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Abstract. We present a nonnegative rank factorization of a nonnegative ma-
trix A for the case in which one or both of A(1)A and AA(1) are nonnegative.

This gives, in particular, a known result for characterizing nonnegative ma-

trices when A†A or AA† is nonnegative. We applied this characterization to
the derivation of known results based on the characterization of nonnegative

monotone matrices.

1A matrix A = (aij) is nonnegative if aij ≥ 0 for all i, j, and the nonnegativity
is expressed as A ≥ 0. If there exists a matrix X such that X satisfies the following
equations, for λ v {1, 2, 3, 4, 5}: (1)AXA = A, (2)XAX = X, (3)AX = (AX)T ,
(4)XA = (XA)T , and (5) AX = XA, then X is called a λ−inverse of A,, also
known as a generalized inverse of A. A λ-inverse of A is denoted A(λ). If A(λ) > 0,
then A is referred to as λ-monotone. For λ = {1, 2, 3, 4}, X is the Moore–Penrose
inverse of A. If λ = {1, 2, 5}, then X indicates the group inverse of A. Whereas the
Moore–Penrose inverse always exists and is unique, the group inverse exists if and
only if the index of A is 1 and unique. The Moore–Penrose and group inverses of A
are denoted by A† and A#, respectively. For λ = 1, the matrixX = A(1) is known as
the 1-inverse of A. For an example of the applications of 1-inverses in interval linear
programming, see Ben–Israel and Greville [1]. Related work has bee motivated by
the utility of characterizing a nonnegative matrix A such that a linear system
Ax = B has a nonnegative solution or a best approximate nonnegative solution
when the output matrix B is also nonnegative. Several sufficiency conditions have
been demonstrated under a variety of hypotheses. For a linear system Ax = b,
x = A(1,3)b is a best approximate solution to the minimum norm, or x = A(1)b is
a solution provided that the system Ax = b is consistent. Along these lines, some
authors have studied the conditions under which A(λ) is nonnegative. For example,
for λ = {1, 2, 3, 4}, see ([1], Theorem 5.2), for λ = {1, 5}, see ([5], Theorem 1),
and for λ = 1, see ([6], Theorem 2). Under a weaker hypotheses, Jain–Tynan
[4] considered nonnegative matrices A such that A(1,3)A is nonnegative or A(1,4)A
is nonnegative. An n × n nonnegative matrix is monomial if each row and each
column has exactly one nonzero entry. Unless otherwise stated, by ”vector” we
mean a ”column vector”.

The purpose of this paper is to improve the known results presented in [4]. This
work characterizes nonnegative matrices A such that A(1)A or AA(1) is nonnegative.
As a consequence, some known results are obtained for the cases in which A(1) is
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nonnegative or A(1,3) is nonnegative. A new characterization is presented for the
case in which the matrix A has a monotone group inverse.

The reader is referred to [1], [2], and [7] for definitions and results relating to
generalized inverses.

1. Preliminaries

We first state the following key result due to Flor [3], which characterizes non-
negative idempotent matrices.

Lemma 1. If E is any nonnegative idempotent matrix of rank d, then there exists
a permutation matrix P such that

PEPT =


J JD 0 0
0 0 0 0
CJ CJD 0 0
0 0 0 0

 ,
where the zeros in the matrices are zero blocks of appropriate size, C,D ≥ 0,
J = XY T ,

X =


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xd

 , Y =


y1 0 · · · 0

0 y2
. . .

...
...

. . .
. . . 0

0 · · · 0 yd

 ,
xi and yi are positive vectors with yTi xi = 1, and yTi is the transpose of yi.

Lemma 2. ([2], p.68) Let A be a nonnegative r×n (n× r) matrix of rank r. Then
A has a nonnegative right (left) inverse if and only if it has a monomial submatrix
of rank r.

2. Main Results

Theorem 3. Let A be a nonnegative n × n matrix of rank d. Then the following
are equivalent:

(i) There exists an A(1) such that A(1)A = 0 (AA(1) = 0).
(ii) There exists a permutation matrix P (Q) such that PAPT = FG, (QAQT =

F1G1),

where F =


((a11)ij)
((a21)ij)
((a31)ij)
((a41)ij)

 is an n × d full column rank nonnegative matrix,

((a11)ij) are nonnegative d × d block matrices, where blocks are column vectors,
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G =
[
Y T Y TD 0 0

]
, Y T =


yT1 0 · · · 0

0 yT2
. . .

...
...

. . .
. . . 0

0 · · · 0 yTd

, yTi are positive vectors,

and D is a nonnegative matrix.

