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FINITE GENERATION OF LIE ALGEBRAS ASSOCIATED TO

ASSOCIATIVE ALGEBRAS

ADEL ALAHMEDI A, HAMED ALSULAMIA, S. K. JAIN A,B , EFIM ZELMANOVA,C,1

Abstract. Let F be a field of characteristic not 2 . An associative F -algebra

R gives rise to the commutator Lie algebra R(−) = (R, [a, b] = ab − ba). If

the algebra R is equipped with an involution ∗ : R → R then the space of

the skew-symmetric elements K = {a ∈ R | a∗ = −a} is a Lie subalgebra of

R(−). In this paper we find sufficient conditions for the Lie algebras [R,R] and

[K,K] to be finitely generated.

1. Introduction

Let F be a field of characteristic not 2. An associative F -algebra R gives rise to

the commutator Lie algebra R(−) = (R, [a, b] = ab − ba) and the Jordan algebra

R(+) = (R, a ◦ b =
1

2
(ab + ba)). If the algebra R is equipped with an involution

∗ : R → R then the space of skew-symmetric elements K = {a ∈ R | a∗ = −a} is a

Lie subalgebra of R(−), the space of symmetric elements H = {a ∈ R | a∗ = a} is

a Jordan subalgebra of R(+). Following the result of J.M. Osborn (see[4]) on finite

generation of the Jordan algebras R(+), H, I. Herstein [4] raised the question about

finite generation of Lie algebras associated to R. In this paper we find sufficient

conditions for the Lie algebras [R(−), R(−)], [K,K] to be finitely generated.

Theorem 1. Let R be a finitely generated associative F-algebra with an idempotent

e such that ReR = R(1−e)R = R. Then the Lie algebra [R,R] is finitely generated.

The following example shows that the idempotent condition can not be dropped.

Example 1. The algebra R =
F [x] F [x]

0 F [x]

)

of triangular 2× 2 matrices over the

polynomial algebra F [x] is finitely generated. However the Lie algebra

[R,R] =

(

0 F [x]

0 0

)

is not.
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Theorem 2. Let R be a finitely generated associative F-algebra with an involution

∗ : R → R. Suppose that R contains an idempotent e such that ee∗ = e∗e = 0 and

ReR = R(1− e− e∗)R = R. Then the Lie algebra [K,K] is finitely generated.

The following example shows that the condition on the idempotent cannot be

relaxed.

Example 2. Consider the associative commutative algebra A = F [x, y]/id(x2)

with the automorphism ϕ of order 2: ϕ(x) = −x, ϕ(y) = y. The algebra R =

M2(A) of 2× 2 matrices over A has an involution

(

a b

c d

)

→

(

dϕ bϕ

cϕ aϕ

)

. We have

[K,K] ≤ xM2(F [y]), dimF [K,K] = ∞, which implies that algebra [K,K] is not

finitely generated.

W.E.Baxter [2] showed that if R is a simple F− algebra, which is not ≤ 16

dimensional over its center Z then the Lie algebra [K,K]/[K,K]
⋂

Z is simple.

Theorem 3. Let R be a simple finitely generated F− algebra with an involution

∗ : R → R. Suppose that R contains an idempotent e such that ee∗ = e∗e = 0. Then

the Lie algebra [K,K]/[K,K]
⋂

Z is finitely generated.

2. Finite generation of Lie algebras [R,R]

Consider the Peirce decompositionR = eRe+eR(1−e)+(1−e)Re+(1−e)R(1−e).

The components eR(1− e), (1− e)Re lie in [R, R] since eR(1− e) = [e, eR(1− e)],

(1− e)Re = [e, (1− e)Re].

Lemma 1. The Lie algebra [R, R] is generated by eR(1− e) + (1− e)Re.

Proof. We only need to show that

[eRe, eRe] + [(1− e)R(1− e), (1− e)R(1− e)] ⊆ Lie 〈eR(1− e), (1− e)Re〉 .

