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1. Introduction

Leavitt path algebras were introduced in [1] as algebraic analogs of graph Cuntz–
Krieger C*-algebras. Since then they have received significant attention from alge-
braists. In this paper we (i) find a Groebner–Shirshov basis of a Leavitt path algebra,
(ii) determine necessary and sufficient conditions for polynomially bounded growth,
and (iii) find Gelfand–Kirillov dimension.

2. Definitions and Terminologies

A (directed) graph Γ = (V, E, s, r) consists of two sets V and E that are respectively
called vertices and edges, and two maps s, r : E → V . The vertices s(e) and r(e)
are referred to as the source and the range of the edge e, respectively. The graph
is called row-finite if for all vertices v ∈ V , card(s−1(v)) < ∞ A vertex v for which
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(s−1(v)) is empty is called a sink. A path p = e1 . . . en in a graph Γ is a sequence
of edges e1, . . . , en such that r(ei) = s(ei+1) for, i = 1, . . . , n − 1. In this case
we say that the path p starts at the vertex s(e1) and ends at the vertex r(en).
If s(e1) = r(en), then the path is closed. If p = e1 . . . en is a closed path and the
vertices s(e1), . . . , s(en) are distinct, then the subgraph (s(e1), . . . , s(en); e1, . . . , en)
of the graph Γ is called a cycle.

Let Γ be a row-finite graph and let F be a field. The Leavitt path F -algebra
L(Γ) is the F -algebra presented by the set of generators {v|v ∈ V }, {e, e∗|e ∈ E}
and the set of relators (1) vivj = δvi,vj vi for, all vi, vj ∈ V ; (2) s(e)e = er(e) =
e, r(e)e∗ = e∗s(e) = e∗ for all e ∈ E; (3) e∗f = δe,fr(e), for all e, f ∈ E; (4)
v =

∑
s(e)=v ee∗, for an arbitrary vertex v which is not a sink. The mapping which

sends v to v, for v ∈ V, e to e∗ and e∗ to e for e ∈ E, extends to an involution of
the algebra L(Γ). If p = e1 . . . en is a path, then p∗ = e∗n . . . e∗1.

3. A Basis of L(Γ)

For an arbitrary vertex v which is not a sink, choose an edge γ(v) such that
s(γ(v)) = v. We will refer to this edge as special. In other words, we fix a function
γ : V \{sinks} → E such that s(γ(v)) = v for an arbitrary v ∈ V \{sinks}.

Theorem 1. The following elements form a basis of the Leavitt path algebra L(Γ):
(i) v, where v ∈ V, (ii) p, p∗, where p is a path in Γ, (iii) pq∗, where p = e1, . . . , en,

q = f1, . . . , fm, ei, fj ∈ E, are paths that end at the same vertex r(en) = r(fm),
with the condition that the last edges en and fm are either distinct or equal, but not
special.

Proof. Recall that a well-ordering on a set is a total order (that is, any two ele-
ments can be ordered) such that every non-empty subset of elements has a least
element.

As a first step, we will introduce a certain well-ordering on the set of generators
X = V ∪ E ∪ E∗. Choose an arbitrary well-ordering on the set of vertices V. If
e, f are edges and s(e) < s(f) then e < f. It remains to order edges that have
the same source. Let v be a vertex which is not a sink. Let e1, . . . , ek be all the
edges that originate from v. Suppose ek = γ(v). We order the edges as follows:
e1 < e2 < · · · < ek = γ(v). Choose an arbitrary well-ordering on the set E∗.
For arbitrary elements v ∈ V, e ∈ E, f∗ ∈ E∗, we let v < e < f∗. Thus the set
X = V ∪ E ∪ E∗ is well-ordered. Let X∗ be the set of all words in the alphabet
X. The length-lex order (see [2, 3]) makes X∗ a well-ordered set. For all v ∈ V

and e ∈ E, we extend the set of relators (1)–(4) by (5): ve = 0, for v �= s(e);
ev = 0, for v �= r(e); ve∗ = 0, for v �= r(e); e∗v = 0, for v �= s(e), ef = 0
for e, f ∈ E ∪ E∗, r(e) �= s(f). The straightforward computations show that the
set of relators (1)–(5) is closed with respect to compositions (see [2, 3]). By the
Composition–Diamond Lemma ([2, 3]) the set of irreducible words (not containing
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the leading monomials of relators (1)–(5) as subwords) is a basis of L(Γ). This
completes the proof.

