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Abstract

It is shown that (i) a semilocal group algebra KG of an infinite nilpotent

group G over a field K of characteristic p > 0 is CS (equivalently continuous)

if and only if G = P ×H, where P is a locally finite, infinite p-group and H

is a finite abelian group whose order is not divisible by p, (ii) if K is a field

of characteristic p > 0 and G = P × H where P is an infinite locally finite

p-group (not necessarily nilpotent) and H is a finite group whose order is

not divisible by p then KG is CS if and only if H is abelian. Furthermore,

commutative semilocal group algebra is always continuous and for PI group

algebras this holds for local group algebras; however this result is not true,

in general.

1 Introduction

Semilocal finitely
∑−CS group algebras of a solvable or linear group

were characterized earlier as precisely self-injective group algebras (See The-

orem 0.1 in [3] and related results in [2]). The purpose of this paper is to

continue our investigation as to when a semilocal group algebra KG is con-

tinuous? We consider the cases when (i) G is nilpotent, and (ii) G = P ×H

where P is an infinite locally finite p−group and H is a finite group whose

order is not divisible by p (= char K). It is known in general that if KG is

continuous then G is locally finite [1]. Theorem 4.3 shows that a semilocal

group algebra KG of an infinite nilpotent group G over a field K of char-

acteristic p > 0 is CS (equivalently continuous) if and only if G = P × H
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where P is an infinite locally finite p−group and H is finite abelian group

whose order is not divisible by p. Theorem 4.1 shows that every commutative

semilocal group algebra is continuous. This raises a natural question as to

whether every PI−semilocal group algebra is also continuous? Example 5.1

shows that this is not true, in general. However, the result holds for any local

PI group algebra, that is, such a group algebra is continuous.

2 Definitions and Notation

Unless otherwise stated throughout K will denote a field of characteristic

p > 0 and G, a group. KG or K[G] will denote the group algebra of a group

G over a field K. R will denote a ring with identity and J(R) its Jacobson

radical. R is called local if it has a unique maximal right ideal. If R = KG

is local over a field K then char K = p > 0 and G is a p−group. A ring R

is called semilocal if R/J(R) is semisimple artinian. If R = KG is semilocal

then G is a torsion group. A ring R is called semiperfect if R/J(R) is semi-

simple artinian and idempotents modulo J(R) can be lifted. For a locally

finite group G, KG is semiperfect if and only if G/Op(G) is finite, where

Op(G) denotes the maximal normal p−subgroup of G.

A ring R is called a right CS−ring if it satisfies any one of the following

equivalent conditions referred to as (C1)−condition : (i) Each right ideal is

essential in eR, e = e2 ; (ii) Each complement right ideal is of the form eR,

e = e2. A ring R is called right finitely
∑−CS ring if for each positive

integer n, the n× n matrix ring is also a right CS−ring. A ring R is called

right quasi-continuous (also known as right π−injective) if it satisfies any one

of the following equivalent statements:

(i) For all right ideals A1, A2 with A1 ∩ A2 = (0), each projection πi :

A1 ⊕ A2 −→ Ai, i = 1, 2 can be lifted to an endomorphism of RR.

(ii) R satisfies the condition (C1) given above and the condition (C3): If

eR ∩ fR = (0), e = e2, f = f 2 then eR⊕ fR = gR where g = g2.

A ring R is known as right continuous (as defined by von Neumann) if it

satisfies the condition (C1) and the condition (C2): If aR ' eR, e = e2 then

aR = fR, f = f 2. It is known (C2) ⇒ (C3) and so every right continuous
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ring is right quasi-continuous ring (also known as right π−injective ring). A

ring R is called principally right self-injective if each R−homomorphism from

aR −→ R, a ∈ R, can be lifted to an R−endomorphism of RR. The concepts

of CS, quasi-continuous, continuous, principally injective and injective are

right-left symmetric for group algebras. Thus we will omit the prefix right

or left when dealing with these concepts for group algebras.

A group G is called locally finite if each finite subset generates a finite sub-

group.

3 Preliminaries

In this section, we give the results that are used often in the proofs of

main results. We begin with a lemma that if KG is π−injective (= quasi-

continuous) then the torsion elements form a subgroup of G.

Lemma 3.1. If KG is quasi-continuous then the torsion elements of G form

a locally finite normal subgroup of G. In particular, if KG is continuous then

G is locally finite, ([1], Theorem 4.3).

