ON SEMIGROUPS AND SEMIRINGS OF
NONNEGATIVE MATRICES
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ABSTRACT. We characterize a finite cyclic semigroup of nonneg-
ative matrices by generalizing a result known for the special case
in which the semigroup is a group. We also characterize semirings
S of nonnegative matrices A with diag A > I whose multiplicative
semigroup S — {0} is cyclic.

1. PRELIMINARIES AND DEFINITIONS

For any square matrix A, let AP and A” respectively denote the
Drazin inverse and the group inverse of A. The group inverse of A
exists if and only if the index of A is 1, in which case AP = A#.
The Greville formula states that if p(x) is a polynomial over any field
satisfied by A, then by rewriting p(z) = ca'(1 — xq(z)), we obtain
AP = Alg(A)*!. In addition, [ > indexA.

All matrices in this paper are square nonnegative matrices. For
definitions and terminology, refer to Ben-Israel and Greville [1] and
Berman and Plemmons [2].

Our results are based on a theorem due to Jain, Kwak, and Goel [5]
for nonnegative matrices A that have a nonnegative group inverse A%.
For convenience, we state the result below.

Theorem 1.1. Let A be a nonnegative square matriz such that A% =
> ;A" where «; are positive numbers and m; are positive integers.
Then, there exists a permutation matriz P such that PAPT is a direct
sum of matrices of types (I) and (II) where

(I): Bxy®, x,y are positive vectors with y'x = 1 and 3 is a positive
root of > auaz™itl =1,
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(I1) : : : : A
Barayt 0 0 . 0

where x;,y; are positive vectors of the same order as yZT x; =1; x; and
x; are not necessarily of the same order; 31y, Bos3, ..., Bq1 are positive
numbers and d = 2d | (m; + 1) for some m; such that the product
B1aBa3---Bay s a positive common root of at most d of the following

equations:
Y T =
d|(m;+1)
> R =0, k=12, (d—1).
d|(mi+1-k)

The summation in each of the above equations runs over all m; for
which d | (m; +1 —k),k = 1,2,...,(d — 1), with the convention that
if there is mo m; for which d | (m; + 1 — k), then the corresponding
equation s ignored.

2. MAIN RESULTS

We begin by characterizing any finite multiplicative semigroup gen-
erated by a nonnegative matrix. This question has remained open for
some time (c.f. [4], p. 44 and p. 46). Lewin [6] characterized nonneg-
ative matrices that generate a finite cyclic group.

Theorem 2.1. Let S be a cyclic multiplicative semigroup of nonneg-
ative matrices generated by A. Then, S is finite if and only if there
exists a permutation matriz P such that PAPT is a direct sum of B
and N, where B is a direct sum of nonnegative matrices: (I) rank 1,
idempotent matrices xy’, x,y are positive vectors with y'z = 1, and
(I1) rankd,d = 2, which are d x d cyclic block matrices,

BuTayi 0 0 0

such that By, ..., B4 are positive numbers, the product 315845...8,4 = 1,
and N 1s nilpotent.
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Proof. We assume that S is finite. Since S is a finite multiplicative
cyclic semigroup generated by A, A™ = A! for distinct positive integers
m and [. We assume that m is greater than [. We write m = [ + r.
Then, AY(I — A") = 0. Thus, A satisfies p(z) = 2! — 2!*". Since the
index of A is less than or equal to the multiplicity of the root 0 of
p(z), we obtain the index of A < [. Rewriting, gives p(r) = z'(1 —
z(z" 1)) = 2/(1 — z(q(x))). We now invoke the Greville formula for
computing the Drazin inverse AP of A ([1], Ex. 39, p. 148), namely
AP = Alg(A)H = AYAH)HL = AY where uw = | + (r — 1)(I + 1).
Therefore, AP is nonnegative.

We decompose A = A2AP & (A — A2AP) = B@ N.

We know that B is of index 1 and B# = AP and thus B* is non-
negative. Next, A = (B @ N)* = B* @ N" = B", because the index
of A is less than [, and hence less than u. Thus, B#* = B*. We note
that by Theorem 1.1, there exists a permutation matrix P such that
PBPT is a direct sum of matrices of types (I) and (/7). Type (I) is
a direct sum of matrices Bzy”, where 3 is a positive root of 2! =
and = and y are positive vectors with y’2 = 1. Thus, 3 = 1 and so
type (I) consists of summands xy”. Type (IT) consists of d x d cyclic
block matrices

0 B1aT1yd 0 e 0
Barayi 0 0 0

where (5, Bas, ..., B41 are positive integers such that their product is
a common root of the equation i - 1, where d divides u + 1, and

u+1

equations x = 0, k=1,2,...d — 1 admitting only those equations
for which d divides u + 1 — k. Since such equations all have roots 0, it
is clear that the only possibility for obtaining the desired common root
is to choose d = v + 1, in which case none of the latter equations exist
and the positive root of the first equation is 1. Thus, £5893...84 = 1
and we have only the summands of order (u+ 1) x (u+1). Conversely,
since each summand generates a finite semigroup and N is nilpotent,
the semigroup generated by A is finite. This completes the proof. [J

Next, we consider a semiring of nonnegative matrices.

