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Absorption law
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1. Preliminaries

In this article, we make use of simple but interesting characterizations of regular 
elements, and elements with outer inverse in a semigroup, to obtain explicit expressions 
for the class of outer inverses with the property like range inclusion in the context of 
matrices. Throughout this article, S denotes a semigroup and R denotes an associative 
ring. The semigroup S and associative ring R need not have multiplicative identities.

Definition 1. An element a in a semigroup S is said to be regular (or von Neumann 
regular) if there exists an element b in S satisfying the equation

aba = a, (1)

in which case b is said to be a generalized inverse of a. If an element c satisfies the 
equation

cac = c, (2)

then c is called an outer inverse of a. Further, b is said to be a reflexive generalized 
inverse of a if a = aba and b = bab.

An arbitrary outer inverse of a is denoted by a=, a generalized inverse of a by a− and 
a reflexive generalized inverse of a by a−r . Readers are referred to [1–3] for definitions 
and properties of different types of outer inverses (pseudo inverses). We refer to [4] and 
[5] for basic notions in the theory of generalized inverse of matrices. Our discussion is 
confined to results associated with generalized inverses and outer inverses. They can 
be extended to other generalized inverses (e.g., Moore–Penrose inverse and core–EP 
generalized inverse).

The absorption law “a−1(a + b)b−1 = a−1 + b−1” has been extended to singular 
elements of an associative ring by several authors, e.g., [6,7]. They considered the problem 
of finding equivalent conditions for the absorption laws in terms of the Moore–Penrose, 
group, core inverse, core inverse dual, and {1}, {1, 2}, {1, 3}, and {1, 4} inverses in rings 
with identity. In [6,7], the authors characterized the elements a, b satisfying a−(a +b)b− =
a−+b− for all a− and b− belonging to a certain class of generalized inverse. In Section 3, 
we readdress the absorption law by considering a=(a +b)b= = a=+b= for some a= and b=. 
This modification is inspired by the observation that e1(e1 + e2)e2 = e1 + e2 ⇔ e1 = e2, 
where e1 and e2 are any real or complex idempotent matrices. We characterize every 
pair of outer inverses a= and b= that satisfy the modified absorption law.

An idempotent element e in S is a regular element in S, as e2 = e. We say that two 
elements a, b of a semigroup are space equivalent if
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aS = bS and Sa = Sb. (3)

If b, c are outer inverses of an element a in a semigroup and are space equivalent, then 
b = c. The following simple lemmas will be useful in our discussion.

Lemma 1. Given an element a in a semigroup S, the following statements are equivalent.

(i) a has an outer inverse in S.
(ii) There exists an idempotent element e ∈ S such that eS ⊆ aS.
(iii) There exists an idempotent element f ∈ S such that Sf ⊆ Sa.

In fact, e in (ii) is given by ax for some x ∈ {a=} and f in (iii) is given by ya for some 
y ∈ {a=}.

Proof. Let c be an arbitrary outer inverse of a. Now for e = ac, we observe that eS ⊆ aS. 
This proves (i) ⇒ (ii).

To prove the converse, let e be an idempotent such that eS ⊆ aS. Since e is an 
idempotent, it follows that e ∈ eS ⊆ aS and therefore e = az for some z ∈ S. By taking 
x = ze, observe that xax = x and ax = e hold by direct substitution. So, we have (ii) ⇒
(i).

The proof of (i) ⇔ (iii) is similar to that of (i) ⇔ (ii). �
If eS = aS and a ∈ aS in (ii) of Lemma 1, one verifies that a = ea = axa, where 

e = ax for some x. Thus, we have the following lemma.

Lemma 2. Given an element a in a semigroup S, the following statements are equivalent.

(i) a is regular.
(ii) There exists an idempotent element e ∈ S such that a ∈ eS = aS.
(iii) There exists an idempotent element f ∈ S such that a ∈ Sf = Sa.

