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Semiprime CS Group Algebra of
Polycyclic-By-Finite Group Without
Domains as Summands is Hereditary

ADEL N. ALAHMADI, S. K. JAIN, and J. B. SRIVASTAVA

Abstract. Behn showed that if K[G] is a prime group algebra
with G polycyclic-by-finite, then K[G] is a CS-ring if and only
if K[G] is a pp-ring if and only if G is torsion-free or G ∼= D∞
and char(K) 6= 2. As a consequence, such a group algebra K[G] is
hereditary excepting possibly when K[G] is a domain. In this paper
we show that if K[G] is a semiprime group algebra of polycyclic-
by-finite group G and if K[G] has no direct summands that are
domains, then K[G] is a CS-ring if and only if K[G] is hereditary
if and only if G/∆+(G) ∼= D∞ and char(K) 6= 2. Precise structure
of a semiprime CS group algebra K[G] of polycyclic-by-finite group
G, when K is algebraically closed, is also provided.

1. INTRODUCTION

A ring R is called right CS-ring if every closed right ideal of R is a
direct summand. Right selfinjective, continuous, quasi-continuous (=
π-injective) rings are CS-rings and have been studied by many authors.
But not much is known on CS-group rings. It is well known that the
group ring R[G] is selfinjective if and only if R is selfinjective and G
is finite. But the corresponding result for CS-group algebras does not
hold. For instance, consider the infinite dihedral group D∞ and a field
K with char(K) 6= 2. Then the group algebra K[D∞] is CS ([3], The-
orem 3.6). On the other hand if G is a finite group, then the group ring
Z[G] is not CS. If G ∼= D∞ and char(K) 6= 2, then gl.dim(K[G]) < ∞
([6], Theorem 10.3.13). So gl.dim(K[G]) = h(D∞) = 1 ([6], Page 450).
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Thus K[G] is hereditary. Since K[G] is a domain when G is torsion-
free, it follows that a prime group algebra K[G] of a polycyclic-by-finite
group G which is not a domain is hereditary if and only if it is CS.
Thus it is natural to ask when a semiprime CS group algebra K[G] of
polycyclic-by-finite group G is hereditary. We show that a semiprime
group algebra K[G] of polycyclic-by-finite group G that does not con-
tain a direct summand which is a domain is hereditary if and only if it
is CS (Theorem 1). In this paper we also give the precise structure of
such a group algebra K[G], when K is an algebraically closed (Theorem
2).

2. NOTATION AND PRELIMINARIES

Throughout, unless otherwise specified, K will denote a field and
all modules are unitary. A nonzero module N is said to be an essential
submodule of M , if, for every nonzero submodule L of M , L ∩ N 6= 0.
A submodule N of M is called closed or a complement in M if N
has no proper essential extension in M . A module M is said to be
CS or extending if every closed submodule of M is a summand of M ,
equivalently, if every nonzero submodule of M is essential in a summand
of M . A module M is called finitely

∑
-CS if finite direct sum of copies

of M is CS. A ring R is said to be a right CS-ring (resp. finitely
∑

-CS
ring) if it is CS (resp. finitely

∑
-CS) as a right module over itself. The

group algebra K[G] is prime if and only if G has no nontrivial finite
normal subgroup ([6], Theorem 4.2.10). If char(K) = 0, then K[G] is
always semiprime. If char(K) = p > 0, then K[G] is semiprime if and
only if G has no finite normal subgroups H with p | o(H). A twisted
group algebra K t[G] is an associative K-algebra which has a basis {g,
g ∈ G} and in which the multiplication is defined distributively:

g1 g2 = γ(g1, g2)g1g2 , g1, g2 ∈ G and γ(g1, g2) ∈ Ko

where Ko is the set of all nonzero elements of K. By choosing γ(g,
g

′
) = 1 for all g, g

′ ∈ G, we get the ordinary group algebra K[G] (see
[6], 1.2). D∞ as usual stand for the infinite dihedral group generated
by two elements a and b with a of infinite order, b of order 2 and
ba = a−1b. A group G is said to be polycyclic-by-finite if G has a finite
subnormal series

< 1 >= Go C G1 C · · · C Gn = G

such that each quotient Gi/Gi−1 is either finite or cyclic. The number
of infinite cyclic quotients which appear in the above series is called
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the Hirsch number of G, denoted by h(G). This number is invariant
for the group (see [6]). We may note that, h(D∞) = 1.