We assume that A is a noninvertible nonnegative matrix. The de-
scription for nonnegative invertible matrices with a nonnegative inverse
is straightforward (c.f., [3]).
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Theorem 2.2. Let S be a semiring of nonnegative nx n matrices
with additive identity 0 such that for A € S — {0}, each entry on
the diagA = 1. Suppose that the multiplicative semigroup S — {0}
is a cyclic semigroup generated by A. Then, (i) index of A = 1 and
(ii) if A+ A% = A", for some positive integer n, then there exists a
permutation matriz P such that PAPT is a direct sum of matrices of
type (I) : Bzy®, x, y are positive vectors with y'z = 1 and 3 €]1,2] is
the positive root of (z" ' — x) = 1, and type

0 /Blgxlyg 0 0
(I1): : : : S I
Barayr 0 0 e 0
where the product B15843...B41 S a positive common root of at most d
. 2 n 2n—2 2—k n—k 2n—2—k
equations: rd —2xd +x a4 =1, and x @ —2x a +x 4 =0,

k=1,2,..,d—1 (d is chosen in such a way that at least one of the
exponents of terms in the first equation is an integer; we apply the
convention that if any other exponent is not an integer, then that term
is absent).

Proof. Since A is a generator of the multiplicative semigroup of S, we
can write A + A% = A" for some positive integer n. Thus, A satisfies
p(x) = v+ 2% —z". It is known that the index of a matrix A is less than
or equal to the multiplicity of the root 0 of p(x). Thus, A is of index
1, since A is not invertible. Rewriting p(z) = z(1 — z(—1 + 2" %)) =
z(1 — z(¢q(x))) and invoking the Greville formula A% = Agq(A)?* ([1],
p. 148, Ex. 39), we obtain A# = A(—I + A" 2?)2 = t(A). Note that
A2 — ] 2 0 because n = 3 and diagA = I. Thus, A% > 0.

Therefore, by Theorem 1.1, there exists a permutation matrix P such
that PAPT is a direct sum of matrices of types (I) and (/7).

Now, type (I) consists of summands Bzy’, where z,y are positive
vectors with yT2 = 1 and 3 is a positive root of xt(z) = 1; that is,
2?2(z" 2 - 1)2 =1 (ie., (z" ! —2)? = 1). Equivalently, 3 is a positive
root of (z"' —x) =1 or (z"! —x) = —1. The former equation has
exactly one positive root between 1 and 2, whereas the latter has no
positive root by the intermediate value theorem of calculus.

Type (II) matrices consist of d x d block matrices, as indicated by
the statement that where the product 3,5345...0,4; is a positive common
root of at most d equations: za— 2+ = 1, and 5T 2T
g = 0, k = 1,2,....d — 1 (d is chosen in such a way that at
least one of the exponents in the first equation is an integer, with the
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convention that if any other exponent is not an integer then that term
is absent). O

As an illustration, we determine all possible summands of matrices
A for which A% + A3 = A®. Here, A satisfies p(z) = 22 + 25 — 2% =
22(1 — z(2® — %)) = 2?(1 — 2(q¢(z)). Then by the Greville formula,
A# = A?%(q(A))? = A%(A3 — A?)3 = t(A) = > a;A™i, in the notation
of Theorem 1.1. Then, the summands of type (I) are Say’, z,y are
positive vectors with y7z = 1, and 3 is a positive root of zt(z) = 1;
that is, 2%(2® — 22)3 = 1, or (2* — 2®)3 = 1. The positive roots, if
any, are the roots of 2* — 23 = 1. This equation has only one positive
root and it lies between 1 and 2. So the summand of type () is Sxy’,
where 3 is the positive root of 2* = 1 + 3. Thus, 3 = 1.3803.

Next, we determine summands of rank d greater than 1. The possible
choices for d are the divisors of exponents of terms appearing in the
expression, xt(z) = (2t — 23)® = 2'2 — 32! + 321 — 29, which are
d=2,3,4,5,6,9,10,11, and 12.

We begin with d = 2. Then, 3,55, must be a positive common root
of 27 — 322 =1 and —327% — 23 = 0, which does not exist. Thus,
there are no summands of rank 2.

For d = 3, 3,435, must be a positive common root of T3 —x3 =1,
375 = 0 and —3z5 = 0, which again does not exist. Thus, there are
no summands of rank 3.

For d = 4, we need to find a positive common root of the equations
Tt = 1, —ri = 0, .... Since even the first two equations do not have a
common solution, it follows that there are no summands of rank 4

Proceeding similarly, we can show that there are no summands of
ranks 5,6,9, 10, and 11.

For d = 12, 3158353...8121 must be a positive common root of the only

possible equation 213 = 1. This implies that there exists a summand
of rank 12 and (,50853...815; = 1. In particular, this means that this
summand is of order 12, and it looks like

(I7) : : : : S
512,1$d?/1T 0 0 0

where [515053...0191 = 1.
We conclude that a summand of rank 1 will generate an infinite cyclic

semigroup and that a summand of rank 12 has a finite order of 12. This
completes the characterization of the matrix A, where A% + A3 = AS,
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Remark 2.1. Unlike for fields for which if the multiplicative group
s cyclic then the field must be finite, a semiring with a multiplicative
cyclic semigroup need not be finite.
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