The following corollary is immediate from the above result.

Corollary 3. Let a, b ∈ S such that a, b ∈ aS = bS. Then a is regular if and only if b is 
also regular.

The above characterization of regular elements helps us to generalize Theorem 1 of [8]
on right–left symmetry of aR⊕bR = (a +b)R to the case of an associative ring that need 
not have a multiplicative identity (unity). We state this result from [8] in the following 
without proof.

Theorem 4 (Theorem 1, [8]). Let R be a ring with multiplicative identity and let a, b ∈ R

be such that a +b is von Neumann regular. Then the following statements are equivalent.
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(i) aR⊕ bR = (a + b)R.
(ii) Ra ⊕Rb = R(a + b).
(iii) aR ∩ bR = (0) and Ra ∩Rb = (0).

2. Explicit expression for outer inverses

In this section, we provide explicit expressions for outer inverses with certain range 
inclusion property.

Theorem 5. For a ∈ S and regular elements x, y ∈ S, the following statements are 
equivalent.

(i) There exists an outer inverse b ∈ {a=} such that bS = yS and Sb = Sx.
(ii) xay is regular and

xS = (xay)S and Sy = S(xay). (4)

Proof. (⇒). Suppose b ∈ {a=} is an outer inverse such that bS = yS and Sb = Sx. Since 
x, y are regular, we have x ∈ Sx and y ∈ yS, and therefore y = bay and x = xab. So, we 
have

xS = xabS = xayS.

Sy = Sxay can be proved similarly. The inclusion xay ∈ xS is trivial and therefore 
Corollary 3 ensures that xS = xayS implies that xay is regular.

(⇐). Suppose x, y are regular elements that satisfy (ii). Define

b = ygx, (5)

where g ∈ {(xay)−r } is an arbitrary reflexive generalized inverse of xay. Note that

bab = ygxaygx

= ygx,

which proves that b is an outer inverse of a. Further, from the definition of b we have

yS ⊇ ygxS(= bS) ⊇ yg(xay)S = yS,

because yg(xay) = y, since x, a, y satisfy (4). Therefore bS = yS. The equality Sb = Sx

can be proved in a similar fashion. �
The condition that x, y are regular, in Theorem 5, could be dropped if statement (ii) 

is modified to say ‘xay is regular, x ∈ xS = (xay)S, and y ∈ Sy = S(xay)’.
The following corollary can be proved in the same way that Theorem 5 was proved.
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Corollary 6. Let a ∈ S and let x, y in S be regular.

(i) There exists a= such that a=S = yS and Sa= ⊆ Sx if and only if xay is regular 
and xS = (xay)S.

(ii) There exists a= such that Sa= = Sx and a=S ⊆ yS if and only if xay is regular 
and Sy = S(xay).

The classes of outer inverses in both cases (i) and (ii) are given by

{y(xay)−r x}.

The outer inverse discussed in Theorem 5 is exactly the same as the (y, x)-inverse 
introduced by Drazin in [3]. In fact, the expression on the right-hand side of (5) is 
uniquely determined and we may replace it by y(xay)−x for any generalized inverse 
(xay)− of xay. This might not be the case in Corollary 6, as y(xay)−r x is not uniquely 
determined. Now, we relax the conditions given by Drazin [3] and in Theorem 5, and 
define a (y, x)-outer inverse.

Definition 2 ((y, x)-outer inverse). Given elements a, x, y from a semigroup S, an outer 
inverse b of a is said to be a (y, x)-outer inverse if

bS ⊆ yS and Sb ⊆ Sx. (6)

Theorem 7. Let a, x, y be any elements in a semigroup S. Then the following statements 
are equivalent.

(i) a has a (y, x)-outer inverse.
(ii) xay has an outer inverse.

In both cases (i) and (ii), the classes of (y, x)-outer inverses are given by

{y(xay)=x}, (7)

for all choices of outer inverses (xay)=.