From R = R(1−e)R it follows that eRe = eR(1−e)Re. Hence an arbitrary element

from eRe can be represented as a sum
∑

i

aibi, ai ∈ eR(1− e), bi ∈ (1− e)Re. Now

aibi = ai ◦ bi +
1

2
[ai, bi], where x ◦ y =

1

2
(xy + yx). For an arbitrary element

c ∈ eRe we have [ai ◦ bi, c] = [ai, bi ◦ c] + [bi, ai ◦ c] ∈ [eR(1 − e), (1 − e)Re]

and [[ai, bi], c] = [ai, [bi, c]] − [bi, [ai, c]] ∈ [eR(1 − e), (1 − e)Re]. We showed that

[eRe, eRe] ⊆ [eR(1−e), (1−e)Re]. The inclusion [(1−e)R(1−e), (1−e)R(1−e)]⊆

[eR(1− e), (1− e)Re] is proved similarly. Lemma is proved. �
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Definition 1. A pair of vector spaces (A−, A+) with trilinear products

A+ ×A− ×A+ → A+, A− ×A+ ×A− → A−, aσ × b−σ × cσ 7→ (aσ, b−σ, cσ) ∈ Aσ,

σ = + or −, is called an associative pair if it satisfies the identities

((xσ , y−σ, zσ), u−σ, vσ) = (xσ, (y−σ, zσ, u−σ), vσ) = (xσ, y−σ, (zσ, u−σ, vσ))

Example 3. The pair of Peirce components (eR(1−e), (1−e)Re) is an associative

pair with respect to the operations (aσ, b−σ, cσ) = aσb−σcσ.

Lemma 2. Let R be a finitely generated algebra and let e, f ∈ R be idempotents

such that ReR = RfR = R. Then the associative pair P = (eRf, fRe) is finitely

generated.

Remark 4. In [8] it is proved that if R is a finitely generated algebra, e ∈ R is

an idempotent such that ReR = R then the Peirce component eRe is a finitely

generated algebra.

Proof. Suppose that the algebra R is generated by elements a1, . . . , am. Suppose

further that ai =
∑

k

αikuikevik =
∑

t

βitu
′
itfv

′
it, where 1 ≤ i ≤ m; αik, βit ∈ F ;

uik, vik, u
′
it, v

′
it are products in generators a1, . . . , am. Let d denote the maximum

lengths of the products uik, vik, u
′
it, v

′
it for all i, k, t. We claim that the pair P is

generated by elements euf , fue, where u runs over all products in a1, . . . , am of

length ≤ 3d+1. To prove the claim we need to show that for an arbitrary product

u = ai1 · · ·aiN of length N > 3d + 1 the elements euf , fue lie in the subpair

generated by evf , fve, where v runs over all products in a1, . . . , am of length < N .

There exist integers N1, N2, N3 such that N/3 − 1 < Ni ≤ N/3, 1 ≤ i ≤ 3 and

N = N1 + N2 + N3 + 2. Let u = u1aiu2aju3, length (ui) = Ni, 1 ≤ i ≤ 3. Then

ai =
∑

k

βkp
′
kfq

′
k, aj =

∑

t

γtp
′′
t eq

′′
t , where βk, γt ∈ F ; p′k, q

′
k, p

′′
t , q

′′
t are products in

a1, . . . , am of length ≤ d. Now euf =
∑

k,t

βkγteu1p
′
kfq

′
ku2p

′′
t eq

′′
t u3f. The lengths

of the products u1p
′
k, q

′
ku2p

′′
t , q

′′
t u3 are less than N . The element fue is treated

similarly. Lemma is proved. �

Remark 5. We don’t assume that the algebra R of Theorem 1 is unital. However

passing to the unital hull we see that if R is a finitely generated algebra, e ∈

R is an idempotent such that ReR = R(1 − e)R = R then the associative pair

(eR(1− e), (1 − e)Re) is finitely generated.

