MONOTONICITY OF NONNEGATIVE MATRICES
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ABSTRACT. We present a nonnegative rank factorization of a nonnegative ma-
trix A for the case in which one or both of AN A and AA(1) are nonnegative.
This gives, in particular, a known result for characterizing nonnegative ma-
trices when ATA or AAT is nonnegative. We applied this characterization to
the derivation of known results based on the characterization of nonnegative
monotone matrices.

'A matrix A = (a;5) is nonnegative if a;; > 0 for all 4, j, and the nonnegativity
is expressed as A > 0. If there exists a matrix X such that X satisfies the following
equations, for A C {1,2,3,4,5}: (1)AXA = A4, (2)XAX = X, (3)AX = (AX)T,
(4)XA = (XA)T, and (5) AX = XA, then X is called a A—inverse of A,, also
known as a generalized inverse of A. A M-inverse of A is denoted AM). If AN >0,
then A is referred to as A-monotone. For A = {1,2,3,4}, X is the Moore-Penrose
inverse of A. If A = {1,2,5}, then X indicates the group inverse of A. Whereas the
Moore—Penrose inverse always exists and is unique, the group inverse exists if and
only if the index of A is 1 and unique. The Moore-Penrose and group inverses of A
are denoted by At and A#, respectively. For A = 1, the matrix X = A" is known as
the 1-inverse of A. For an example of the applications of 1-inverses in interval linear
programming, see Ben—Israel and Greville [1]. Related work has bee motivated by
the utility of characterizing a nonnegative matrix A such that a linear system
Ax = B has a nonnegative solution or a best approximate nonnegative solution
when the output matrix B is also nonnegative. Several sufficiency conditions have
been demonstrated under a variety of hypotheses. For a linear system Ax = b,
z = A3} is a best approximate solution to the minimum norm, or z = AMp is
a solution provided that the system Ax = b is consistent. Along these lines, some
authors have studied the conditions under which A®) is nonnegative. For example,
for A = {1,2,3,4}, see ([1], Theorem 5.2), for A = {1,5}, see ([5], Theorem 1),
and for A = 1, see ([6], Theorem 2). Under a weaker hypotheses, Jain—Tynan
[4] considered nonnegative matrices A such that A(*3) A is nonnegative or A% A
is nonnegative. An m X m nonnegative matrix is monomial if each row and each
column has exactly one nonzero entry. Unless otherwise stated, by ”vector” we
mean a ”column vector”.

The purpose of this paper is to improve the known results presented in [4]. This
work characterizes nonnegative matrices A such that A A or AA(M) is nonnegative.
As a consequence, some known results are obtained for the cases in which A is
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nonnegative or A3 is nonnegative. A new characterization is presented for the
case in which the matrix A has a monotone group inverse.

The reader is referred to [1], [2], and [7] for definitions and results relating to
generalized inverses.

1. PRELIMINARIES

We first state the following key result due to Flor [3], which characterizes non-
negative idempotent matrices.

Lemma 1. If E is any nonnegative idempotent matriz of rank d, then there exists
a permutation matriz P such that

J JD 0 0
Lo o oo

PEPT =1\ ¢y cjp 0 0 |
0 0O 0 O

where the zeros in the matrices are zero blocks of appropriate size, C,D > 0,
J=XYT,

X1 0 0 Y1 0 0

X — 0 To ’ y — 0 Y2 ,
: . . 0 : - . 0
0 0 T4 0 0 Yd

x; and y; are positive vectors with yl'z; = 1, and y! is the transpose of y;.

Lemma 2. ([2], p.68) Let A be a nonnegative r X n (n X r) matriz of rank r. Then
A has a nonnegative right (left) inverse if and only if it has a monomial submatrix
of rank r.

2. MAIN RESULTS

Theorem 3. Let A be a nonnegative n x n matriz of rank d. Then the following
are equivalent:

(1) There exists an A(Y) such that AMA >0 (AAM >0).
(ii) There exists a permutation matrix P (Q) such that PAPT = FG, (QAQT =

F1G1)7

11

a )i

21

((a)i5)
where F' = EEZ&%? ; is an n x d full column rank nonnegative matrix,
ij

((a*")ij)

a'l),;;) are nonnegative d x d block matrices, where blocks are column vectors,
J
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le 0O --- 0
T T T 0 v o T "
G = [ Y YD 0 0 ], Y: = ' , y; are positive vectors,
0 0 yj
and D is a nonnegative matrix.
X
0
(Fr=1 oy [Gr=[ (") (®2)) (?)5) (")) ],
0
where ((b'%);;) are nonnegative d x d block (row vector) matrices,
1 0 -+ 0
X — 0 X2 : :
: . w0
0 - 0 a4

x; are positive vectors, and C is a nonnegative matrix.)

