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Abstract. A matrix A ∈ Mn(R) with coefficients in any ring R is a quasi-

permutation matrix if each row and each column has at most one nonzero
element. It is shown that a singular quasi-permutation matrix with coefficients

in a domain is a product of idempotent matrices. As an application, we prove

that a nonnegative singular matrix having nonnegative von Neumann inverse
(also known as generalized inverse) is a product of nonnegative idempotent

matrices.
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1. Introduction and preliminaries

Initiated by Erdos (cf. [6]) the problem of decomposing singular matrices into a
product of idempotent matrices has been intensively studied by several authors (cf.
Fountain [7], Hannah O’Meara [8] and others). Recently it has been shown in [2]
that for n ≥ 1, every n×n nonnegative singular matrix A ∈Mn(R) of rank one has
a decomposition into a product of at most three nonnegative idempotent matrices.

A matrix A ∈Mn(R) with coefficients in a ring R, is called a quasi-permutation
matrix if each row and each column has at most one nonzero element. Using
combinatorial techniques, we show that singular quasi-permutation matrices with
coefficients in any domain can always be represented as a product of idempotent
matrices (Theorem 7).

As an application, we show that nonnegative matrices having nonnegative von
Neumann inverse (also known as generalized inverse) can be decomposed into a
product of nonnegative idempotents (Theorem 16). Indeed, the well-known struc-
ture of nonnegative idempotent matrices and the structure of nonnegative matrices
that have a nonnegative von Neumann inverse reveal strong links with rank one ma-
trices and the quasi-permutation matrices (cf. [11]). We make use of their structure
to establish our results.

For convenience, we state below two lemmas that are used often in the proofs of
our results [2].

Lemma 1. Any singular nonnegative matrix of rank 1 can be presented as a product
of three nonnegative idempotent matrices of rank one.

Lemma 2. Any nonnegative nilpotent matrix is a product of nonnegative idempo-
tent matrices.
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2. Quasi-permutation matrices

Let us recall that for a permutation σ ∈ Sn, the permutation matrix Pσ associ-
ated with σ is an n× n matrix defined by

Pσ =
n∑
i=1

ei,σ(i).

We consider a more general situation as given in the following definition.

Definition 3. A matrix A ∈ Mn(R) with coefficients in a ring R will be called
a quasi-permutation matrix if each row and each column has at most one nonzero
element.

Remarks 4. (a) A quasi-permutation matrix can be singular and, in this case,
it has at least one zero row and one zero column. We will mainly work with
rows but the analogous properties for columns also hold (acting on the right
with given permutation matrices).

(b) Particularly important for our purposes will be the quasi-permutation ma-
trices, denoted by Pσ,l, σ ∈ Sn, l ∈ {1, . . . , n}obtained from Pσ by
changing the nonzero element of the lth row of Pσ to 0. We thus have

Pσ,l =

n∑
i=1
i6=l

ei,σ(i).

(c) We observe that the σ(l)th column of the matrix Pσ,l is the only column
that is zero.

We give some properties of the matrices Pσ,l in the following lemma.

Lemma 5. Let σ, τ ∈ Sn and l ∈ {1, . . . , n}. Then

a) PσPτ,l = Pτσ,σ−1(l)

b) Pτ,l · Pσ = Pστ,l
c) PσPτ,lP

−1
σ = Pσ−1τσ,σ−1(l)

d) If σ ∈ Sn has no fixed point, then for any 1 ≤ l ≤ n, Pσ,l is a nilpotent
matrix. In particular, if c = (1, . . . , n) is the cycle of length n defined in
the usual way, then Pc,l is a nilpotent matrix. Moreover, when considered as
real matrices, Pσ,l and Pc,l are product of nonnegative idempotent matrices
(i.e. the coefficients of the idempotent matrices are in Mn(R+)).

Proof. We will only prove statement d). Let σ, τ ∈ Sn and 1 ≤ l, s ≤ n. We can
easily compute that Pσ,lPτ,s =

∑
i6=l,σ(i)6=s ei,τ(σ(i)). In case τ = σ has no fixed

point and l = s, then P 2
σ,l has two zero rows. Similarly, we get that P 3

σ,l has three

zero rows and continuing this process we easily conclude that Pσ,l is nilpotent (of
index bounded by n)

The last statement of d) above comes from the fact that nilpotent nonnegative
matrices are always product of nonnegative idempotent matrices. �

The following somewhat technical proposition will be very useful while proving
the main result of this section.
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Proposition 6. Let R be any ring, σ ∈ Sn and A ∈Mn(R) be a quasi-permutation
matrix having its lth row and its rth column equal to zero. Then

a) The σ−1(l)th row of PσA is zero and we have PσA = Pσ,σ−1(l)A. Similarly,

the σ(r)th column of APσ is zero and we have APσ = APσ,r.
b) A = Pσ−1,l(PσA) and A = (APσ)Pσ−1,σ(r).
c) Suppose that Pσ−1,l (resp. Pσ−1,σ(r)) is a product of idempotent matrices.