We will need some definitions from Jordan theory.
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Definition 2. An algebra over a field F of characteristic 6= 2 with multiplication

a ◦ b is called a Jordan algebra if it satisfies the identities

(J1) x ◦ y = y ◦ x

(J2) (x2 ◦ y) ◦ x = x2 ◦ (y ◦ x).

For references on Jordan algebras see [5, 7, 9].

An arbitrary associative algebra A gives rise to the Jordan algebra

A(+) = (A, a ◦ b =
1

2
(ab+ ba)).

Definition 3. A pair of F-spaces P = (P−, P+) with trilinear products

P σ × P−σ × P σ → P σ, aσ × b−σcσ → {aσ, b−σ, cσ} ∈ P σ; σ = + or −;

aσ, cσ ∈ P σ, b−σ ∈ P−σ, is called a Jordan pair if it satisfies the following identities

and all their linearizations:

(J1) {xσ, y−σ, {xσ, z−σ, xσ}} = {xσ, {y−σ, xσ, z−σ}, xσ},

(J2) {{xσ, y−σ, xσ}, y−σ, z−σ} = {xσ, {y−σ, xσ, y−σ}, zσ},

(J3) {{xσ, y−σ, xσ}, z−σ, {xσ, y−σ, xσ}} = {xσ, {y−σ, {xσ, z−σ, xσ}, y−σ}, xσ}.

An arbitrary associative pair A = (A−, A+), aσ × b−σ × cσ → (aσ, b−σ, cσ) ∈ Aσ

gives rise to the Jordan pair A(+) = (A−, A+) with operations {aσ, b−σ, cσ} =

(aσ, b−σ, cσ) + (cσ, b−σ, aσ) ∈ Aσ, σ = + or −.

For further properties of Jordan pairs see [6].

J.M. Osborn (see [4]) showed that a finitely generated associative algebra R gives

rise to the finitely generated Jordan algebra R(+).

Lemma 3. Let A = (A−, A+) be a finitely generated associative pair. Then the

Jordan pair A(+) is also finitely generated.

Proof. Suppose that the pair A is generated by elements a+1 , . . . , a
+
m ∈ A+;

a−1 , . . . , a
−
m ∈ A−. Consider an (associative) product a = a+i1a

−
j1
a+i2 · · · a

−
js
a+is+1

∈

A+. We claim that if the indices i1, . . . , is+1 are not all distinct then a is a Jordan

expression in shorter products. We have

x+y−u+v−u+ = (x+y−u+v−u+ + u+v−x+y−u+)− u+v−x+y−u+

= {x+y−u+, v−u+} −
1

2
{u+, v−x+y−u+} (1)

Linearizing this equality in u+ (see [9]) we get

x+y−{u−
1 , v

−, u+
2 } = {x+y−u+

1 v
−, u+

2 }+ {x+y−u+
2 , v

−, u+
1 } − {u+

1 , v
−x+y−, u+

2 } .

(2)
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Now (1) and (2) imply

x+y−u+v−u+z−t+ = x+y−(u+v−u+z−t+ + t+z−u+ v−u+)− x+y−t+z−u+v−u+

=
1

2
x+y−{{u+v−u+}, z−, t+} − x+y−t+z−u+v−u+

=
1

2
x+y−{{u+v−u+}, z−, t+}+

1

2
{x+y−t+, z−, {u+, v−, u+}}

−
1

2
{{u+, v−, u+}, z−x+y−, t+} − {x+y−t+z−u+, v−, u+}

+
1

2
{u+, z−t+y−x+v−, u+} (3)

If ip = iq, p < q, then a is an expression of the same type as the left hand sides of

(1), (3). Hence a is a Jordan expression in shorter products.

We showed that the Jordan pair A(+) is generated by elements a+i1a
−
j1
a+i2 · · · a

+
is+1

,

where the indices i1, . . . , is+1 are distinct, and elements a−j1a
+
i1
· · · a+isajs+1

, where

ji, . . . , js+1 are distinct. Hence the pair A(+) is finitely generated. �

Proof of Theorem 1.