Proof. Let T be the set of torsion elements of G. Let a, b ∈ T . Let H =<

a, b >. Then ω(H) = KG(a−1)+KG(b−1) and r.ann ω(H) = r.ann KG(a−
1)

⋂
r.ann KG(b − 1). Suppose r.ann KG(a − 1)

⋂
r.ann KG(b − 1) =

(0). Then the projection π1 : r.ann KG(a − 1) ⊕ r.ann KG(b − 1) −→
r.ann KG(a − 1) can be extended to π∗1 : KGKG −→ KGKG. Let π∗1(1) =

x ∈ KG. Now π∗1(y) = π1(y) = y, for all y ∈ r.ann KG(a − 1). Also,

π∗1(y) = xy. This implies (x − 1) ∈ l.ann(r.ann KG(a − 1)) = KG(a − 1).

Furthermore, π∗1(r.ann KG(b − 1)) = 0 and so x(r.ann KG(b − 1)) = 0.

This implies x ∈ l.ann(r.ann KG(b − 1)) = KG(b − 1). Therefore, 1 =

x + (1 − x) ∈ KG(b − 1) + KG(a − 1) ⊆ ω(KG), a contradiction. Thus

r.ann ω(H) 6= 0, which yields that H =< a, b > is finite. This gives H ⊂ T

and so T is a subgroup of G. The above argument, using ([7], 3.1.2, p.68),

can be extended to show by induction that any finite subset of T generates

a finite subgroup.

Let KG be continuous. If g ∈ G has infinite order then 1 − g is regular
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and hence invertible, a contradiction. Hence G is torsion. That G is locally

finite follows from the first part. This completes the proof.

The following lemma is stated in ([5], Theorem 4.1) for a group algebra over

a field. However, the proof carries over to group algebra over a division ring.

Lemma 3.2. Let D be a division algebra over a field K with characteristic

p > 0. Let P be a locally finite p−group. Then DP is a continuous local

ring.

Proof. We sketch its proof briefly just for the convenience of the reader.

Firstly, ω(DP ) is nil and hence J(DP ) = ω(DP ) ([4], Corollary, p.682).

Thus DP is a local algebra. Next α, β ∈ DP ⇒ α, β ∈ DH, where H =<

Supp(α)∪Supp(β) > is a finite p−group. Thus DH is local selfinjective and

therefore uniform. This implies DP is local uniform with nil radical. Hence

DP is continuous.

Next, we record below a wellknown fact.

Lemma 3.3. If G is a locally finite group and K is a field with char K =

p > 0 then KG is semilocal if and only if KG is semiperfect.

The lemmas which follow are stated for easy reference.

Lemma 3.4 ([7], Lemma 10.1.6). If KG is semilocal then G is torsion.

Lemma 3.5 ([8], Theorem 7.4.10, p.230). Let K be a field of characteristic

p > 0, and let G be a finite group. Then KG has no nonzero nilpotent

elements if and only if G is an abelian p′−group.

The following theorem is due to Farkas.

Theorem 3.1 ([7], Exercise 10(ii), p.107). KG is principally selfinjective if

and only if G is locally finite.

Next we state a fact which is a consequence of the above theorem and the

result that if KG is principally self-injective then KG satisfies the condition

(C2) (Lemma [6], page 119, Ex.46).

Lemma 3.6. Let G be a locally finite group. Then KG is continuous if and

only if KG is CS.
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4 Main Results

The following theorem provides plenty of examples of continuous rings.

Theorem 4.1. Let KG be a semilocal group algebra of an abelian group G

over a field K of characteristic p > 0. Then KG is continuous.

Proof. Since KG is semilocal, G is torsion by Lemma 3.4. But then G is

locally finite because G is abelian. Thus J(KG) = N∗(KG) and KG is

semiperfect. Therefore, G/Op(G) is finite ([7], 10.1.3, p.409). This yields,

G ' Op(G)×A, where A is a finite abelian group such that p - |A|. Write P =

Op(G). Now, KG ' KP ⊗K KA ' ⊕∑n
i=1 KiP , where KA ∼= ⊕∑n

i=1 Ki

and K ′
is are field extensions over K. Since P is a locally finite p−group, KiP

is a continuous ring (Lemma 3.2). This yields KG is a continuous ring.

The question arises whether the above theorem holds for PI group algebras.

The answer is, in general, negative (See Example 5.1). However, the result

is true for local group algebras.

Theorem 4.2. Let KG be a local PI group algebra of a group G over a field

K of char K = p > 0. Then KG is continuous.