3. SEMIPRIME GROUP RINGS OF
POLYCYCLIC-BY-FINITE GROUPS

Proposition 1. Let K be an algebraically closed field. Then
K t[N ] and K[N ] are diagonally equivalent, hence K t[N ] ∼= K[N ], for
all twisted group algebras of N over K, where N ≤ D∞.

Proof. Nonidentity subgroups of D∞ are isomorphic to Z, Z/2Z
or D∞. Let N be a subgroup of D∞ and K t[N ] a twisted group algebra
of N over K. If N = {1} the result is trivial. Suppose N ∼= Z or
Z/2Z. Then K t[N ] ∼= K[N ] ([6], p. 18). Further, let N ∼= D∞. Write

N =< a, b | o(a) = ∞, o(b) = 2 and ba = a−1b >. Since b
2 ∈ K

and K is closed under square roots, we can change b by an element
b∗ ∈ K t[N ] such that b∗

2
= 1. Now, b∗a = a−1b∗k, for some k ∈ K.

Let t ∈ K such that t2 = k. Set a∗ = t−1a. Then b∗a∗ = a∗−1
b∗. Hence

K t[N ] ∼= K[N ] �
Lemma 1. ([3] Theorem 3.6) K[D∞] is CS-ring if and only if

char(K) 6= 2.

Lemma 2. ([1] Theorem 3.6). Let K[G] be prime with G polycyclic-
by-finite. Then the following are equivalent:

(i) K[G] is a CS-ring
(ii) K[G] is a pp-ring
(iii) G is torsion-free or G ∼= D∞ and char(K) 6= 2

Lemma 3. ([2], Corollary 12.18). Let R be a semiprime left and
right Goldie ring. Then the following statements are equivalent:

(i) R is a left finitely
∑

-CS
(ii) R is a right finitely

∑
-CS

(iii) R is a left semihereditary
(iv) R is a right semihereditary.

In Lemma 2 if K[G] is not a domain, then G ∼= D∞ and hence
K[G] ∼= K[D∞] is hereditary. Therefore, a prime group algebra K[G]
of polycyclic-by-finite group G which is not a domain is CS if and only
if K[G] is hereditary (by Lemma 3). The Theorem that follows extends
the above stated result to a semiprime CS group algebra.

Theorem 1. Let K[G]be a semiprime group algebra of a polycyclic-
by-finite group G. Suppose K[G] has no ring direct summand which is
domain. Then the following are equivalent:
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(i) K[G] is finitely
∑

-CS
(ii) K[G] is CS
(iii) G/∆+(G) ∼= D∞ and char(K) 6= 2
(iv) K[G] is hereditary

Proof. (i) =⇒ (ii) is obvious

(ii) =⇒ (iii) Put H = ∆+(G). It is known that H = ∪N , where
N C G and o(N) < ∞. So H C G and o(H) < ∞ ([6], Lemma
4.1.5(iii)). Hence G/H is a polycyclic-by-finite group having no non-
trivial finite normal subgroup. Thus K[G/H] is prime. If char(K) =
p > 0, then p - o(H) since K[G] is semiprime. Hence in either case
we have o(H) is invertible in K. Let e = o(H)−1

∑
h∈H h. Then e is a

central idempotent in K[G]. Now,

1 − e = 1 − o(H)−1
∑

h∈H h = o(H)−1
∑

h∈H(1 − h) ∈ ω (H).

So (1 − e)K[G] ⊆ ω (H). Conversely, if h ∈ H, then

(1 − h) = (e + (1 − e)) (1 − h) = (1 − e) (1 − h) ∈ (1 − e)K[G],

which implies ω (H) ⊆ (1 − e)K[G]. Hence ω (H) = (1 − e) K[G].

So, K[G/H] ∼= K[G]/ω(H) = K[G]/(1 − e)K[G] ∼= eK[G].

Since e is a central idempotent in K[G] and K[G] is CS-ring, eK[G]
is a CS-ring. Hence K[G/H] is a prime CS-group algebra which is not
a domain with G/H polycyclic-by-finite. So by Lemma 1 and Lemma
2, G/H ∼= D∞ and char (K) 6= 2.

(iii) =⇒ (iv) Let H be as above. Then gl.dimK[H] = 0 since K[H]
is semisimple artinian. Also G/H ∼= D∞ and gl.dimK[D∞] < ∞
since char (K) 6= 2 ([6], Theorem10.3.13). So by ([6], Theorem 10.3.9)
gl.dimK[G] ≤ gl.dimK[G/H] + gl.dimK[H]. So gl.dimK[G] < ∞.
Hence gl.dimK[G] = h(G) = h(D∞) + h(H) = 1 + 0 = 1 ([6], Lemma
10.2.10 and p.450). Thus K[G] is hereditary.