4. Leavitt Path Algebras of Polynomial Growth

Recall some general facts on growth of algebras. Let A be an algebra (not nec-
essarily unital), which is generated by a finite dimensional subspace V . Let V k

denote the span of all products v1 · · · vk, vi ∈ V, k ≤ n. Then V = V 1 ⊂ V 2 ⊂ · · · ,
A =

⋃
n≥1 V n and gV (n) = dimV n < ∞. Given the functions f, g from N =

{1, 2, . . .} to positive real numbers R+, we say that f � g if there exists c ∈ N

such that f(n) ≤ cg(cn), for all n. If f � g and g � f then the functions f, g

are said to be asymptotically equivalent, and we write f ∼ g. If W is another
finite dimensional subspace that generates A, then gV (n) ∼ gW (n). If gV (n) is
polynomially bounded then we define the Gelfand–Kirillov dimension of A as
GKdim A = lim supn→∞

ln gV (n)
lnn . The definition of GK-dimension does not depend

on a choice of the generating space V as long as dim V < ∞. If the growth of A is
not polynomially bounded, then GKdim A = ∞.

We now focus on finitely generated algebras and we will assume that the
graph Γ is finite. Let C1, C2 be distinct cycles such that V (C1) ∩ V (C2) �= φ.

Then we can renumber the vertices so that C1 = (v1, . . . , vm; e1, . . . , em), C2 =
(w1, . . . , wn; f1, . . . , fn), v1 = w1. Let p = e1 . . . em, q = f1 · · · fn.

Lemma 2. The elements p, q generate a free subalgebra in L(Γ).

Proof. By the Theorem 1 different paths viewed as elements of L(Γ) are linearly
independent. If u1, u2 are different words in two variables, then u1(p, q) and u2(p, q)
are different paths. Indeed, cutting out a possible common beginning we can assume
that u1, u2 start with different letters, u1(p, q) = p · · · , u2(p, q) = q · · · . If m > n

then the path u2(p, q) returns to the vertex v at the nth step, whereas u1(p, q) does
not. If m = n, then the left segments of length m of u1(p, q), u2(p, q) are different.
This proves the lemma.

Corollary 3. If two distinct cycles have a common vertex, then L(Γ) has exponen-
tial growth.

From now on we will assume that any two distinct cycles of the graph Γ do not
have a common vertex.

For cycles C′, C′′ we say that C′ ⇒ C′′ if there exists a path that starts in
C′and ends in C′′.

Lemma 4. If C′, C′′ are two cycles such that C′ ⇒ C′′, and C′′ ⇒ C′, then
C′ = C′′.

Proof. Choose a path p that starts in C′ and ends in C′′. Similarly, choose a
path q that starts in C′′ and finishes in C′. There exists also a path p′ on C′′,
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which connects r(p) with s(q) and a path q′ on C′, which connects r(q) with
s(p). Now, pp′qq′ is a closed path, which visits both C′ and C′′. Let t be a
closed path with this property (visiting both C′ and C′′) having a minimal length.
Write t = e1 · · · en, ei ∈ E. We claim that the vertices s(e1), . . . , s(en) are all
distinct, thus t = (s(e1), . . . , s(en); e1, . . . , en) is a cycle. Assuming the contrary,
let s(ei) = s(ej), 1 ≤ i < j ≤ n, and j − i is minimal with this property. Then
t′ = (s(ei), s(ei+1), . . . , s(ej); ei, ei+1, . . . , ej−1) is a cycle. Let us “cut it out”, that
is, consider the path t′′ = e1 · · · ei−1ej · · · en. This path is shorter than t. Hence
t′′cannot visit both C′ and C′′. Suppose that t′′ does not visit C′. Then at least one
of the vertices s(ei), . . . , s(ej−1) lies in C′. Since two intersecting cycles coincide, it
implies that t′ = C′, hence s(ej) lies in C′. This contradicts our assumption that
t′′ does not visit C′. Hence t = C′ = C′′. This proves the lemma.