Proof. (ii) ⇒ (i) is proved by verifying b = y(xay)=x is an outer inverse of a for every 
choice of (xay)=.

To prove (i) ⇒ (ii), consider an outer inverse b of a such that bS ⊆ yS and Sb ⊆ Sx. 
Since ba is an idempotent in yS, Lemma 1 ensures that there exists an outer inverse c of 
y such that yc = ba. Similarly, there exists d ∈ {x=} such that dx = ab. Since bab = b, 
one verifies that b = yzx for some z such that cyzxd = z. Now substitute b = yzx in 
bab = b and then multiply c from the left and d from the left to get z(xay)z = z. So, 
xay has an outer inverse and z ∈ {(xay)=}. �
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3. Absorption law

In this section, we consider the problem of finding necessary and sufficient conditions 
on the pair of outer inverses of the elements in order that they satisfy the extended 
absorption law. Throughout this section, R is an associative ring that need not have a 
multiplicative identity.

Definition 3. Elements a, b ∈ R with outer inverses c ∈ {a=} and d ∈ {b=} are said to 
satisfy the absorption (extended) law if

c(a + b)d = c + d. (8)

The following theorem characterizes pairs of all outer inverses from {a=} and {b=}
that satisfy the absorption law.

Theorem 8. Let a, b be any elements in R. If c and d are any outer inverses of a and b, 
respectively, then the following statements are equivalent.

(i) The outer inverses satisfy the absorption law (8).
(ii) There exist regular elements x and y in R such that

xR = (xby)R, (9)

Ry = R(xay). (10)

(iii)

cR ⊇ dR and Rc ⊆ Rd. (11)

Further, if x, y ∈ S satisfy (9) and (10), then corresponding pairs of c ∈ {a=} and 
d ∈ {b=} with the property yR = cR ⊇ dR and Rx = Rd ⊇ Rc are given by

c = y(xay)−r x, d = y(xby)−r x, (12)

for different choices of (xay)−r and (xby)−r .

Proof. Let c ∈ {a=} and d ∈ {b=} be outer inverses of a and b, respectively, satisfying (8). 
Multiply ca on the both sides of (8) from the left and multiply bd on the both sides of 
(8) from the right, to get

c = cbd ∈ Rd and d = cad ∈ cR. (13)

So, (ii) is proved by taking x = c and y = d.
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To prove (ii) ⇒ (iii), consider any regular elements x, y satisfying (ii) of the theorem. 
Since x is regular, we have x ∈ xR. Now (9) and Corollary 3 imply that xby is regu-
lar. Similarly, regularity of y together with equation (10) and Corollary 3 implies that 
xay is regular. Let (xay)−r and (xby)−r be reflexive generalized inverses of xay and xby
respectively. Now let

c = y(xay)−r x and d = y(xby)−r x. (14)

Since y is regular and therefore y ∈ Ry, (10) implies that y(xay)−r (xay) = y and we get

cR = y(xay)−r xR ⊇ y(xay)−r (xay)R = yR ⊇ dR. (15)

Similarly, using regularity of x and (9), we get

Rd = Ry(xby)−r x ⊇ R(xby)(xby)−r x = Rx ⊇ Rc. (16)

Hence (iii) is proved.
(iii) ⇒ (i) is proved by observing that (iii) is equivalent to the condition given in (13), 

from which the absorption law follows.
The rest of the theorem follows immediately from Corollary 6. �
The following corollary follows from equality of the row rank and column rank of a 

matrix.

Corollary 9. Let a, b be n × n matrices over the complex field. Then c ∈ {a=} and 
d ∈ {b=} are outer inverses for which the absorption law holds if and only if c and d
are space equivalent (i.e., the column spaces of c and d are same and similarly with row 
spaces). In this case the condition (ii) of Theorem 8 is

rank(x) = rank(xay) = rank(xby) = rank(y).