(iv) =⇒ (i) follows from Lemma 3 �

The following lemma will be needed in the next Theorem.

Lemma 4. ([5], Corollary 3.4.10) Let G be a finite group and let
K be an algebraically closed field such that char(K) - O(G). Then



SEMIPRIME CS GROUP ALGEBRA 5

K[G] ∼= ⊕r
i=1Mni(K)

and n2
1 + n2

2 + · · · + n2
r = o(G).

The following lemma is a key lemma to prove the next theorem.

Lemma 5. ([6], Theorem 6.1.9). Let G be a group, and let H C G.
Suppose {e1,e2,..., en} is a finite G-orbit of centrally primitive idempo-
tents of K[H] with e1K[G] ∼= Mm(K). Then e = e1 + e2+...+en is a
central idempotent of K[G] and

eK[G] ∼= Mmn(K t[G1/H])

where G1 ⊇ H is the centralizer of e1 in G and K t[G1/H]is some
twisted group ring of G1/H.

Now we give the precise structure of the semiprime CS group al-
gebra K[G] of a polycyclic-by-finite group G, when K is algebraically
closed and K[G] has no ring direct summands that are domains.

Theorem 2. Let K[G] be a semiprime CS group algebra of a
polycyclic-by-finite group G. Suppose K[G] has no ring direct sum-
mand which is domain. If K is algebraically closed field, then

K[G] ∼= K[D∞] ⊕Mn1(K[N1])⊕ Mn2(K[N2]) ⊕ · · · ⊕Mns(K[Ns])

where Ni
∼= D∞ or Z.

Proof. Let H = ∆+(G) and e = o(H)−1
∑

h∈H h. Then eK[G] ∼=
K[G/H] ∼= K[D∞] as shown in the proof of Theorem 1. Since K[G] is
semiprime and H is a finite normal subgroup of G, we conclude that
K[H] is semisimple artinian. Also, by Lemma 4, we have K[H] ∼=
⊕r

i=1Mni(K). So (1 − e)K[H] ∼= ⊕l
i=1Mni(K), where l ≤ r, after re-

ordering if necessary. So there exists a set X = {f1, f2, ..., fl} of
centrally primitive orthogonal idempotents in K[H] such that 1 − e =
f1 + f2 + ... + fl and fiK[H] ∼= Mni(K), for every 1 ≤ i ≤ l. Since
H C G and 1−e is a central idempotent in K[G], G permutes elements
of X. Let s be the number of all G-orbits in X and {fi1, fi2, ..., fis}
a subset of X containing exactly one element from each orbit and let
ej =

∑
x∈Gfij

x (the sum of all idempotents in the orbit Gfij ). Then

by Lemma 5 each ej is a centeral idempotent of K[G]. Since 1− e = e1

+ e2 + ... + es, we have

(1 − e)K[G] =e1K[G] ⊕ e2K[G] · · · ⊕esK[G]
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as a ring direct sum. For each j, ejK[G] ∼= Mnj (K
t[Gj/H]), where

Gj ⊇ H is the centralizer of ej in G and K t[Gj/H]is some twisted group
ring of Gj/H (Lemma 5). Because G1/H < G/H ∼= D∞, K t[Gj/H] ∼=
K[Gj/H] (Proposition 1). Hence

(1−e)K[G] ∼= Mn1(K[G1/H])⊕Mn2(K[G2/H])⊕···⊕Mns(K[Gs/H]).

For each j, the index [G : Gj ] =| Gfij |< ∞ and also o(H) < ∞. So
Gj/H is infinite. But infinite subgroups of D∞ are eihter infinite cyclic
or isomorphic to D∞, we obtain

(1 − e)K[G] ∼= Mn1(K[N1]) ⊕ Mn2(K[N2]) ⊕ · · · ⊕ Mns(K[Ns])

where Ni
∼= D∞ or Z.

This proves,

K[G] ∼= K[D∞]⊕ Mn1(K[N1]) ⊕ Mn2(K[N2]) ⊕ · · · ⊕ Mns(K[Ns]).

where Ni
∼= D∞ or Z. �

Remark. If we assume in Theorem 2 that K[G] has no ring direct
summand which is matrix ring over a domain then K[G] is isomorphic
to direct sum of matrix rings over K[D∞].
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