Proof. Let R be a finitely generated associative algebra with an idempotent e such

that R = ReR = R(1− e)R. By Lemma 2 the associative pair

A = (eR(1− e), (1− e)Re) is finitely generated. By Lemma 3 the Jordan pair A(+)

is finitely generated as well. For arbitrary elements aσ, cσ ∈ Aσ, b−σ ∈ Aσ, σ = +

or −, we have {aσ, b−σ, cσ} = [[aσ, b−σ], cσ]. This implies that generators of the

Jordan pair A(+) generate the Lie algebra A− + [A−, A+] +A+. Now it remains to

recall that A− + [A−, A+] +A+ = [R,R] by Lemma 1. Theorem is proved. �

3. Finite generation of Lie algebras [K,K].

Let R, ∗ : R → R, be an involutive algebra with an idempotent e satisfying

ee∗ = e∗e = 0 and ReR = R(1 − e − e∗)R = R. Let s = 1 − e − e∗ 6= 0. For

an arbitrary element a ∈ R we denote {a} = a − a∗ ∈ K. Let R−2 = eRe∗,

R−1 = eRs+ sRe∗, R0 = eRe+ e∗Re∗ + sRs, R1 = e∗Rs+ sRe, R2 = e∗Re. Then

R = R−2 +R−1 +R0 +R1 +R2 is a Z-grading.

Denote Ki = K ∩Ri, Hi = H ∩Ri, where H = {a ∈ R|a∗ = a}.

Remark 6. By Lemma 2 the associative pair (R−2, R2) is finitely generated. The

restriction of ∗ is an involution of the pair (R−2, R2). However, −∗ is also an involu-

tion of (R−2, R2). The Jordan pair (K−2,K2) isK((R−2, R2), ∗) = H((R−2, R2),−∗).
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An analog of Lemma 3 for associative pairs is not true: the Jordan pair of sym-

metric elements of a finitely generated involutive associate pair may be not finitely

generated. An example can be derived from the Example 2 above.

Lemma 4. K2 = [K1,K1], H2 = spanF {k
2|k ∈ K1} and, similarly, K−2 =

[K−1,K−1], H−2 = spanF {k
2|k ∈ K−1}.

Proof. Recall that the algebra R is generated by the elements a1, . . . , am. An

arbitrary generator ai can be represented as ai =
∑

j

αijvijswij , where αij ∈ F ; vij ,

wij are products in generators a1, . . . , am (may be, empty). Let a = ai1 · · · air be

an arbitrary product of generators. Applying the equalities above to the generator

ai1 we get

e∗ae =
∑

αi1je
∗vi1jswi1jai2 · · ·aire

=
∑

αi1j{e
∗vi1js}{swi1jai2 · · · aire} ∈ K1K1.

Now K2 = {e∗Re} = {K1K1} = [K1,K1];

H2 = {e∗ae+ e∗a∗e|a ∈ R}

= {k1k2 + (k1k2)
∗|k1, k2 ∈ K1}

= spanF {k
2|k ∈ K1}.

Lemma is proved. �

Lemma 5. There exists a finite subset M−1 ⊂ K−1 such that R1 = M−1R2 +

R2M−1. Similarly, there exists a finite subset M1 ⊂ K1 such that R−1 = M1R−2+

R−2M1.

Proof. Represent each generator ai as ai =
∑

j

α′
ijv

′
ijew

′
ij , where α′

ij ∈ F ; v′ij ,

w′
ij are products in a1, . . . , am(may be, empty). Consider an element e∗as, where

a = ai1 · · · air and apply the decomposition above to air . We’ll get

e∗as =
∑

α′
irj

e∗ai1 · · ·air−1
v′irjew

′
irj

s

=
∑

α′
irj

e∗ai1 · · ·air−1
v′irj{ew

′
irj

s}.

