorem 1.

(iv) ⇒ (i) Since RR has finite uniform dimension, then RR is pseudo-
injective by Theorem 3. By assumption RR =

⊕n
i=1 eiR for some uniform

right ideals eiR. By Corollary 5 eiR are relatively injective. Also by Lemma 2
each eiR is a quasi-injective right R-module. Thus R is right self-injective
with finite uniform dimension. Hence R is a semiperfect right countably Σ-
CS ring. This implies by [10] that R is Artinian. Now the conclusion follows.

The following results were proved in [7, Theorem 2, Corollary 4, Theorem
3, Theorem 4] for modules in which submodules isomorphic to complements
are complements. Each pseudo-injective module satisfies this property by
Lemma 1, whence we have the following corollaries.

Corollary 9 Any decomposition of a pseudo-injective module into indecom-
posable submodules complements summands.

Corollary 10 A essentially pseudo-injective module with finite uniform di-
mension has the internal cancellation property.

Recall that every right R-module over a right Noetherian ring R is locally
Noetherian.

Corollary 11 If M is a locally Noetherian pseudo-injective module, then
M = A⊕B, where A is a maximal quasi-injective summand, B has no quasi-
injective summands, and A and B have no nonzero isomorphic submodules.

Corollary 12 A locally Noetherian Dedekind-finite pseudo-injective module
has internal cancellation property.
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