If the same is true for PσA (resp. for APσ) then A itself is a product of
idempotent matrices.

Proof. a) The proof is easy.
b) We have A = P

σ−1 (PσA) = Pσ−1,l(PσA) by the above statement a). The
other equality follows similarly.

c) This is clear from the statement b) above.
�

We are now ready to state and prove the main result of this section.

Theorem 7. (a) Let R be any domain and A ∈ Mn(R) be a singular quasi-
permutation matrix. Then A is a product of idempotent matrices.

(b) Any singular nonnegative quasi-permutation matrix A ∈Mn(R+) is a prod-
uct of nonnegative idempotent matrices.

Proof. We prove both statements by induction on n ≥ 1. (a) Since A is a singular
quasi-permutation matrix, A = 0 if n = 1. Let n > 1 and assume that the
result holds for any singular quasi-permutation matrix of size smaller than n. Let
c = (1, . . . , n) be a cyclic permutation. It has been shown in Lemma 5 that,
considered over the reals, Pc,l is a product of nonnegative idempotent matrices.
Let us now show that, for any 1 ≤ l ≤ n, the quasi-permutation matrix Pc,l is a
product of idempotent matrices. If l 6= n, we let σ = (l, n) ∈ Sn be the transposition
exchanging l and n, and if l = n we let σ be the identity. The property (c) in Lemma
5 implies that PσPc,lPσ−1 = Pσ−1cσ,n has its last row zero. Clearly, if l = n, Pc,n has
its last column nonzero and, if l 6= n, the remark 4 (c) implies that the last column
of Pσ−1cσ,n is also not zero, so that, in any case, PσPc,lPσ−1 is a quasi-permutation
matrix of the form

PσPc,lPσ−1 =

[
B C
0 0

]
where B is a quasi-permutation matrix. Since a column of B is zero, B is singular
and our induction hypothesis shows that B is a product of idempotent matrices,
say B = E1 · · ·Es where, for i = 1, . . . , s, E2

i = Ei ∈Mn(R). This implies that

PσPc,lP
−1
σ =

[
B C
0 0

]
=

[
In−1 C

0 0

] [
B 0
0 1

]
=

[
In−1 C

0 0

] [
E1 0
0 1

]
· · ·
[
Es 0
0 1

]
and hence, Pc,l is also a product of idempotent matrices. Let us now come back to
a general singular quasi-permutation matrix A ∈ Mn(R). There exists 1 ≤ l ≤ n
such that the lth row of A is zero. Let c be the cycle (1, . . . , n). There exists r ∈ {0,
1, . . . , n− 1} such that PcrA has its bottom row (0, . . . , 0).

Similarly, acting on the columns, we may assume that there exists 0 ≤ s ≤ n− 1
such that PcrAPcs has a zero column which is not the last one. Let us notice that
after permuting cyclically the rows and the columns of a quasi-permutation matrix,
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we still obtain a permutation matrix. In other words, we may assume that PcrAPcs

is of the form

PcrAPcs =

[
B C
0 0

]
, B ∈Mn−1(R+)

where B is a quasi-permutation matrix. Since a column of B is zero, B is singular
and our induction hypothesis shows that B is a product of idempotent matrices. As
in the previous paragraph , we conclude that PcrAPcs is a product of idempotent
matrices. Since the lth row of A is zero, the same is true for the lth row of APcs .
On the other hand, the first paragraph of this proof shows that Pcr,l is a product
of idempotent matrices hence, applying proposition 6 c), we obtain that APcs is a
product of idempotent matrices. The singular quasi-permutation matrix A also has
a zero column and the same is true for APcs . Repeating the same arguments and
using 6 c) again, we easily conclude that A is a product of idempotents, as desired.

