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Semiprime CS Group Algebra of
Polycyclic-By-Finite Group Without
Domains as Summands is Hereditary

ADEL N. ALAHMADI, S. K. JAIN, and J. B. SRIVASTAVA

ABSTRACT. Behn showed that if K[G] is a prime group algebra
with G polycyclic-by-finite, then K[G] is a CS-ring if and only
if K[G] is a pp-ring if and only if G is torsion-free or G = D
and char(K) # 2. As a consequence, such a group algebra K[G] is
hereditary excepting possibly when K[G] is a domain. In this paper
we show that if K[G] is a semiprime group algebra of polycyclic-
by-finite group G and if K[G] has no direct summands that are
domains, then K[G] is a C'S-ring if and only if K[G] is hereditary
if and only if G/AY(G) 2 Dy, and char(K) # 2. Precise structure
of a semiprime C'S group algebra K[G] of polycyclic-by-finite group
G, when K is algebraically closed, is also provided.

1. INTRODUCTION

A ring R is called right C'S-ring if every closed right ideal of R is a
direct summand. Right selfinjective, continuous, quasi-continuous (=
m-injective) rings are C'S-rings and have been studied by many authors.
But not much is known on C'S-group rings. It is well known that the
group ring RG] is selfinjective if and only if R is selfinjective and G
is finite. But the corresponding result for C'S-group algebras does not
hold. For instance, consider the infinite dihedral group D, and a field
K with char(K) # 2. Then the group algebra K[Ds] is C'S ([3], The-
orem 3.6). On the other hand if G is a finite group, then the group ring
Z|G]isnot CS. If G = Dy and char(K) # 2, then gl.dim(K[G]) < oo
([6], Theorem 10.3.13). So gl.dim(K[G]) = h(D) = 1 (6], Page 450).
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Thus K[G] is hereditary. Since K[G] is a domain when G is torsion-
free, it follows that a prime group algebra K |G| of a polycyclic-by-finite
group G which is not a domain is hereditary if and only if it is C'S.
Thus it is natural to ask when a semiprime C'S group algebra K[G] of
polycyclic-by-finite group G is hereditary. We show that a semiprime
group algebra K[G] of polycyclic-by-finite group G that does not con-
tain a direct summand which is a domain is hereditary if and only if it
is C'S (Theorem 1). In this paper we also give the precise structure of
such a group algebra K[G], when K is an algebraically closed (Theorem
2).

2. NOTATION AND PRELIMINARIES

Throughout, unless otherwise specified, K will denote a field and
all modules are unitary. A nonzero module N is said to be an essential
submodule of M, if, for every nonzero submodule L of M, L " N # 0.
A submodule N of M is called closed or a complement in M if N
has no proper essential extension in M. A module M is said to be
C'S or extending if every closed submodule of M is a summand of M,
equivalently, if every nonzero submodule of M is essential in a summand
of M. A module M is called finitely > -C'S if finite direct sum of copies
of M is C'S. A ring R is said to be a right C'S-ring (resp. finitely ) -C'S
ring) if it is C'S (resp. finitely > -C'S) as a right module over itself. The
group algebra K[G| is prime if and only if G has no nontrivial finite
normal subgroup ([6], Theorem 4.2.10). If char(K) = 0, then K[G] is
always semiprime. If char(K) = p > 0, then K[G] is semiprime if and
only if G has no finite normal subgroups H with p | o(H). A twisted
group algebra K'[G] is an associative K-algebra which has a basis {7,
g € G} and in which the multiplication is defined distributively:

91 52 = (91, 92)G1 2 g1, 92 € G and ¥(g1, g2) € K°

where K° is the set of all nonzero elements of K. By choosing (g,
g)=1forall g, ¢ €G, we get the ordinary group algebra K[G] (see
[6], 1.2). Do as usual stand for the infinite dihedral group generated
by two elements a and b with a of infinite order, b of order 2 and
ba = a~'b. A group G is said to be polycyclic-by-finite if G has a finite
subnormal series

<l>=G, <G 416G, =G

such that each quotient G;/G;_; is either finite or cyclic. The number
of infinite cyclic quotients which appear in the above series is called
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the Hirsch number of G, denoted by h(G). This number is invariant
for the group (see [6]). We may note that, h(Dy) = 1.