(F1 =


X
0
CX

0

 , G1 =
[

((b11)ij) ((b12)ij) ((b13)ij) ((b14)ij)
]
,

where ((b1k)ij) are nonnegative d× d block (row vector) matrices,

X =


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xd

 ,
xi are positive vectors, and C is a nonnegative matrix.)

(iii) A(1,2)A = 0 (AA(1,2) = 0).

Proof. Let A be an n×n nonnegative matrix of rank d such that A(1)A ≥ 0, for some
A(1). Since A(1)A is idempotent, by Flor (Lemma 1) there exists a permutation
matrix P such that

PA(1)APT =


J JD 0 0
0 0 0 0
CJ CJD 0 0
0 0 0 0

 ,
where J , X, Y , B, and C are as defined in the Lemma 1. Note that rank A(1)A

= rank A = rank J = r. We next partition PAPT in conformity with the partition
of PA(1)APT and let

PAPT =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 .
Since PAPTPA(1)APT = PAPT ,
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




J JD 0 0
0 0 0 0
CJ CJD 0 0
0 0 0 0

 =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 .
This implies that the third and fourth columns of PAPT are zero columns, the

second column is a right D multiple of the first column, and Ai1, i = 1, 2, 3, 4
satisfies the equation UJ = U in the variable U . Thus, the rank of A is the rank
of the first column of the above block partitioned matrix A. To solve the equation
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UJ = U , we partition U , which is in conformity with the partitioning of J , as in
Lemma 1, and write U = [U ′ij ] accordingly as a d× d block matrix. By multiplying
U by J and comparing its entries with the corresponding entries of J , we obtain
the result that each block submatrix Uij is of rank ≤ 1 and, indeed, it is of the form
Uij = uijy

T , where uij is a nonnegative vector of length d. This yields U = [uij ]Y
T .

Restricting U to the submatrix Ai1, we may write Ai1 = ((a(k1))ij)Y
T , k = 1, 2, 3, 4,

where (a(k1))ij are nonnegative column vectors of length d. Therefore,

PAPT =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



=


((a11)ij)Y

T ((a11)ij)Y
TD 0 0

((a21)ij)Y
T ((a21)ij)Y

TD 0 0
((a31)ij)Y

T ((a31)ij)Y
TD 0 0

((a41)ij)Y
T ((a41)ij)Y

TD 0 0



=


((a11)ij)
((a21)ij)
((a31)ij)
((a41)ij)

 [ Y T Y TD 0 0
]

= FG,

a nonnegative full rank factorization of PAPT , as desired. Given the condition
AA(1) = 0, we can obtain a similar factorization. This proves that (i) implies (ii).

Note that simply by interchanging the columns of F and the rows of G, A =
(PTF )(GP ) = F ′G′ (say) is a nonnegative rank factorization of A.

Next, we show that (ii) =⇒ (iii). By (ii), A = F ′G′ is a full rank factorization
of A. Recall that a full row rank matrix posses a right inverse, and a full column
rank matrix possesses a left inverse.

Also, observe that P−1Gr =


Y
0
0
0

is a right inverse G′r of G′ (Note that Y is a

d×d diagonal block matrix). Choosing A(1,2) = G′rF
′
l , where F ′l is some left inverse

of F ′, we have A(1,2)A = G′rF
′
lF
′G′ = G′rG

′ = 0, as desired.
(iii) =⇒ (i) is obvious.

The following result, which is an immediate consequence of the above theorem,
is well known.

Corollary 4. The class of nonnegative {1}-monotone matrices is the same as the
class of nonnegative {1,2}-monotone matrices.

As in ([4], Example 3), AA(1) may be nonnegative, but AA(1) need not be non-
negative. The proof of the theorem for the case in which both AA† and A†A are
nonnegative in ([4], Theorem 7) is quite technical. Below is provided a very short
argument and proof of a more general result.

Theorem 5. Let A be a nonnegative n × n matrix of rank d. Then the following
are equivalent:
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(i) There exists an A(1) such that A(1)A = 0 and AA(1) = 0.
(ii) A has full rank nonnegative rank factorizations of the type A = F ′G′ and

A = F ′′G′′, where G′ has a nonnegative right inverse G′r and F ′′ has a nonnegative

left inverse F
′′

l . Furthermore, G
′′

= UG′, where U is a nonnegative invertible

matrix, G′ =
[
Y T Y TD 0 0

]
P is as in Theorem 3 above, and F ′ = F

′′
V ,

where V is a nonnegative invertible matrix and F ′ = PT


X
0
CX

0

. In other words,

for two factorizations of the type stated, F ′ and F
′′

are conjugate, and the same
property holds for G′ and G

′′
.