(b) The proof of the part b) follows exactly the same pattern as the proof of
part a), using the fact that Pc,l is a product of nonnegative idempotent matrices
(cf. Lemma 5 (d)). �

Remark 8. The hypothesis that the ring R is a domain in part (a) of the above
theorem is only necessary to start the induction process. If the ring R is assumed
to be such that the left and right zero divisors are product of idempotent elements,
then part (a) of the theorem holds in this case.

The following definition somewhat enlarges the definition of a quasi-permutation
matrix.

Definition 9. Let R be a ring. A matrix A ∈Mn(R) is a quasi-permutation block
matrix if there exist a sequence of natural numbers n1, . . . , nl such that n1+· · ·+nl =
n and a permutation σ ∈ Sl such that A = (Aij) where Aij are matrices of size
ni × nσ−1(j) and Aij = 0 if j 6= σ(i).

Remarks 10. (1) As a consequence of the definition, the nonzero blocks Aiσ(i)
of a quasi-permutation block matrix are square matrices of size ni × ni.

(2) Notice also that a quasi-permutation block matrix whose all nonzero entries
are quasi-permutation matrices must itself be a quasi-permutation matrix.

Next we prove a generalization of the theorem 7.

Proposition 11. Let A = (Aij), 1 ≤ i, j ≤ l be a quasi-permutation block matrix
associated with the permutation σ ∈ Sl. Suppose that, for every i, 1 ≤ i ≤ l, there
exist matrices Ei, Bi, Fi ∈ Mni×ni(R+) such that Aiσ(i) = EiBiFi. Then A can be
factorized in the following way:

A = diag(E1, . . . , El)(B)diag(Fτ(1), . . . , Fτ(l)) (∗)

where τ = σ−1 and the matrix B = (Bij) is a quasi-permutation block matrix
associated with σ such that Biσ(i) = Bi.

Moreover, if for 1 ≤ i ≤ n the blocks Bi are quasi-permutation matrices, then A
is a product of idempotent matrices.

Proof. Let D be the matrix on the right hand side of the equality (*). Let us
compute the (s, r) block of D, for 1 ≤ r, s ≤ l.
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We have

Dsr =
(
diag(E1, . . . , El)(Bij)diag(Fτ(1), . . . , Fτ(l))

)
s,r

=

l∑
k=1

(diag(E1, . . . , El)sk
(
(Bij)diag(Fτ(1), . . . , Fτ(l))

)
kr

= Es
(
(Bij)diag(Fτ(1), . . . , Fτ(l))

)
sr

= Es
(∑

t

(Bij)stdiag(Fτ(1), . . . , Fτ(l))tr
)

= EsBsσ(s)(diag(Fτ(1), . . . , Fτ(l))σ(s)r

If r 6= σ(s) we get (diag(Fτ(1)1, . . . , Fτ(l)l)σ(s)r = 0 and hence Dsr = 0. If r = σ(s)
we have Dsr = EsBsdiag(Fτ(1), . . . , Fτ(l))σ(s)σ(s) = EsBsFτ(σ(s)) = EsBsFs =
Asσ(s) = Asr. This shows that Dsr = Asr for all 1 ≤ r, s ≤ l.

For the additional statement we first remark that (as mentioned in the remark 10
(2) above) a quasi-permutation block matrix whose blocks are quasi-permutation
matrices is itself a quasi-permutation matrix. The result then follows immediately
from Theorem 7. �

3. Application

Our aim is to use the results related to the quasi-permutation matrices obtained
in the previous section to prove that a nonnegative singular matrix with nonnegative
von-Neumann inverse is a product of nonnegative idempotent matrices. All the
matrices in this section will be real matrices.

Let us first state a result which will be used in the application.

Proposition 12. (cf. [11], Theorem 1 and Lemma 2) If a nonnegative square
matrix A admits a nonnegative von Neumann inverse X (ie. A = AXA) then
there exists a permutation matrix P such that PAPT is of the form

PAPT =


J JD 0 0
0 0 0 0
CJ CJD 0 0
0 0 0 0


where C and D are nonnegative matrices of suitable sizes and J is a direct sum of
matrices of the following two types.

1) βxyT where x, y are positive vectors and β is a postive real number.
2) 

0 β1x1y
T
1 0 0 · · · 0

0 β2x2y
T
2 0 · · · 0

...
. . . · · ·

...
0 0 · · · βd−1xd−1y

T
d−1

βdxdy
T
d 0 · · · 0


where for 1 ≤ i ≤ d the vectors xi, yi are positive and βi is a positive real number.