It remains to choose M−1 = {{ew′
irj

s}} ⊆ K−1. Lemma is proved. �
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Lemma 6. (1)
∑

i6=0

Ki ⊆ [K,K];

(2) [K,K] is generated by K−1,K1.

Proof. (1) For arbitrary elements k1 = {sae}, k−1 = {sae∗}, a ∈ R, we have

k1 = [k1, e− e∗], k−1 = [e− e∗, k−1]. Hence K−1,K1 ⊆ [K,K]. By Lemma

4, K2 = [K1,K1], K−2 = [K−1,K−1] ⊆ [K,K].

(2) We have eRe = eRe∗Re = R−2R2 = K−2K2+K−2H2 +H−2K2 +H−2H2.

Hence {eRe} ⊆ [K−2,K2] + [H−2, H2] + K−2 ◦ H2 + H−2 ◦ K2. This im-

plies that [{eRe},K0] ⊆ [K−2,K2] + [H−2, H2] ⊆ [K−2,K2] + [K−1,K1] by

Lemma 4. Now sRs is spanned by elements of the type saebs; a, b ∈ R.

We have saebs = (sae− e∗a∗s)(ebs− sb∗e∗)− e∗a∗sb∗e∗ ∈ K1K−1+ e∗Re∗.

Hence {sRs} ⊆ [K−1,K1] + {eRe}. Now [{sRs},K0] ⊆ [K−1,K1] +

[K−2,K2] by what we proved above. Lemma is proved.

�

Lemma 7. Let n ≥ 2, a
(1)
2 , . . . , a

(n+1)
2 ∈ K2 ∪H2; b

(1)
−2, . . . , b

(n)
−2 ∈ K−2 ∪H−2 and

Card({b
(j)
−2, j = 1, . . . , n}) < n. Then

a
(1)
2 b

(1)
−2 · · · a

(n)
2 b

(n)
−2a

(n+1)
2 ∈

∑

a
(i1)
2 b

(j1)
−2 a

(i2)
2 · · · b

(jr)
−2 a

(ir+1)
2 (K−2K2+H−2H2), r < n.

Proof. Suppose that a
(n+1)
2 ∈ K2. If b

(n)
−2 ∈ K−2, then we are done. Let b

(n)
−2 ∈ H−2.

Suppose that there exists 1 ≤ i ≤ n− 1, such that b
(i)
−2 ∈ K−2. Then

a
(1)
2 · · · b

(i)
−2 · · ·a

(n)
2 b

(n)
−2a

(n+1)
2 = a

(1)
2 · · · {b

(i)
−2 · · · b

(n)
−2}a

(n+1)
2 ±a

(1)
2 · · · b

(n)
−2 · · · b

(i)
−2a

(n+1)
2

as claimed. Therefore we can assume that b
(i)
−2 ∈ H−2, 1 ≤ i ≤ n. Let a

(n)
2 ∈ H2.

Then

b
(n−1)
−2 a

(n)
2 b

(n)
−2a

(n+1)
2 = b

(n−1)
−2 (a

(n)
2 b

(n)
−2a

(n+1)
2 −a

(n+1)
2 b

(n)
−2a

(n)
2 )+b

(n−1)
−2 a

(n+1)
2 b

(n)
−2a

(n)
2

which is an element of H−2H2 + H−2K2H−2H2. We will assume therefore that

a
(n)
2 ∈ K2. Suppose that there exists 2 ≤ i ≤ n − 1, such that a

(i)
2 ∈ H2. Then

a
(i)
2 · · · a

(n)
2 b

(n)
−2a

(n+1)
2 = (a

(i)
2 b

(i)
−2 · · · a

(n)
2 + (a

(i)
2 b

(i)
−2 · · ·a

(n)
2 )∗)b

(n)
−2a

(n+1)
2

±a
(n)
2 · · · a

(i)
2 b

(n)
−2a

(n+1)
2 . Both summands on the right hand side fall into the case

that has just been considered above. From now on we will assume that a
(2)
2 , . . . ,