A sequence of distinct cycles C1, . . . , Ck is a chain of length k if C1 ⇒ · · · ⇒ Ck.

The chain is said to have an exit if the cycle Ck has an exit (see [1]), that is, if
there exists an edge e such that s(e) ∈ V (Ck), but e does not belong to Ck.

Let d1 be the maximal length of a chain of cycles in Γ, and let d2 be the maximal
length of chain of cycles with an exit. Clearly, d2 ≤ d1.

Theorem 5. Let Γ be a finite graph.

(1) The Leavitt path algebra L(Γ) has polynomially bounded growth if and only if
any two distinct cycles of Γ do not have a common vertex;

(2) Under the above assumption GK dim L(Γ) = max(2d1 − 1, 2d2).

Proof. As in the proof of Theorem 1 we consider the generating set X = V ∪E∪E∗

of L(Γ). Let E′ be the set of edges that do not belong to any cycle. Let P ′ be the
set of all paths that are composed from edges from E′. Then an arbitrary path from
P ′ never arrives to the same vertex twice. Hence, |P ′| < ∞.

By Theorem 1 the space Span(Xn) is spanned by elements of the following
types:

(1) a vertex,
(2) a path p = p′1p1p

′
2p2 · · · pkp′k+1, where pi is a path on a cycle Ci, 1 ≤ i ≤ k,

C1 ⇒ · · · ⇒ Ck is a chain, p′i ∈ P ′, length(p) ≤ n,

(3) p∗, where p is a path of the type (2),
(4) pq∗, where p = p′1p1p

′
2p2 · · · pkp′k+1, q = q′1q1q

′
2 · · · qsq

′
s+1; pi and qj are paths

on cycles Ci, Dj respectively, C1 ⇒ · · · ⇒ Ck, D1 ⇒ · · · ⇒ Ds are chains;
p′i, q

′
j ∈ P ′, length(p)+length(q) ≤ n and r(p) = r(q). We will further subdivide

this case into two subcases:

(4.1) r(p) /∈ V (Ck) ∪ V (Ds);
(4.2) r(p) ∈ V (Ck) ∪ V (Ds).

We will estimate the number of products of length ≤ n in each of the above
cases and then use the following elementary fact:
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Let (an)n be the sum of s sequences (ain)n, 1 ≤ i ≤ s, ain > 0. Then

lim sup
n→∞

ln an

ln n
= max

(
lim sup

n→∞
ln ain

ln n
, 1 ≤ i ≤ s

)
.

Let us estimate the number of paths of the type (2). Fix a chain C1 ⇒ C2 ⇒
· · · ⇒ Ck. If C = (v1, . . . , vm; e1, . . . , em) is a cycle, let PC = e1 · · · em. For a given
cycle there are m such paths depending upon the choice of the starting point v1.

Let |(V (Ci)| = mi and let PCi be any one of the mi paths described above.
Then an arbitrary path on Ci can be represented as u′P l

i u
′′, where length(u′),

length(u
′′
) ≤ mi − 1. Hence every path of the type (2) which corresponds to the

chain C1 ⇒ C2 ⇒ · · · ⇒ Ck can be represented as p′1u
′
1P

l1
C1

u′′
1 · · · p′ku′

kP lk
Cku′′

kp′k+1,

where p′i ∈ P ′
i and length(u′

i), length(u′′
i ) ≤ mi −1. Clearly, m1l1 + · · ·+mklk ≤ n.

This implies that the number of such paths is asymptotically less than or equal to
nk ≤ nd1 . On the other hand, choosing a chain C1 ⇒ C2 ⇒ · · · ⇒ Cd1 of length d1,
we can construct ∼ nd1 paths of length ≤ n. The case (3) is similar to the case (2).