Further, an outer inverse c ∈ {a=} is paired with at most one d ∈ {b=} satisfying the 
absorption law.

Many results related to the absorption law with c ∈ {a=} and d ∈ {b=} belonging to 
certain classes of outer inverses (discussed in [6,7]) can be derived from Theorem 8. As 
an illustration we consider the case of the Drazin inverse.

A reflexive generalized inverse g ∈ S of a ∈ S is a group inverse if ag = ga. The 
group inverse, whenever exists, is unique and is denoted by a#. It is known that the 
group inverse g of a, whenever it exists, is a generalized inverse satisfying gS = aS

and Sg = Sa. Similarly, the Drazin inverse of a, denoted by aD, whenever it exists, 
is a commuting outer inverse satisfying the condition aDak+1 = ak for some positive 
integer k. The smallest integer satisfying aDak+1 = ak is known as the Drazin index
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(or simply index) of a and the Drazin inverse is an outer inverse with the property 
aDR = akR and RaD = Rak. The Drazin inverse of a is unique whenever it exists; if 
the Drazin index of a is one, then aD = a#. The following corollary is immediate from 
Theorem 8.

Corollary 10. Let a and b be elements in an associative ring R with indices k1 and k2, 
respectively. Then aD(a + b)bD = aD + bD if and only if ak1R ⊇ bk2R and Rak1 ⊆ Rbk2 .

4. Minus partial order and right–left symmetry of aR ⊕ bR = (a + b)R

In this section, we revisit the right–left symmetric property of aR ⊕ bR = (a + b)R
considered earlier by Jain–Prasad [8], in which the associative (regular) ring has a multi-
plicative identity. We use the characterization of regular elements discussed in Section 1
to discuss the right–left symmetric property to the extent possible. Also, the charac-
terizations of regular elements and outer inverses given in Section 1 help us to reveal 
structural properties such as the relation between outer inverses and reflexive generalized 
inverses of a regular element. Throughout this section, R is an associative ring that need 
not have a multiplicative identity. Further, we consider the minus partial order on reg-
ular elements introduced independently by Hartwig [9] and Nambooripad [10]. Mitra in 
[11] explored several interesting properties of the minus partial order in the context of a 
class of rectangular matrices, where the entries of the matrices are from the real or com-
plex field. Our discussion of the minus partial order helps to explain several interesting 
properties of regular elements.

Definition 4 (Minus partial order). Let a, b ∈ S. We say that a ≤− b if there exists a 
generalized inverse gb ∈ {b−} of b such that

bgb = agb, gbb = gba. (17)

The relation ≤− is known to be a partial order on the class of regular elements of S; it 
is called the ‘minus partial order’ on S.

The general difficulty in extending known results about the minus partial order to a 
semigroup or an associative ring is due to the absence of a multiplicative identity and 
particularly for the reason that x ∈ xS or x ∈ xR may not hold. The properties derived 
for regular elements and outer inverses in the earlier sections can be used to generalize 
results such as right–left symmetry and relations between outer inverses and reflexive 
generalized inverses.

The following lemma explains the association between outer inverses of an element a
from a semigroup and the elements b such that b ≤− a.

Lemma 11. Let S be a semigroup and let a ∈ S.
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(i) If c is an outer inverse of a, then b = aca is such that b ≤− a and c ∈ {b−r }
satisfies (17).

(ii) If b ≤− a and gb ∈ {b−} satisfies (17), then gbbgb ∈ {a=} (in fact, a reflexive 
generalized inverse of b satisfying (17) is in {a=}).

(iii) The relation ∼ defined on {a=} by

x ∼ y if axa = aya (18)

for x, y ∈ {a=}, is an equivalence relation and each of equivalence class is associated 
with a distinct b ≤− a.

Proof. Let c be an outer inverse of a. For b = aca, one verifies that c ∈ {b−r }. Also, 
bc = (aca)c = ac and cb = c(aca) = ca, and therefore gb = c satisfies (17). This proves 
part (i).