(iii) AL A >0 (AAL2) > 0).

Proof. Let A be an nxn nonnegative matrix of rank d such that A A > 0, for some
AM Since AMA is idempotent, by Flor (Lemma 1) there exists a permutation
matrix P such that

J JD 0 0
Wapr | 00 00

PASAPT =\ o7 cyp 0 0 |
0 0 00

where J, X, Y, B, and C are as defined in the Lemma 1. Note that rank A" A
= rank A = rank J = r. We next partition PAP” in conformity with the partition
of PAWAPT and let

A A Az Ay
Ao Agp Az Aoy
Az Az Azz Az
Ay A Agz Ay

Since PAPTPAMWAPT = PAPT,

PAPT =

A A Az Ay J JD 0 0 Ay A Az Ay
Ag1 Azp Az Aoy 0 0 0 0| | Aax Az Azs Ay
Az; Azp Azz Az CJ CJD 0 0| | As1 Az Az Asy
Ay Ay Ayz Ay 0 0 0 0 Ay Ay Ayz Ay

This implies that the third and fourth columns of PAP” are zero columns, the
second column is a right D multiple of the first column, and A;;, ¢ = 1,2,3,4
satisfies the equation UJ = U in the variable U. Thus, the rank of A is the rank
of the first column of the above block partitioned matrix A. To solve the equation
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UJ = U, we partition U, which is in conformity with the partitioning of J, as in
Lemma 1, and write U = [U};] accordingly as a d x d block matrix. By multiplying
U by J and comparing its entries with the corresponding entries of J, we obtain
the result that each block submatrix Uj;; is of rank < 1 and, indeed, it is of the form
Uij = uijy’, where u;; is a nonnegative vector of length d. This yields U = [u;;]Y 7.
Restricting U to the submatrix A4;1, we may write A;1 = ((a*Y);;))YT, k =1,2,3,4,
where (a(*));; are nonnegative column vectors of length d. Therefore,

[ A Ap Az Ay
Ag1 Axx Agg Ao
PAPT - A31 A32 A3z A34
| Asr A Agz Ay
((@"Mip)Y™ ((@')i)Y™D 0 0
_ ((a21)ij)YT ((azl)ij)YTD 0 0
T (@Y YT ((@®h)i)YTD 00
| ((@)i)YT ((@*)i)YTD 0 0
[ ((ai)ij)
= Eggglijg [YT YD 0 0]
L ((a41)ij)

a nonnegative full rank factorization of PAPT, as desired. Given the condition
AAM >0, we can obtain a similar factorization. This proves that (i) implies (i4).
Note that simply by interchanging the columns of F and the rows of G, A =
(PTF)(GP) = F'G’ (say) is a nonnegative rank factorization of A.
Next, we show that (ii) = (4i1). By (ii), A = F'G’ is a full rank factorization
of A. Recall that a full row rank matrix posses a right inverse, and a full column

rank matrix possesses a left inverse.
Y

Also, observe that P~1G, = is a right inverse G of G’ (Note that Y is a

0
0

d x d diagonal block matrix). Choosing A2 = G/ F/, where F] is some left inverse
of F', we have A2 A =G/ F/F'G' = G!.G' 2 0, as desired.
(#91) = (i) is obvious. 1

The following result, which is an immediate consequence of the above theorem,
is well known.

Corollary 4. The class of nonnegative {1}-monotone matrices is the same as the
class of nonnegative {1,2}-monotone matrices.

As in ([4], Example 3), AA") may be nonnegative, but AA(") need not be non-
negative. The proof of the theorem for the case in which both AAT and ATA are
nonnegative in ([4], Theorem 7) is quite technical. Below is provided a very short
argument and proof of a more general result.

Theorem 5. Let A be a nonnegative n X n matriz of rank d. Then the following
are equivalent:
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(i) There exists an A such that AW A >0 and AAM > 0.
(74) A has full rank nonnegative rank factorizations of the type A = F'G’ and
A = F"G", where G’ has a nonnegative right inverse G,. and F”’ has a nonnegative

left inverse Fl”. Furthermore, G = UG’, where U is a nonnegative invertible

matrix, G' = [ YT YD 0 0 ]P is as in Theorem 3 above, and F/ = F''V,
X

where V is a nonnegative invertible matrix and F’ = PT COX . In other words,
0

for two factorizations of the type stated, F' and F " are conjugate, and the same
property holds for G’ and G .

Proof. (i) = (ii). The first part of the statement follows from Theorems 3 and 4.
The last part of the statement is addressed by first considering A = F'G' = F'G.
Then G” = F"F'G' = UG’, where U = F" F' is a nonnegative d x d matrix of rank
d and, hence, is invertible. Similarly, F/ = F ”V, where V is invertible.