a
(n+1)
2 ∈ K2; b

(1)
−2, . . . , b

(n)
−2 ∈ H−2. Notice that b

(i−1)
−2 a

(i)
2 b

(i)
−2 = {b

(i−1)
−2 a

(i)
2 b

(i)
−2} −

b
(i)
−2a

(i)
2 b

(i−1)
−2 . The element b−2 = {b

(i−1)
−2 a

(i)
2 b

(i)
−2} lies in K−2. Hence the product

a
(1)
2 · · · a

(i−1)
2 b−2a

(i+1)
2 · · ·a

(n+1)
2 is one of those considered before. We proved that

the elements b
(i)
−2, 1 ≤ i ≤ n, in a

(1)
2 b

(1)
−2 · · · a

(n+1)
2 are skew-symmetric modulo

expressions of the desired type. Now taking into account that
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Card(b
(i)
−2, 1 ≤ i ≤ n) < n, we arrive at the conclusion of the lemma. We started

with the assumption that a
(n+1)
2 ∈ K2. The case of a

(n+1)
2 ∈ H2 is treated similarly.

This finishes the proof of the Lemma. �

Proof of Theorem 2.

Proof. By Lemma 2 the associative pair (R−2, R2) is finitely generated. Without

loss of generality we will assume that (R−2, R2) is generated by elements a
(i)
2 ,

b
(j)
−2 ∈ K ∪H, 1 ≤ i, j ≤ n. Consider the set of products P = P−2 ∪ P2,

P2 = {a
(i1)
2 b

(j1)
−2 · · · a

(ir)
2 |1 ≤ r ≤ n + 2}, P−2 = {b

(j1)
−2 a

(i1)
2 · · · b

(jr)
−2 |1 ≤ r ≤ n + 2}.

By Lemma 4 for an arbitrary product p ∈ P±2 we have p+ p∗ =
∑

αp,ik
2
p,i, where

αp,i ∈ F , kp,i ∈ K±1. By Lemma 5 there exist finite sets M−1 ⊂ K−1, M1 ⊂ K1

such that R1 = M−1R2 +R2M−1, R−1 = M1R−2 +R−2M1.

We claim that the Lie algebra [K,K] is generated by the union of the sets:

M1,M−1, {[{p}, {q}]|p, q ∈ P}, {[(p+p∗)◦kq,i, kq,i]|p, q ∈ P}, {M−1P2}, {M1P−2}.

By Lemma 4 and Lemma 6 it is sufficient to prove that all elements from K−1, K1

can be expressed by these elements. By Lemma 5 K1 is spanned by elements of the

type {k−1a
(i1)
2 b

(j1)
−2 · · · a

(ir)
2 }, k−1 ∈ M−1. We will use induction on r.

If r ≤ n+2 then the assumption is clear. If r > n+2 then by Lemma 7 applied

to a(ir−n+2)b(jr−n+2) . . . a(ir−1)b(jr−1)a(ir) the element k−1a
(i1)
2 b

(j1)
−2 · · · a

(ir)
2 is a linear

combination of elements of the type

k−1a
(µ1)
2 b

(ν1)
−2 · · · a

(µt)
2 k′−2k

′
2 and k−1a

(µ1)
2 b

(ν1)
−2 · · ·a

(µt)
2 h′

−2h
′
2, where t < r;

k′−2 ∈ {P−2}, k
′
2 ∈ {P2}; h

′
−2, h

′
2 ∈ {p+ p∗ | p ∈ P}. We have

{k−1a
(µ1)
2 b

(ν1)
−2 · · ·a(µt)k′−2k

′
2} = [{k−1a

(µ1)
2 · · ·a

(µt)
2 }, [k′−2, k

′
2]],

{k−1a
(µ1)
2 b

(ν1)
−2 · · · a

(µt)
2 h′

−2h
′
2} = [{k−1a

(µ1)
2 · · ·a

(µt)
2 }, [h′

−2, h
′
2]]

Now it remains to notice that if h′
2 = p+ p∗, p ∈ P , then h′

2 =
∑

αp, ik
2
p, i and

[h′
−2, k

2
p, i] = 2[h′

−2 ◦ kp, i, kp, i] ∈ [K−1, K1].