To prove (ii), consider b ≤− a and a gb ∈ {b−} that satisfy (17). Then h = gbbgb is a 
reflexive generalized inverse and

hah = (gbbgb)a(gbbgb) = (gbb)(gba)(gbbgb) = (gbb)(gbb)(gbbgb) = gbbgb = h.

This proves (ii).
(iii) follows immediately from the definition of ∼ and (i). �

Theorem 12. Let R be an associative ring and let a be a regular element in R. If a = b +c

for some b, c ∈ R, then the following statements are equivalent.

(i) b is regular and b ≤− a.
(ii) b ∈ aR ∩Ra and {a−} ⊆ {b−}.
(iii) c is regular and c ≤− a.
(iv) c ∈ aR ∩Ra and {a−} ⊆ {c−}.

Proof. Let gb be generalized inverse of b such that agb = bgb and gba = gbb. So, we get 
agbb = bgbb = b and bgba = bgbb = b, and therefore b ∈ aR∩Ra. Now for any generalized 
inverse a− of a, note that ba−b = (bb−a)a−(ab−b) = bb−ab−b = bb−bb−b = b. Hence 
(i) ⇒ (ii).

Let b ∈ aR ∩Ra and {a−} ⊆ {b−}. Since b ∈ aR ∩Ra, we have aa−b = b = ba−a for 
every choice of a−. Now for any ga ∈ {a−}, define h = gabga, which is in {b−r }. Observe 
that bh = (agab)(gabga) = aga(bgab)ga = a(gabga) = ah and hb = (gabga)(bgaa) =
ga(bgab)gaa = (gabga)a = ha. This proves (ii) ⇒ (i).

The proof of (iii) ⇔ (iv) is similar to that of (i) ⇔ (ii).
Now we prove (ii) ⇒ (iv) to complete the proof of the theorem as (iv) ⇒ (ii) is 

symmetrical.
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Let b ∈ aR ∩ Ra and {a−} ⊆ {b−}. Since a = b + c, b ∈ aR ∩ Ra implies that 
c ∈ aR ∩ Ra and ca−a = c. Now use ba−b = b in aa−b = b to get ca−b = 0. Further, 
substitute this in c = ca−a = ca−(b + c) to get c = ca−c. This proves (ii) ⇒ (iv). �
Remark 1. If R is a matrix ring over the real or complex field, then it may be noted that 
b ∈ aR ∩ Ra in (ii) and c ∈ aR ∩ Ra in (iv) of Theorem 12 are trivial, when ba−b = b

holds for all a−.

Remark 2. If [a=]b denotes the equivalence class of all outer inverses associated with 
b ≤− a, as described in (iii) of Lemma 11, then from (i) and (ii) of the same lemma, it 
follows that

[a=]b = {gb ∈ {b−r } : bgb = agb, gbb = gba}. (19)

Remark 3. Let S be a semigroup and let a ∈ S. Note that (i) ⇒ (ii) of Theorem 12 holds 
for any elements a, b in a semigroup (we do not need to assume that a = b + c). If g is 
any reflexive generalized inverse of a and if b ≤− a, then Theorem 12 ensures that g and 
h = gbg are generalized inverses of b. In fact, h is a reflexive generalized inverse of b and 
we have

bh = b(gbg) = bg (20)

and

hb = (gbg)b = gb. (21)

Thus, h ≤− g. So, given a reflexive generalized inverse a and an element b ≤− a, we have 
proved that there exists an outer inverse h associated with b such that h ≤− g. Now a 
natural question that arises from this observation is ‘given an outer inverse (associated 
with an element b ≤− a), does there exist a reflexive generalized inverse that dominates 
it?’. We make the following conjecture:

Conjecture 1. Given an outer inverse x of a regular element a in a semigroup S, there 
exists a reflexive generalized inverse y ∈ {a−r } such that x ≤− y.