Proof. (i) ⇒ (ii). The first part of the statement follows from Theorems 3 and 4.

The last part of the statement is addressed by first considering A = F ′G′ = F
′′
G.

Then G′′ = F ′′F ′G′ = UG′, where U = F
′′
F ′ is a nonnegative d×d matrix of rank

d and, hence, is invertible. Similarly, F ′ = F
′′
V , where V is invertible.

(ii)⇒ (i) is clear.

Remark 6. The above theorem can be invoked to yield the known characterizations
of nonnegative λ−monotone matrices for the subsets λ of {1, 2, 3, 4, 5}. Jain–Snyder
[6] provided a description of λ−monotone matrices for λ = [1] and for the case in
which A(1) is a polynomial in A. The above theorems provide, as a consequence,
an explicit characterization of nonnegative matrices A such that A(1,3) > 0 (see
Berman–Plemmons [2], Theorem 6.2, p.123).

Theorem 7. Let A be a nonnegative matrix. Then the following are equivalent.
(i) A(1,3) > 0.

(ii) A = PT


X
0
0
0

W [
Y T 0 0 0

]
P , where X and Y are n× d matrices,

as in Lemma 1, W is a nonsingular d×d monomial matrix, and P is a permutation
matrix.

(iii) A† = 0.
(iv) A(1,4) = 0.

Proof. (i) =⇒ (ii). Let A(1,3) > 0. Then by choosing A(1) = A(1,3), we have A(1)A =
0 and AA(1) = 0. Both A(1)A and AA(1) are symmetric, which implies that C = 0
and D = 0 in part (ii) of the statement of Theorem 3. Thus, by invoking Theorem
3, A has full rank nonnegative rank factorizations of the types A = F ′G′ and
A = F ′′G′′, where G′ has a nonnegative right inverse G′r and F

′′
has a nonnegative

left inverse F
′′

l .

Furthermore, G
′′

= UG′, where U is a nonnegative invertible matrix and G′ =[
Y T 0 0 0

]
P . Also, F ′ = F ′′V , where V is a nonnegative invertible matrix
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and F ′′ = PT


X
0
0
0

 . Then

A = F ′′G′′ = PT


X
0
0
0

UG′ = PT


X
0
0
0

U [ Y T 0 0 0
]
P.

Also,

A = F ′G′ = F ′′V
[
Y T 0 0 0

]
P = PT


X
0
0
0

V [ Y T 0 0 0
]
P.

By equating the two expressions for A and using the properties of X and Y , we
obtain U = V. Furthermore,

A(1,3) = PT


Y
0
0
0

U−1 [ XT 0 0 0
]
P = 0,

which implies that U−1 = 0. This shows, by Lemma 2, that U is monomial. This
proves (i) =⇒ (ii).

(ii) =⇒ (iii). In the proof of (i) =⇒ (ii), the formula given for A(1,3) also holds
for A†. Hence, A† = 0.

(iii) =⇒ (iv) is obvious. The statement (iv) yields the statement (ii) exactly in
the same manner as the proof of the statement (i) =⇒ (ii). Since we have already
shown (ii) =⇒ (iii) =⇒ (i), it follows that (iv) =⇒ (i). This completes the proof.

The characterization of nonnegative matrices having nonnegative group inverses
was considered by Jain–Kwak–Goel [5]. Although some authors have provided
equivalent conditions for the monotonicities of various generalized inverses, the
conditions required for the monotonicity of a monotone group have not been studied
except in [5]. Stochastic matrices having nonnegative group inverses are considered
in [5]. It is interesting that an application of Theorem 3 provides a new equivalent
statement for the monotonicity of the group inverse.

Theorem 8. Let A be a nonnegative matrix of index 1. Then the following state-
ments are equivalent:

(i) A# > 0.
(ii) There exists a permutation matrix P such that

PAPT = FG =


((a11)ij)

0
((a31)ij)

0

 [ Y T Y TD 0 0
]

is a full rank nonnegative factorization, where ((a11)ij) is a nonnegative monomial
d × d block matrix (the block entries of which are the columns (a11)ij), the block
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submatrix ((a31)ij) is a constant multiple of the block submatrix ((a11)ij), and

Y T =


yT1 0 · · · 0

0 yT2
. . .

...
...

. . .
. . . 0

0 · · · 0 yTd

 , yi are positive vectors.

