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Abstract. We characterize a �nite cyclic semigroup of nonneg-
ative matrices by generalizing a result known for the special case
in which the semigroup is a group. We also characterize semirings
S of nonnegative matrices A with diag A > I whose multiplicative
semigroup S � f0g is cyclic.

1. Preliminaries and Definitions

For any square matrix A, let AD and A# respectively denote the
Drazin inverse and the group inverse of A. The group inverse of A
exists if and only if the index of A is 1, in which case AD = A#.
The Greville formula states that if p(x) is a polynomial over any �eld
satis�ed by A, then by rewriting p(x) = cxl(1 � xq(x)), we obtain
AD = Alq(A)l+1. In addition, l = indexA:
All matrices in this paper are square nonnegative matrices. For

de�nitions and terminology, refer to Ben-Israel and Greville [1] and
Berman and Plemmons [2].
Our results are based on a theorem due to Jain, Kwak, and Goel [5]

for nonnegative matrices A that have a nonnegative group inverse A#.
For convenience, we state the result below.

Theorem 1.1. Let A be a nonnegative square matrix such that A# =P
�iA

mi, where �i are positive numbers and mi are positive integers.
Then, there exists a permutation matrix P such that PAP T is a direct
sum of matrices of types (I) and (II) where
(I) : �xyT , x; y are positive vectors with yTx = 1 and � is a positive

root of
P
�ix

mi+1 = 1,
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(II) :

266664
0 �12x1y

T
2 0 :::: 0

0 0 �23x2y
T
3 :::: 0

: : : : :
: : : : :

�d1xdy
T
1 0 0 :::: 0

377775,
where xi; yi are positive vectors of the same order as yTi xi = 1; xi and
xj are not necessarily of the same order; �12; �23; :::; �d1 are positive
numbers and d = 2d j (mi + 1) for some mi such that the product
�12�23:::�d1 is a positive common root of at most d of the following
equations: X

dj(mi+1)

�ix
(mi+1)=d = 1;

X
dj(mi+1�k)

�ix
(mi+1�k)=d = 0; k = 1; 2; :::; (d� 1):

The summation in each of the above equations runs over all mi for
which d j (mi + 1 � k); k = 1; 2; :::; (d � 1), with the convention that
if there is no mi for which d j (mi + 1 � k), then the corresponding
equation is ignored.

2. Main Results

We begin by characterizing any �nite multiplicative semigroup gen-
erated by a nonnegative matrix. This question has remained open for
some time (c.f. [4], p. 44 and p. 46). Lewin [6] characterized nonneg-
ative matrices that generate a �nite cyclic group.

Theorem 2.1. Let S be a cyclic multiplicative semigroup of nonneg-
ative matrices generated by A. Then, S is �nite if and only if there
exists a permutation matrix P such that PAP T is a direct sum of B
and N , where B is a direct sum of nonnegative matrices: (I) rank 1;
idempotent matrices xyT , x; y are positive vectors with yTx = 1, and
(II) rank d; d = 2, which are d � d cyclic block matrices,266664

0 �12x1y
T
2 0 :::: 0

0 0 �23x2y
T
3 :::: 0

: : : : :
: : : : :

�d1xdy
T
1 0 0 0

377775
such that �12; :::; �d1 are positive numbers, the product �12�23:::�d1 = 1,
and N is nilpotent.
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Proof. We assume that S is �nite. Since S is a �nite multiplicative
cyclic semigroup generated by A; Am = Al for distinct positive integers
m and l: We assume that m is greater than l: We write m = l + r.
Then, Al(I � Ar) = 0: Thus, A satis�es p(x) = xl � xl+r: Since the
index of A is less than or equal to the multiplicity of the root 0 of
p(x), we obtain the index of A 5 l. Rewriting, gives p(x) = xl(1 �
x(xr�1)) = xl(1 � x(q(x))). We now invoke the Greville formula for
computing the Drazin inverse AD of A ([1], Ex. 39, p. 148), namely
AD = Alq(A)l+1 = Al(Ar�1)l+1 = Au, where u = l + (r � 1)(l + 1).
Therefore, AD is nonnegative.
We decompose A = A2AD � (A� A2AD) = B �N .
We know that B is of index 1 and B# = AD and thus B# is non-

negative. Next, Au = (B �N)u = Bu �Nu = Bu, because the index
of A is less than l, and hence less than u: Thus, B# = Bu. We note
that by Theorem 1.1, there exists a permutation matrix P such that
PBP T is a direct sum of matrices of types (I) and (II). Type (I) is
a direct sum of matrices �xyT , where � is a positive root of xu+1 = 1
and x and y are positive vectors with yTx = 1. Thus, � = 1 and so
type (I) consists of summands xyT . Type (II) consists of d � d cyclic
block matrices266664

0 �12x1y
T
2 0 :::: 0

0 0 �23x2y
T
3 :::: 0

: : : : :
: : : : :

�d1xdy
T
1 0 0 0

377775 ;
where �12; �23; :::; �d1 are positive integers such that their product is
a common root of the equation x

u+1
d = 1, where d divides u + 1, and

equations x
u+1�k

d = 0; k = 1; 2; :::d� 1 admitting only those equations
for which d divides u+ 1� k. Since such equations all have roots 0, it
is clear that the only possibility for obtaining the desired common root
is to choose d = u+ 1, in which case none of the latter equations exist
and the positive root of the �rst equation is 1. Thus, �12�23:::�d1 = 1
and we have only the summands of order (u+1)� (u+1). Conversely,
since each summand generates a �nite semigroup and N is nilpotent,
the semigroup generated by A is �nite. This completes the proof. �

Next, we consider a semiring of nonnegative matrices.
We assume that A is a noninvertible nonnegative matrix. The de-

scription for nonnegative invertible matrices with a nonnegative inverse
is straightforward (c.f., [3]).
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Theorem 2.2. Let S be a semiring of nonnegative n� n matrices
with additive identity 0 such that for A 2 S � f0g, each entry on
the diagA = I. Suppose that the multiplicative semigroup S � f0g
is a cyclic semigroup generated by A: Then, (i) index of A = 1 and
(ii) if A + A2 = An, for some positive integer n, then there exists a
permutation matrix P such that PAP T is a direct sum of matrices of
type (I) : �xyT , x; y are positive vectors with yTx = 1 and � 2]1; 2[ is
the positive root of (xn�1 � x) = 1, and type

(II) :

266664
0 �12x1y

T
2 0 :::: 0

0 0 �23x2y
T
3 :::: 0

: : : : :
: : : : :

�d1xdy
T
1 0 0 :::: 0

377775 ;
where the product �12�23:::�d1 is a positive common root of at most d
equations: x

2
d � 2xn

d + x
2n�2
d = 1; and x

2�k
d � 2xn�k

d + x
2n�2�k

d = 0;
k = 1; 2; :::; d � 1 (d is chosen in such a way that at least one of the
exponents of terms in the �rst equation is an integer; we apply the
convention that if any other exponent is not an integer, then that term
is absent).

Proof. Since A is a generator of the multiplicative semigroup of S, we
can write A + A2 = An for some positive integer n. Thus, A satis�es
p(x) = x+x2�xn: It is known that the index of a matrix A is less than
or equal to the multiplicity of the root 0 of p(x). Thus, A is of index
1, since A is not invertible. Rewriting p(x) = x(1 � x(�1 + xn�2)) =
x(1 � x(q(x))) and invoking the Greville formula A# = Aq(A)2 ([1],
p. 148, Ex. 39), we obtain A# = A(�I + An�2)2 = t(A). Note that
An�2 � I = 0 because n = 3 and diagA = I. Thus, A# = 0.
Therefore, by Theorem 1.1, there exists a permutation matrix P such

that PAP T is a direct sum of matrices of types (I) and (II).
Now, type (I) consists of summands �xyT , where x; y are positive

vectors with yTx = 1 and � is a positive root of xt(x) = 1; that is,
x2(xn�2 � 1)2 = 1 (i.e., (xn�1 � x)2 = 1). Equivalently, � is a positive
root of (xn�1 � x) = 1 or (xn�1 � x) = �1. The former equation has
exactly one positive root between 1 and 2, whereas the latter has no
positive root by the intermediate value theorem of calculus.
Type (II) matrices consist of d � d block matrices, as indicated by

the statement that where the product �12�23:::�d1 is a positive common
root of at most d equations: x

2
d �2xn

d +x
2n�2
d = 1, and x

2�k
d �2xn�k

d +

x
2n�2�k

d = 0, k = 1; 2; :::; d � 1 (d is chosen in such a way that at
least one of the exponents in the �rst equation is an integer, with the
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convention that if any other exponent is not an integer then that term
is absent). �

As an illustration, we determine all possible summands of matrices
A for which A2 + A3 = A6: Here, A satis�es p(x) = x2 + x5 � x6 =
x2(1 � x(x3 � x2)) = x2(1 � x(q(x)). Then by the Greville formula,
A# = A2(q(A))3 = A2(A3 � A2)3 = t(A) =

P
�iA

mi ; in the notation
of Theorem 1.1. Then, the summands of type (I) are �xyT ; x; y are
positive vectors with yTx = 1; and � is a positive root of xt(x) = 1;
that is, x3(x3 � x2)3 = 1, or (x4 � x3)3 = 1. The positive roots, if
any, are the roots of x4 � x3 = 1: This equation has only one positive
root and it lies between 1 and 2. So the summand of type (I) is �xyT ,
where � is the positive root of x4 = 1 + x3. Thus, � = 1:3803.
Next, we determine summands of rank d greater than 1: The possible

choices for d are the divisors of exponents of terms appearing in the
expression, xt(x) = (x4 � x3)3 = x12 � 3x11 + 3x10 � x9, which are
d = 2; 3; 4; 5; 6; 9; 10; 11; and 12.
We begin with d = 2. Then, �12�21 must be a positive common root

of x
12
2 � 3x 10

2 = 1 and �3x 10
2 � x 8

2 = 0, which does not exist. Thus,
there are no summands of rank 2.
For d = 3, �12�23�31 must be a positive common root of x

12
3 �x 9

3 = 1,
3x

9
3 = 0 and �3x 9

3 = 0, which again does not exist. Thus, there are
no summands of rank 3.
For d = 4, we need to �nd a positive common root of the equations

x
12
4 = 1; �x 8

4 = 0; :::. Since even the �rst two equations do not have a
common solution, it follows that there are no summands of rank 4
Proceeding similarly, we can show that there are no summands of

ranks 5; 6; 9; 10, and 11.
For d = 12, �12�23:::�12;1 must be a positive common root of the only

possible equation x
12
12 = 1. This implies that there exists a summand

of rank 12 and �12�23:::�12;1 = 1. In particular, this means that this
summand is of order 12; and it looks like

(II) :

266664
0 �12x1y

T
2 0 :::: 0

0 0 �23x2y
T
3 :::: 0

: : : : :
: : : : :

�12;1xdy
T
1 0 0 0

377775 ;
where �12�23:::�12;1 = 1.
We conclude that a summand of rank 1 will generate an in�nite cyclic

semigroup and that a summand of rank 12 has a �nite order of 12: This
completes the characterization of the matrix A, where A2 + A3 = A6.
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Remark 2.1. Unlike for �elds for which if the multiplicative group
is cyclic then the �eld must be �nite, a semiring with a multiplicative
cyclic semigroup need not be �nite.
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