We prove this conjecture in Corollary 14, if S is an associative ring.
The following theorem relates a reflexive generalized inverse of a regular element to its 

outer inverses, whenever the algebraic structure under discussion is an associative ring.

Theorem 13. Let R be an associative ring and let a, b, c ∈ R be such that a is regular and 
a = b + c. If b, c ≤− a, then

{a−r } = [a=]b + [a=]c , (22)
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where

[a=]b + [a=]c = {x + y : x ∈ [a=]b and y ∈ [a=]c}. (23)

Further, for every g ∈ {a−r } the decomposition g = x + y, where x ∈ [a=]b and y ∈ [a=]c, 
is unique and

x, y ≤− g. (24)

Proof. Consider any two elements x ∈ [a=]b and y ∈ [a=]c. From the definition of [a=]b
and [a=]c as given in Remark 2 and (19), it follows that x, y are reflexive generalized 
inverses of b, c, respectively, and further xc = cx = yb = by = 0. One verifies that 
x + y ∈ {a−r } and x, y ≤− x + y. Hence {a−r } ⊇ [a=]b + [a=]c.

Let g be a reflexive generalized inverse of a, and suppose that b, c ≤− a. Then g =
gbg+ gcg. It follows from (20) and (21) that both gbg and gcg are dominated by g. Now 
for h = gbg, we have

ha = (gbg)a

= gb (∵ b ∈ Ra)

= gbgb = hb (∵ gb is idempotent).

Similarly, we have ah = bh. It also follows from (19) that h ∈ [a=]b. The inclusion 
k = gcg ∈ [a=]c can be proved in a similar fashion. Therefore, {a−r } ⊆ [a=]b + [a=]c.

Now for g ∈ {a−r }, let g = h + k for some h ∈ [a=]b and k ∈ [a=]c. Then hb = ha, 
bh = ah and h ≤− g as observed in the beginning of the proof. Therefore h = hbh =
(gah)b(hag) = (gbh)b(hgb) = gbg. One can prove that k = gcg in the same way, so 
uniqueness of the decomposition follows. �
Corollary 14. Let a be a regular element in an associative ring R and x be an outer 
inverse of a. Then there exists a reflexive generalized inverse y of a (i.e., y ∈ {a−r }) such 
that x ≤− y.

Proof. If x ∈ {a=}, (ii) of Lemma 11 ensures that b = axa is a regular element such 
that b ≤− a and x ∈ [a=]b. Theorem 12 ensures that c = a − b is regular and c ≤− a. 
Now for any y ∈ [a=]c, it follows from Theorem 12 and (24) that g = x + y ∈ {a−r } and 
x ≤− g. �

Before addressing right–left symmetry of the decomposition, we consider the following 
lemma, in which the statements (i) and (iii) are not trivial. In fact, even the statement 
‘b, c ∈ aR’ is not trivial, even though aR = bR⊕ cR.

Lemma 15. Let a be a regular element in a ring R and let b, c be elements in R such 
that a = b + c and aR = bR⊕ cR. Then the following statements are equivalent.
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(i) b ∈ bR.
(ii) b is regular.
(iii) c ∈ cR.
(iv) c is regular.
(v) {a−} ⊆ {b−}.
(vi) {a−} ⊆ {c−}.

Proof. The implications (ii) ⇒ (i) and (vi) ⇒ (iii) follow from Lemma 2, and (v) ⇒
(ii), and (vi) ⇒ (iv) are trivial. Let b ∈ bR ⊆ aR. Therefore b = aa−b for every a−

and hence b = ba−b + ca−b. This in turn gives b = ba−b and ca−b = 0 as b ∈ bR and 
bR ∩ cR = (0). Thus (i) ⇒ (ii), (v) are proved. This shows the equivalence of (i), (ii), 
and (v). The equivalence of (iii), (iv) and (vi) can be proved in a similar fashion.