(i4) = (i) is clear. 11

Remark 6. The above theorem can be invoked to yield the known characterizations
of nonnegative \—monotone matrices for the subsets X of {1,2,3,4,5}. Jain—Snyder
[6] provided a description of A—monotone matrices for A = [1] and for the case in
which A®M is a polynomial in A. The above theorems provide, as a consequence,
an explicit characterization of nonnegative matrices A such that A3 > 0 (see
Berman—Plemmons [2], Theorem 6.2, p.123).

Theorem 7. Let A be a nonnegative matriz. Then the following are equivalent.
(i) A3 > 0.

(ii) A= PT W[YT 0 0 0]P, where X and Y are n X d matrices,

X
0
0
0
as in Lemma 1, W is a nonsingular d X d monomial matrix, and P is a permutation
matrix.

(iii) AT = 0.

(iv) A4 > 0.

Proof. (i) = (ii). Let A(43) > 0. Then by choosing AV = A(13) | we have AN A >
0 and AAM > 0. Both AW A and AA™M are symmetric, which implies that C' =0
and D = 0 in part (ii) of the statement of Theorem 3. Thus, by invoking Theorem
3, A has full rank nonnegative rank factorizations of the types A = F'G’ and
A= F"G", where G’ has a nonnegative right inverse G/. and F has a nonnegative
left inverse Fl”.

Furthermore, G = UG’, where U is a nonnegative invertible matrix and G/ =
[YT 0 0 0]P. Also, F/ = F"V, where V is a nonnegative invertible matrix
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X
and F"" = PT 8 . Then
0
X X
A=rr@ =P | 0 lug=PT| 0 |U[YT 0 0 0]P
0 0

Also,

A=FG=F'V[Y"T 0 0 0]P=P" VIYT 00 0]P

oo o™

By equating the two expressions for A and using the properties of X and Y, we
obtain U = V. Furthermore,

A3 — pT

Y
0 |-
o |UTT[XT 00 0]P20,

0

which implies that U~! > 0. This shows, by Lemma 2, that U is monomial. This
proves (i) = (it).

(i4) == (iii). In the proof of (i) == (ii), the formula given for A(%) also holds
for Af. Hence, AT > 0.

(#41) = (iv) is obvious. The statement (iv) yields the statement (i) exactly in
the same manner as the proof of the statement (i) = (i%). Since we have already
shown (i) = (it3) = (i), it follows that (iv) = (i). This completes the proof. I

The characterization of nonnegative matrices having nonnegative group inverses
was considered by Jain—Kwak—Goel [5]. Although some authors have provided
equivalent conditions for the monotonicities of various generalized inverses, the
conditions required for the monotonicity of a monotone group have not been studied
except in [5]. Stochastic matrices having nonnegative group inverses are considered
in [5]. It is interesting that an application of Theorem 3 provides a new equivalent
statement for the monotonicity of the group inverse.

Theorem 8. Let A be a nonnegative matrix of index 1. Then the following state-
ments are equivalent:

(i) A* > 0.

(#4) There exists a permutation matrix P such that

((a'h))
0
((@®)i)
0
is a full rank nonnegative factorization, where ((a'!);;) is a nonnegative monomial
d x d block matrix (the block entries of which are the columns (a'l);;), the block

PAPT = FG = [YT YD 0 0]
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submatrix ((a®!);;) is a constant multiple of the block submatrix ((a'');;), and

yI' 0 - 0
T 0 v . _ .
Y' = , Y; are positive vectors.
S o0
o --- 0 yg

(7i7) There exists a permutation matrix P such that
X
0
PAPT =Gy = | & | [ (6M)) (@) 0 0]
0

is a full rank nonnegative factorization, where ((b'!);;) is a nonnegative mono-
mial d x d block matrix, the block entries of which are row vectors ((b'!);;), the
submatrix ((b'?);;) is a constant multiple C' of the block matrix ((b*!);;), and

1 0 -+ 0
0 T2 : ol

X = , *; are positive vectors.
: " 0
0 - 0 xy4

Proof. We will prove (i) <= (ii). Assume (i). Since A# A = AA# > 0, by Theorem
3, there exists a permutation matrix P such that

PAPT = FG = (FI1Gy)

where
((ai)ij)
((a™)i5)
F = B J
((ai)zj)
((a™)i)
is an n x d full column rank nonnegative matrix, ((a'!);;) are nonnegative d x d

block matrices (the i — jth block entry of the block matrix ((a'l);;) is column
(a'')i;), and

yI 0 0
0 yT
G=[YT Y™D 0 0], Y"'= 2
SURETR
0 0 ¥
Note that
X
0
=1 cox
0

and Gy = [ (0™)i;)  ((b"%)i;) ((0")s;) ((0™)i;) ], where ((b'%);;) are nonneg-
ative d x d block matrices (the i — jth block entry of the block matrix ((b*%);;) is
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r, 0 - 0

the row vector ((b'*);;) and X = 0 o

. By comparing the two
0
0 - 0 Ty
factorizations, we obtain ((aQI)ij) = O, ((a41)ij) = 0, ((b(lg))”) = ((b(14))”) =0.
Thus,