Consider now the elements of length ≤ n of the type pq∗, r(p) = r(q); the
path p passes through the cycles of the chain C1 ⇒ C2 ⇒ · · · ⇒ Ck on the way,
the path q passes through the cycles of the chain D1 ⇒ D2 ⇒ · · · ⇒ Ds on the
way and so p = p′1p1p

′
2 · · · pkp′k+1, where p′i ∈ P ′

i , each pi is a path on the cycle
Ci. Similarly, q = q′1q1q

′
2 · · · qsq

′
s+1. Arguing as above, we see that for fixed chains

C1 ⇒ C2 ⇒ · · · ⇒ Ck and D1 ⇒ D2 ⇒ · · · ⇒ Ds, the number of such paths is
asymptotically less than or equal to nk+s.

Suppose that the vertex v = r(p) = r(q) does not lie in V (Ck) ∪ V (Ds). Then
both cycles Ck and Ds have exits. Hence the number of paths of type (4.1) is ≤ n2d2 .

On the other hand, let C1 ⇒ C2 ⇒ · · · ⇒ Cd2 be a chain and let e be an exit of
the cycle Cd2 . Select paths p′2, . . . , p

′
d2

, where p′i connects Ci−1 to Ci, p′i ∈ P ′.
Select a path u′′

1 on the cycle C1 which connects r(PC1 ) to s(p′2), a path u′
2 in C2

which connects r(p′2) to s(PC2), a path u′′
2 on C2 which connects r(PC2) to s(P ′

3),
and so on. The path u′′

d2
connects r(PCd2

) to s(e).
Among the edges from s−1(s(e)), choose a special one γ(s(e)) different from e.

Then by Theorem 1, the elements

P l1
C1

u′′
1p′2u

′
2P

l2
C2u

′′
2p′3 · · ·P ld2

Cd2
u′′

d3
ee∗(u′′

2)∗(PC∗
d2

)ld2+1 · · · (u′′
1)∗(PC1)

l2d2 ,

li ≥ 1, (A)

are linearly independent. Let m be the total length of all elements other than P li
Ci

,

(PC∗
i
)l2d2−i+1 . The number of elements described in (A) above is the number of

nonnegative integral solutions of the inequality
d2∑

i=1

mi(li + l2d2−i+1) ≤ n − m, which is ∼ n2d2 .

Now suppose that the vertex v = r(p) = r(q) lies in Ck. Assume at first that
Ck �= Ds. Then the chain D1 ⇒ D2 ⇒ · · · ⇒ Ds has an exit. If k ≤ s, then the
number of the paths of this type is ≤ nk+s ≤ n2d2 .
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If s < k, then nk+s ≤ n2k−1 ≤ n2d1−1.

Next, let Ck = Ds. It means that the paths p′k+1, q
′
s+1 are empty; pk and qs are

both paths on the cycle Ck and in this case we have,

(i) pkq∗s = u, if pk = uqs, is a path on Ck,

(ii) pkq∗s = u∗, if qs = upk, is a path on Ck, and
(iii) pkq∗s = 0, otherwise.

The number of such elements pq∗ is � nk+s−1 ≤ n2d1−1.

On the other hand, let C1 ⇒ C2 ⇒ · · · ⇒ Cd2 be a chain of cycles.
Select paths p′2, . . . , p

′
d ∈ P ′, p′i connects Ci−1 to Ci; u′

i, u′′
i are paths on the

cycle Ci such that PC1u
′′
1p′2u

′
2PC2u

′′
2p′3 · · ·PCd1

�= 0. By Theorem 1, the elements

P l1
C1

u′′
1p′2u

′
2P

l2
C2

u′′
2p′′3 · · ·u′

d1
P

ld1
Cd1

(u′
d1

)∗(P ∗
Cd1−1

)ld1+1 · · · (P ∗
C1

)l2d1−1 are linearly inde-
pendent provided that li ≥ 1, 1 ≤ i ≤ 2d1 − 1. The number of these elements is
∼n2d1−1. This finishes the proof of Theorem 2.
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