The following lemma is straightforward.
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Lemma 13. Let A be a nonnegative matrix having a nonnegative quasi-inverse and
let J,C,D be matrices associated with A as in the above proposition 12. If J is a
product of nonnegative idempotent marices then the same is true for A.

This lemma shows that, in order to prove that singular nonnegative matrices hav-
ing nonnegative quasi-inverse are product of nonnegative idempotents, it is enough
to show that singular matrices of type J as described in the above proposition 12
are product of nonnegative idempotent matrices.

Remark 14. We have seen that a nonnegative matrix A with nonnegative von
Neumann inverse has a very special form (cf. Proposition 12). The two types
of matrices appearing in the description of A are clearly quasi-permutation block
matrices. Since these different types are all located on the diagonal of A, the matrix
A itself is a quasi-permutation block matrix. Moreover, in this case, the nonzero
blocks are nonnegative matrices of rank one.

Lemma 15. Let E2 = E ∈ Mn(R+) , n ≥ 2, be an idempotent matrix of rank
1. Then there exists a matrix N such that E = ENE where N is a singular
quasi-permutation matrix with nonnegative entries.

Proof. Since the matrix E = E2 is of rank one, there exist vectors a = (a1, . . . , an)T ,
b = (b1, . . . , bn)T ∈ Rn such that E = abT and bTa = 1. In particular, there exists
1 ≤ l ≤ n such that albl > 0. Let N = (Nij) ∈ Mn(R) be the matrix defined by
Nij = (albl)

−1δilδjl where δ is the classical Kronecker symbol. It is easy to check
that bTNa = 1 and hence ENE = abTNabT = abT = E. Obviously the matrix N
is a quasi-permutation matrix. �

We are now ready to prove the main result of this section.

Theorem 16. Let A be a singular nonnegative matrix having a nonnegative von
Neumann inverse X (i.e. A = AXA). Then A is a product of nonnegative idem-
potent matrices.

Proof. According to Remark 14 A is a quasi-permutation block matrix associated
with a permutation σ ∈ Sl. We can thus write A = (Aij) where the nonzero blocks
Aiσ(i) are matrices of rank 1. Hence for any 1 ≤ i ≤ l we have either Aiσ(i) is
the zero matrix or a scalar or it is a singular square matrix of rank one (and size
bigger than 2). In any case, using Lemma 1, we can write Aiσ(i) = EiBiFi where
Ei and Fi are idempotent matrices and Bi is either a scalar or an idempotent
matrix of rank 1. Proposition 11 shows that our matrix A can be written as A =
diag(E1, . . . , El)Bdiag(Fτ(1), . . . , Fτ(l), where τ = σ−1. The two diagonal matrices
on the right hand side of this equality are idempotent matrices and the matrix B is
a quasi-permutation block matrix associated with σ where the nonzero blocks Bi =
Biσ(i) are either scalar or nonnegative idempotent matrices of rank one. Hence, for
any 1 ≤ i ≤ l, using Lemma 15, we can writeBi = EiNiEi where Ei is a nonnegative
idempotent matrix (Ei = 1 if Bi is a scalar) andNi is either a scalar (if Bi is a scalar,
Bi = Ni) or a singular quasi-permutation matrix with nonnegative entries. We
thus conclude that, for any 1 ≤ i ≤ l, the matrix Ni is a quasi-permutation matrix.
Proposition 11 implies that B = diag(E1, . . . , El)Ndiag(Eτ(1), . . . , Eτ(l)), where
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τ = σ−1. Finally, we can writeB = eNf where e and f are idempotent matrices and
the matrix N is a quasi-permutation block matrix whose nonzero blocks are quasi-
permutation matrices, and so N itself is a quasi-permutation matrix (cf. Remark
10 (2)).
Notice that since A is singular there must exist at least one integer r ∈ {1, . . . , l}
such that Ar,σ(r) is singular. Hence there must exist r such Ar,σ(r) is either zero
or a singular matrix of rank 1. This implies that there exists 1 ≤ r ≤ l such that
Br is either zero or a singular idempotent matrix of rank 1. We have seen above
that the matrix B can be decomposed as B = eNf where e and f are idempotent
matrices and N is a singular quasi-permutation matrix. Theorem 7 implies that N
is a product of nonnegative idempotent matrices and hence B and finally A is also
a product of nonnegative idempotent matrices, as required. �

Remark 17. Let us remark that the positivity of the vectors xi, yi that appears
in the second type of the description of the matrices J (cf. Proposition 12) is not
used in the proof. We only need that these vectors are nonnegative.
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