Consider b +c = ba−a +ca−a. Now the equivalence of (i) and (iii) follows immediately 
from directness of aR = bR⊕ cR. �

If R has a multiplicative identity, then the statements (i) and (iii) of Lemma 15 are 
trivially true and in fact,

b ∈ bR ⊆ aR (25)

is immediate.
Analogous to Lemma 15, we have the following.

Lemma 16. Let a be a regular element in the ring R and let b, c be elements in R such 
that a = b + c and Ra = Rb ⊕Rc. Then the following statements are equivalent.

(i) b ∈ Rb.
(ii) b is regular.
(iii) c ∈ Rc.
(iv) c is regular.
(v) {a−} ⊆ {b−}.
(vi) {a−} ⊆ {c−}.

Now we extend the right–left symmetry theorem to the general case.

Theorem 17. Let a be a regular element in an associative ring R and let b, c ∈ R be such 
that a = b + c. Then the following statements are equivalent.

(i) aR = bR⊕ cR and b ∈ bR.
(ii) b ∈ aR ∩Ra and {a−} ⊂ {b−}.
(iii) Ra = Rb ⊕Rc and b ∈ Rb.
(iv) b, c are regular and bR ∩ cR = (0) = Rb ∩Rc.
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Proof. Let aR = bR ⊕ cR and b ∈ bR. If a− is a generalized inverse of a, then b + c =
ba−a + ca−a and from aR = bR⊕ cR it follows that b = ba−a, that is, b ∈ Ra. Therefore 
b ∈ aR ∩ Ra and b = aa−b = ba−a. From the identity b = aa−b = ba−b + ca−b, the 
inclusion b ∈ bR ⊆ aR ensures that ca−b ∈ bR ∩ cR. So, from the directness of aR =
bR⊕ cR, it follows that ca−b = 0 and therefore b = ba−b. Thus, (i) ⇒ (ii).

Suppose that b is regular. Then b ∈ bR is immediate from Lemma 2. From (ii) ⇒
(i) of Theorem 12, it follows that (ii) implies b ≤− a. Let agb = bgb and gba = gbb for 
some gb ∈ {b−}. So, we have agbb = b which implies b ∈ aR and, therefore c ∈ aR and 
aR = bR+ cR. Directness follows from bgbb = b and bgbc = 0. Hence (ii) ⇒ (i) is proved.

The proof of (ii) ⇔ (iii) is similar to that of (ii) ⇔ (i).
Having proved the equivalence of (i), (ii), and (iii), the statement (iv) follows trivially 

whenever any of the first three holds.
Let b and c satisfy (iv). From the regularity of b and c, it follows that b ∈ bR ∩ Rb

and c ∈ cR ∩Rc (by Lemma 2). For any a−, consider b + c = a = aa−a = aa−b + aa−c. 
Now, Rb ∩Rc = (0) and b ∈ Rb imply that b = aa−b, and therefore b ∈ aR. Similarly, by 
taking b + c = ba−a + ca−a, bR ∩ cR = (0) implies that b = ba−a and therefore b ∈ Ra

is proved. Now substitute a = b + c in b = ba−a to get b = ba−b + ca−b. Now, bR ∩
cR = (0) implies that b = ba−b for all a−. Thus, (iv) ⇒ (ii) is proved. �

In Theorem 17 (i), the condition ‘b ∈ bR’ could be replaced by any of the equivalent 
conditions given in Lemma 15. Similarly, the condition ‘b ∈ Rb’ in (iii) of the theorem 
could be replaced by any of the equivalent conditions given in Lemma 16. Also, the 
condition ‘b ∈ aR ∩ Ra’ in (ii) of the theorem could be replaced by ‘c ∈ aR ∩ Ra’, and 
‘b is regular’ in (iv) could be replaced by ‘c is regular’.
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