((a™)iy) X
A= gy [ Y7 YD 0 0] = | G [T (@) 0 o],

0 0
This implies that ((a'!);;)Y? = X((b'1);;). Observe that after multiplying the fac-
tors of A, it follows that the (1, 1)-block entry determines the rank of A, since other
block entries are multiple of the (1,1)-block entry. Furthermore, since Y7Y = I,
rank(((a'l);;)) = d. Similarly, X7 X = I yields rank (X ((b'!);;)) = rank((b*!);;)=
d. Now, GF = YT ((a'!);;) is an invertible d x d matrix according to the Cline The-
orem ([1], Theorem 2, p.163). Also, by the Cline formula, A#* = F(GF)~2G > 0.

Y
Since G has a nonnegative right inverse 'E it follows that F/(GF)~2 > 0. This
0
implies that GF(GF)~2 > 0, and so (GF)~! > 0. Therefore, by Lemma 2, GF is a
: : T((,11 T 0 Zlg :
monomial matrix. Now, GF =Y " ((a'');;), where Y* =
: . . 0
0o --- 0 yg

This shows that ((a'l);;) is a block monomial matrix because y; are positive vec-
tors. This proves (i7). Let us now assume (ii). We have GF = YT ((a'!);;). Because

le o --- 0
T o
((a'');;) is a block monomial matrix and Y7 = 0 2 "7 |, y; are pos-
: . -0
o --- 0 yg

itive vectors, it follows that Y7 ((a'l);;) is a d x d monomial nonnegative matrix.
By applying the Cline formula, A#* = F(GF)~2G, we obtain A# > 0, proving (4).
The proof of (i) < (#7) is similar. This completes the proof. I

We conclude with an illustration of Theorem 8.

We know that A% is a polynomial in A. Let us choose A to be a 4 x 4 matrix with
rank A = 2. Following the form of the full rank factorization provided in Theorem
8 above, let

=
Il
_o O O
S O = w
Q
I
| —
O =
O =
(R E—
N O
w o
| IS
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Then
00 6 9
0 0 8 12
A=FG= 00 00
11 0 0
Jo 7 . 1fo 7 1
GF_[3 O],(GF) _21[3 0},(01?) =51
1 1
A* = F(GF)™*G = —FG=—A
(GF) 70 =g F6 =51

We note an interesting fact: (GF)~! = p(GF), where p(t) is a polynomial over a

field, if and only if A# = p(A). In this example, p(t) = 2%t :

Acknowledgment: The authors would like to express their thanks to both the
referee and the editor for their kind and helpful comments.

REFERENCES

[1] Adi Ben-Israel and Thomas N.E. Greville, Generalized Inverses and Applications,
Springer-Verlag, New York(2003).

[2] A. Berman and R.L. Plemmons, Nonnegative Matrices in Mathematical Sciences,
SIAM, Philadelphia, PA(1994).

[3] P. Flor, On groups of nonnegative matrices, Compositio Math. 21(1969),376-382.

[4] S.K.Jain and John Tynan, Nonnegative matrices A withAA# > 0, Linear Algebra
and its Applications, 379(2004),381-394.

[5] S. K. Jain. Edward K. Kwak and V. K. Goel, Decopmposition of nonnegative group
monotone matrices, Trans. Amer. Math. Soc.257(1980),371-385

[6] S. K. Jain and L. Snyder, ,Nonnegative A—monotone matrices, SIAM J.Algebraic
and Discrete Methods,2(1981),66-76

[7] S. K. Jain, Linear Systems having nonnegatiove best approximate solutions- a survey.
Algebra and itsApplocations, Lecture Notes in Pure and applied Mathematics, vol
91, pp 99-132, Dekker, New Tork, 1984

ADEL ALAHMEDI, DEPARTMENT OF MATHEMATICS, KING ABDULAZIZ UNIVERSITY, JEDDAH, SA,
EMAIL: ADELNIFE2@YAHOO.COM;, YUSEF AKHAMEES, DEPARTMENT OF MATHEMATICS, KING SAUD
UNIVERSITY, RIYADH, SA, EMAIL::YKHAMEES@QGMAIL.COM;, S. K. JAIN, DEPARTMENT OF MATH-
EMATICS, KING ABDULAZIZ UNIVERSITY JEDDAH, SA,AND, KING SAUD UNIVERSITY, RIYADH, SA,
AND, OHIO UNIVERSITY, USA, EMAIL:JAINQOHIO.EDU