(iii) There exists a permutation matrix P such that

PAPT = F1G1 =


X
0
CX

0

 [ ((b11)ij) ((b12)ij) 0 0
]

is a full rank nonnegative factorization, where ((b11)ij) is a nonnegative mono-
mial d × d block matrix, the block entries of which are row vectors ((b11)ij), the
submatrix ((b12)ij) is a constant multiple C of the block matrix ((b11)ij), and

X =


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xd

, xi are positive vectors.

Proof. We will prove (i)⇐⇒ (ii). Assume (i). Since A#A = AA# > 0, by Theorem
3, there exists a permutation matrix P such that

PAPT = FG = (F1G1)

where

F =


((a11)ij)
((a21)ij)
((a31)ij)
((a41)ij)


is an n × d full column rank nonnegative matrix, ((a11)ij) are nonnegative d × d
block matrices (the i − jth block entry of the block matrix ((a11)ij) is column
(a11)ij), and

G =
[
Y T Y TD 0 0

]
, Y T =


yT1 0 · · · 0

0 yT2
. . .

...
...

. . .
. . . 0

0 · · · 0 yTd

 .
Note that

F1 =


X
0
CX

0


and G1 =

[
((b11)ij) ((b12)ij) ((b13)ij) ((b14)ij)

]
, where ((b1k)ij) are nonneg-

ative d × d block matrices (the i − jth block entry of the block matrix ((b1k)ij) is
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the row vector ((b1k)ij) and X =


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xd

 . By comparing the two

factorizations, we obtain ((a21)ij) = 0, ((a41)ij) = 0, ((b(13))ij) = ((b(14))ij) = 0.
Thus,

A =


((a11)ij)

0
((a31)ij)

0

 [ Y T Y TD 0 0
]

=


X
0
CX

0

 [ ((b11)ij) ((b12)ij) 0 0
]
.

This implies that ((a11)ij)Y
T = X((b11)ij). Observe that after multiplying the fac-

tors of A, it follows that the (1, 1)-block entry determines the rank of A, since other
block entries are multiple of the (1, 1)-block entry. Furthermore, since Y TY = I,
rank(((a11)ij)) = d. Similarly, XTX = I yields rank (X((b11)ij)) = rank((b11)ij)=
d. Now, GF = Y T ((a11)ij) is an invertible d×d matrix according to the Cline The-
orem ([1], Theorem 2, p.163). Also, by the Cline formula, A# = F (GF )−2G ≥ 0.

Since G has a nonnegative right inverse


Y
0
0
0

, it follows that F (GF )−2 ≥ 0. This

implies that GF (GF )−2 ≥ 0, and so (GF )−1 ≥ 0. Therefore, by Lemma 2, GF is a

monomial matrix. Now, GF = Y T ((a11)ij), where Y T =


yT1 0 · · · 0

0 yT2
. . .

...
...

. . .
. . . 0

0 · · · 0 yTd

 .
This shows that ((a11)ij) is a block monomial matrix because yi are positive vec-
tors. This proves (ii). Let us now assume (ii). We have GF = Y T ((a11)ij). Because

((a11)ij) is a block monomial matrix and Y T =


yT1 0 · · · 0

0 yT2
. . .

...
...

. . .
. . . 0

0 · · · 0 yTd

 , yi are pos-

itive vectors, it follows that Y T ((a11)ij) is a d × d monomial nonnegative matrix.
By applying the Cline formula, A# = F (GF )−2G, we obtain A# ≥ 0, proving (i).
The proof of (i)⇔ (iii) is similar. This completes the proof.

We conclude with an illustration of Theorem 8.
We know that A# is a polynomial in A. Let us choose A to be a 4×4 matrix with

rank A = 2. Following the form of the full rank factorization provided in Theorem
8 above, let

F =


[

0
0

] [
3
4

]
[

0
1

] [
0
0

]
 , G =

[ [
1 1

] [
0 0

][
0 0

] [
2 3

] ] .
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Then

A = FG =


[

0 0
0 0

] [
6 9
8 12

]
[

0 0
1 1

] [
0 0
0 0

]
 .

GF =

[
0 7
3 0

]
, (GF )−1 =

1

21

[
0 7
3 0

]
, (GF )−2 =

1

21
I.

A# = F (GF )−2G =
1

21
FG =

1

21
A.

We note an interesting fact: (GF )−1 = p(GF ), where p(t) is a polynomial over a
field, if and only if A# = p(A). In this example, p(t) = 1

21 t .
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