Proof. Since KG is local, G is a p−group. Furthermore, since KG has PI,

G contains a p−abelian subgroup of finite index and hence G is solvable-by-

finite. Because torsion solvable-by-finite groups are locally finite, G is locally

finite p−group. Therefore, by Lemma 3.2, KG is continuous.

Next, we give a complete characterization of a semilocal continuous group

algebra of a nilpotent group.

Theorem 4.3. Let G be an infinite nilpotent group and let K be a field of

characteristic p > 0. Then the following statements are equivalent:

1. KG is semiperfect continuous.

2. KG is semilocal continuous.

3. KG is semiperfect CS.
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4. KG is semilocal CS.

5. G = P ×A, where P is infinite locally finite p−group and A is a finite

abelian group such that p - |A|.

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (3) : Since KG is continuous, G is locally finite (Lemma 3.1). Thus

J(KG) is nil and so KG is semiperfect.

(3) ⇒ (4) is obvious.

(4) ⇒ (5) : Since KG is semilocal, G is torsion (Lemma 3.4). Since G is

nilpotent, G is locally finite. Thus KG is semiperfect and so G/Op(G) is finite

([7], Theorem 10.1.5, p. 409). Let P = Op(G). Since G is infinite, P must

be infinite. Furthermore, G being nilpotent and locally finite, P = Op(G)

is the unique p−Sylow subgroup of G, where p does not divide the order

of G/P . Let |G/P | = n = qe1
1 · · · qes

s where q′is are primes different from

p. Then G = P × H where H = Q1Q2 · · ·Qs and Qi = {x ∈ G | o(x) =

some power of qi}. It may be noted that each Qi is a normal subgroup of

G, because G is a locally finite nilpotent group.

By hypothesis KG is CS and since G is shown to be locally finite, by

Lemma 3.6 KG is continuous. Now

KG = K[P ×H] ' KP
⊗
K

KH ' KP
⊗

⊕
s∑

i=1

Mni
(Di)

' ⊕
s∑

i=1

KP
⊗
K

Mni
(Di),

where Di is a finite dimensional division algebra over K. Then

KG ' ⊕
s∑

i=1

Mni
(DiP )

By Utumi [9], KG is continuous if and only if either DiP is selfinjective or

ni = 1. Since P is infinite, DiP is not selfinjective. Hence each ni = 1.

So, KH ' ⊕∑s
i=1 Di. Because KH has no nonzero nilpotent elements, it

follows by ([8], Theorem 7.4.10, p. 230) that H must be abelian.
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(5) ⇒ (1) : Under the given hypothesis KG is semiperfect. The rest of the

argument is exactly similar to the argument in Theorem 4.1.

We close this section with the following result that provides a possible

direction for further investigation of continuous group algebras.

Proposition 4.1. Let KG be a group algebra of a group G = P × H over

a field of characteristic p > 0, where P is an infinite locally finite p−group

and H is a finite group with p - |H|. Then KG is continuous if and only if

H is abelian.

Proof. Under the given hypothesis KG is semiperfect. If KG is continuous

then the fact that H is abelian follows as in the proof of (4) ⇒ (5) of Theorem

4.3. For the converse, we argue as in Theorem 4.1.

5 Examples

Our first example is of a semiperfect PI group algebra which is not contin-

uous.

Example 5.1 Let F be a finite field of characteristic p > 0. Let Un(F ) be

the group of all n× n upper triangular matrices whose entries are in F with

diagonal entries all equal to 1. Un(F ) is a finite p−group which is nilpotent

of class n − 1([10], Exercise 1.3 (iv), p.16). Let P = Un(F ) × P0, n ≥ 3,

where P0 =
∏∞

i=1 C
(i)
p = {(xi) | xi ∈ C

(i)
p and xi = ei for all but finitely many

i} is the restricted direct product of C
(i)
p , 1 ≤ i ≤ ∞ and for all i, C

(i)
p ' Cp,

the cyclic group of order p. Let H = Un(K), where K is a finite field of

characteristic q 6= p. Let G = P × Un(K), n ≥ 3 which is a nilpotent group.

KG satisfies PI because P is a p−abelian subgroup of finite index. Since

Un(K) is not abelian, by Theorem 4.3, KG is not continuous. Here KG is

semiperfect ([7], Theorem 10.1.5, p.409) with PI.

The example which follows shows that KG can be continuous without G

being nilpotent.

Example 5.2 Under the notation in Example 5.1, let G = P × A, where
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P =
∏∞

n=1 Un(F ) is the restricted direct product and A is any finite abelian

group whose order is not divisible by p. Then KG is semiperfect and by

Proposition 4.1, KG is continuous. Here G is not nilpotent.
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