3. SEMIPRIME GROUP RINGS OF
POLYCYCLIC-BY-FINITE GROUPS

PROPOSITION 1. Let K be an algebraically closed field. Then
K'[N] and K[N] are diagonally equivalent, hence K'[N] = K[N], for
all twisted group algebras of N over K, where N < Dq.

PROOF. Nonidentity subgroups of D, are isomorphic to Z, Z/2Z
or Ds. Let N be a subgroup of D, and K*[N] a twisted group algebra
of N over K. If N = {1} the result is trivial. Suppose N = Z or
Z/2Z. Then K'[N] = K|[N] ([6], p. 18). Further, let N = D,,. Write
N =< a,b | o(a) = 00,0(b) = 2 and ba = a~'b >. Since b e K
and K is closed under square roots, we can change b by an element
b* € K'[N] such that b** = 1. Now, b*a = @ 'b*k, for some k € K.
Let t € K such that 2 = k. Set a* = t~*a. Then b*a* = a* 'b*. Hence
K'[N] = K[N] 0

LEMMA 1. ([3] Theorem 3.6) K[Ds)] is CS-ring if and only if
char(K) # 2.

LEMMA 2. ([1] Theorem 3.6). Let K|G| be prime with G polycyclic-
by-finite. Then the following are equivalent:
(i) KIG] is a CS-ring
(ii) KI[G] is a pp-ring
(iii) G is torsion-free or G = Dy, and char(K) # 2

LeEmMA 3. ([2], Corollary 12.18). Let R be a semiprime left and
right Goldie ring. Then the following statements are equivalent:
(1) R is a left finitely > -C'S
(ii) R is a right finitely > -C'S
(iii) R is a left semihereditary
(iv) R is a right semihereditary.

In Lemma 2 if K[G] is not a domain, then G = D, and hence
K[G] = K[D)] is hereditary. Therefore, a prime group algebra K|[G]|
of polycyclic-by-finite group G which is not a domain is C'S'if and only
if K[G] is hereditary (by Lemma 3). The Theorem that follows extends
the above stated result to a semiprime C'S group algebra.

THEOREM 1. Let K[G]be a semiprime group algebra of a polycyclic-
by-finite group G. Suppose K[G] has no ring direct summand which is
domain. Then the following are equivalent:
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(i) K|[G] is finitely > -CS

(ii) K[G] is CS

(iii) G/AT(G) = Dy and char(K) # 2
(iv) K[G] is hereditary

PRrOOF. (i) = (ii) is obvious

(il) = (iii) Put H = AT(G). It is known that H = UN, where
N < G and o(N) < oo. So H < G and o(H) < oo ([6], Lemma
4.1.5(iii)). Hence G/H is a polycyclic-by-finite group having no non-
trivial finite normal subgroup. Thus K[G/H] is prime. If char(K) =
p > 0, then p 1 o(H) since K|[G] is semiprime. Hence in either case
we have o(H) is invertible in K. Let e = o(H) ™' Y ,cyy h. Then e is a
central idempotent in K[G]. Now,

l—e=1—0oH) 'Y cuh=0H)">,.z(1—h)cw(H).
So (1 —e)K[G] Cw (H). Conversely, if h € H, then

I=h)=(+1=e)d-h)=0-e)(d-h)c(l-e)K[G]
which implies w (H) C (1 —e) K[G]. Hence w (H) = (1 —¢) K|G].
So, K|G/H] = K[G/w(H) = K[G]/(1 - ) K[G] = eK[G].

Since e is a central idempotent in K[G] and K[G] is C'S-ring, eK[G]
is a C'S-ring. Hence K[G/H] is a prime C'S-group algebra which is not
a domain with G/H polycyclic-by-finite. So by Lemma 1 and Lemma
2, G/H = Dy, and char (K) # 2.