This finishes the proof of the theorem. �

4. Simple algebras

Let R be a simple finitely generated F− algebra with an involution ∗ : R → R,

char F 6= 2, e is an idemotent such that ee∗ = e∗e = 0, K = {a ∈ R | a∗ = −a}.

If e+ e∗ is not an identity of R then the Lie algebra [K,K] is finitely generated by

theorem 2. Suppose that e+ e∗ = 1. As above, let R−2 = eRe∗,

R0 = eRe + e∗Re∗, R2 = e∗Re. Then R = R−2 + R0 + R2 is a Z- grading of R.

Denote Ki = K
⋂

Ri, i = −2, 0, 2.
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If R has a nonzero center Z and dimZR < ∞ then Z is a finitely generated

F -algebra. Since Z is a field it follows that dimFZ < ∞, hence dimFR < ∞ and

dimF [K,K] < ∞. From now on we will assume that the algebra R is not finitely

dimensional over its center.

Lemma 8. The algebra R is generated by K−2 +K2.

Proof. Since the algebra R is not finite dimensional over its center it follows that R

does not satisfy a polynomial identity. By the result of S. Amitsur [1] R does not

satisfy a polynomial identity with involution. Hence [[[K,K],K], [[K,K],K]] 6= (0).

I.Herstein [4] proved that if A is a subalgebra of R such that [A,K] ⊆ A,A is not

commutative and dimZR > 16, then A = R. Applying this result to the associative

subalgebra generated by [[K,K],K] we see that [[K,K],K] generates R.

Let us show that [[K,K],K] ⊆ K−2 + [K−2,K2] +K2. The Lie algebra K−2 +

[K−2,K2]+K2 is an ideal in the Lie algebra K = K−2+K0+K2 and, hence, in the

Lie algebra [K,K]. As shown byW. E. Baxter [2] the Lie algebra [K,K]/[K,K]
⋂

Z

is simple. Hence [K,K] ⊆ K−2 + [K−2,K2] +K2 + Z. Now, [[K,K],K] ⊆ [K−2 +

[K−2,K2] +K2,K] ⊆ K−2+ [K−2,K2] +K2. This finished the proof of the lemma.

�

Lemma 9. Let A be a semi prime F− algebra with in involution ∗ : A → A,

char F 6= 2,K = K(A, ∗) = {a ∈ A | a∗ = −a}. Suppose that k ∈ K and

kKk = (0). Then k = 0.

Proof. Let H = {a ∈ A | a∗ = a}. Clearly, A = K+H. If k 6= 0 then kAk = kHk 6=

(0). Choose an element h ∈ H such that khk 6= 0. We have (khk)K(khk) = (0). For

an arbitrary element h1 ∈ H we have khkh1khk = k(hkh1+h1kh)khk−kh1khkhk =

0, since hkh1 + h1kh ∈ K and hkh ∈ K. This implies (khk)A(khk) = (0), which

contradicts the semi primeness of A. Lemma is proved.

Let F < X >= F < x1, ..., xm > be the free associative algebra without 1. The

mapping xi → −xi, 1 ≤ i ≤ m, extends to the involution

∗ : F < X >→ F < X > . For an arbitrary generator xi, arbitrary elements

a1, a2, a3 ∈ K(F < X >, ∗) denote f(xi, a1) = xia1xi, f(xi, a1, a2) = f(xia1)a2f(xi, a1),

f(xi, a1, a2, a3) = f(xi, a1, a2)a3f(xi, a1, a2).