(iii) = (iv) Let H be as above. Then gl.dim K[H] = 0 since K[H|
is semisimple artinian. Also G/H = Dy and g¢l.dim K[Dy] < o0
since char (K') # 2 ([6], Theorem10.3.13). So by ([6], Theorem 10.3.9)
gl.dim K[G] < gl.dim K[G/H] + gl.dim K[H]. So gl. dim K[G] < oo.
Hence gl. dim K[G] = h(G) = h(Dw) + h(H) =140 =1 ([6], Lemma
10.2.10 and p.450). Thus K[G] is hereditary.

(iv) = (i) follows from Lemma 3 O
The following lemma will be needed in the next Theorem.

LeEmMA 4. ([5], Corollary 3.4.10) Let G be a finite group and let
K be an algebraically closed field such that char(K) {1 O(G). Then
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K[G] = zr:le(K)
and n? +n3 +---+n2 =o(G).

The following lemma is a key lemma to prove the next theorem.

LEMMA 5. ([6], Theorem 6.1.9). Let G be a group, and let H < G.
Suppose {e1.ea,...,en} is a finite G-orbit of centrally primitive idempo-
tents of K[H] with e1K[G] = M, (K). Then e = e1 + ea+...+e, is a
central idempotent of K[G] and

eK[G] = My (K'[G1/H])
where G1 2 H s the centralizer of e; in G and K'[G1/H|is some
twisted group ring of G1/H.

Now we give the precise structure of the semiprime C'S group al-
gebra K[G] of a polycyclic-by-finite group G, when K is algebraically
closed and K[G] has no ring direct summands that are domains.

THEOREM 2. Let K[G] be a semiprime CS group algebra of a
polycyclic-by-finite group G. Suppose K[G] has no ring direct sum-
mand which is domain. If K is algebraically closed field, then

K[G] ¥ K[Dys] ® My, (K[N1]) & M,,(K[Ns]) @ - - - & M, (K[Ns])

where N; = Dy, or 7.

PROOF. Let H = AT(G) and e = o(H) 'Y,y h. Then eK[G] =
K[G/H] = K[D«)] as shown in the proof of Theorem 1. Since K[G] is
semiprime and H is a finite normal subgroup of G, we conclude that
K[H] is semisimple artinian. Also, by Lemma 4, we have K[H] =

T M, (K). So (1—e)K[H] = &!_ M, (K), where | < r, after re-
ordering if necessary. So there exists a set X = {fi, fo, ..., fi} of
centrally primitive orthogonal idempotents in K [H| such that 1 —e =
fi+ fo+ ..+ fiand fiK[H] & M,,(K), for every 1 < i < [. Since
H < G and 1—eis a central idempotent in K[G], G permutes elements
of X. Let s be the number of all G-orbits in X and {fi,, fi,, .-, fi.}
a subset of X containing exactly one element from each orbit and let
ej = Zmerij r (the sum of all idempotents in the orbit Gf;;). Then

by Lemma 5 each e; is a centeral idempotent of K[G]. Since 1 —e = e;
+ ey + ... + e5, we have

(1 —e)K[G] =1 K[G] @ e2K[G] - - - ®e; K[G]



6 ADEL N. ALAHMADI, S. K. JAIN, AND J. B. SRIVASTAVA

as a ring direct sum. For each j, ¢;K[G] = M, (K'[G;/H]), where
G; O H is the centralizer of e; in G and K'[G;/ His some twisted group
ring of G;/H (Lemma 5). Because G1/H < G/H = D, K'|G;/H] =
K|G,/H] (Proposition 1). Hence

(1-e)K[G]) 2 M, (K[G1/H])® M,,(K[G2/H])®---® M, (K[G,/H]).

For each j, the index [G : G;] =| G f;, |< oo and also o(H) < co. So
G, /H is infinite. But infinite subgroups of D, are eihter infinite cyclic
or isomorphic to D, we obtain

(1—-e)K[G] = M, (K[Ni]) ® M,,(K[No]) @ --- & M, (K[N])

where N; & D, or Z.
This proves,

K[G]) = K[Doo) ® My, (K[N1]) ® My, (K[No)) ® - - - & M, (K[N]).
where N; & Dy, or Z. OJ

Remark. If we assume in Theorem 2 that K[G] has no ring direct
summand which is matrix ring over a domain then K[G] is isomorphic
to direct sum of matrix rings over K[Dy).
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