Let I be the ideal of the algebra F < X > generated by all elements

f(xi, a1, a2, a3), 1 ≤ i ≤ m, a1, a2, a3 ∈ K(F < X >), ∗).
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Recall that the Baer radical B(A) of an associative algebra A is the smallest

ideal of A such that the factor-algebra A/B(A) is semi prime. The Baer radical is

locally nilpotent: an arbitrary finite collection of elements from B(A) generates a

nilpotent subalgebra (see [3]). �

Lemma 10. The factor-algebra F < X > /I is nilpotent.

Proof. Since I∗ = I, the involution ∗ gives rise to an involution onA = F < X > /I.

Let B(A) be the Baer radical of A, A = A/B(A). The radical B(A) is invariant with

respect to any involution, hence A is an involutive semi prime algebra. By Lemma

9 the image of an arbitrary element f(xi, a1, a2, a3), a1, a2, a3 ∈ K(F < X >, ∗),

is equal to zero in A. Again, subsequently applying lemma 9 three times we get

f(xi, a1, a2) = 0 in A, f(xi, a1) = 0 in A and, finally, xi = 0 in A,which means

that A = B(A). Since the algebra A is finitely generated we conclude that A is

nilpotent. Lemma is proved. �

The degree of nilpotency of the algebra A depends on the number of generators

m. Let F < x1, ..., xm >d(m)⊆ I.

Now let us return to our finitely generated simple algebra R. By Lemma 8 there

exists elements k+1 , ..., k
+
m ∈ K2, k

−
1 , ..., k

−
m ∈ K−2 that generates R.

Lemma 11. The Jordan pair (K−2,K2) is generated by elements {a}, where a are

products in k±i , 1 ≤ i ≤ m generated by products of odd length < d(2m).

Proof. Choose a generator kσi , σ = + or−, and three elements c1, c2, c3 ∈ K−σ2.

Denote f1 = kσi c1k
σ
i , f2 = f1c2f1, f3 = f2c3f2.

Choose arbitrary elements a1, ..., an ∈ K−σ2; b1, ..., bn ∈ Kσ2.

(1) Let u = a1b1..anbn. Then f1u = kσi c1k
σ
i u = kσi c1{k

σ
i u}±kσi (u

∗c1)k
σ
i . Hence

{f1u} = {kσi , c1, {k
σ
i u}}±{kσi , {c1u}, k

σ
i } is a nontrivial Jordan expression.

(2) Let u = b1a1...btat, v = at+1bt+1...anbn. Then {uf2v} = {{uf1}, c2, {f1u}}±

{f1...} is a nontrivial Jordan expression by (1).

(3) Let u = a1b1..bt−1at, v = at+1bt+1...an−1bn−1an, it remains to consider the

product uf3v.We have f3 = f2c3f2 = f1c2f1c3f1c2f1 = kσi c1k
σ
i c2k

σ
i c1k

σ
i c3k

σ
i c1k

σ
i c2k

σ
i c1k

σ
i =

kσi c
′
2k

σ
i c3k

σ
i c

′
2k

σ
i , where c′2 = c1k

σ
i c2k

σ
i c1.

Hence, {ukσi c
′
2k

σ
i c3k

σ
i c

′
2k

σ
i v} = {{ukσi c

′
2}, k

σ
i c3k

σ
i , {c

′
2k

σ
i v}} ± {c′2...}

The second summand can be treated in the same way as we did in (1).

Now we are ready to finish the proof of the lemma
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Let a = kσi1, k
−σ
j1 ...kσis, 2s−1 ≥ d(2m). Then by lemma 11 a is a Jordan expression

in elements b, where b are products in k±i , 1 ≤ i ≤ m, of odd length less than 2s−1.

This proves the lemma. �

As we have already mentioned above [K,K]+Z/Z = K−2+[K−2,K2]+K2+Z/Z.

In view of Lemma11 this implies that the algebra [K,K]/[K,K]
⋂

Z is finitely

generated. Theorem 3 is proved.
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