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Abstract. It is known that every essential extension of a direct sum of injective hulls of simple
R-modules is a direct sum of injective R-modules if and only if the ring R is right noetherian.
The purpose of this paper is to study the rings R having the property: every essential extension
of a direct sum of simple R-modules is a direct sum of quasi-injective R-modules. A commutative
ring with this property is known to be an artinian principal ideal ring. In the present paper, we
show that such a ring is directly finite. For a right nonsingular ring R with this property, we
show that the maximal right ring of quotients Qr

max(R) is the direct product of a finite number of
matrix rings over abelian regular self-injective rings. For a von-Neumann regular ring R, we show
that R is noetherian if and only if every essential extension of a direct sum of simple R-modules
is a quasi-injective R-module.

1. INTRODUCTION

This paper is inspired by several results that characterize right noetherian rings in terms of
direct sums of injective modules as obtained by Bass [1], Papp [19], Kurshan [14], Goursaud-Valette
[11], Beidar-Ke [2], Beidar-Jain [3], and other authors (see e.g. [5], [16] and [20]). Also, there are
several characterizations of right noetherian rings in terms of decomposition of injective modules
due to Matlis [17], Papp [19] and Faith-Walker [9]. For the sake of providing the reader some
background, we state here key results relevant to the present study that characterize noetherian
rings in terms of direct sums of injective modules.

Theorem 1. (see [16]) Let R be a ring. Then the following statements are equivalent:
(1) R is right noetherian;
(2) Every direct sum of injective right R-modules is injective;
(3) Every countable direct sum of injective hulls of simple right R-modules is injective.

Beidar and Ke [2] obtained the following generalization of the above stated theorem
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Theorem 2. Let R be a ring. Then the following statements are equivalent:
(1) R is right noetherian;
(2) Every essential extension of a direct sum of a family of injective right R-modules is a direct

sum of injective modules;
(3) Given a family {Si : i = 1, 2, ...} of simple right R-modules, each essential extension of

⊕∞
i=1E(Si) is a direct sum of injective modules;

(4) For any family {Si : i = 1, 2, ...} of simple right R-modules, there exists an infinite subset
I of natural numbers such that ⊕i∈IE(Si) is an injective module.

Later, Beidar and Jain [3] proved that a ring R is right noetherian if and only if R is right q.f.d.
and every essential extension of a direct sum of injective hulls of simple modules is a direct sum
of quasi-injective modules. However, in the case of a commutative ring, using arguments based on
ultrafilters they proved that every essential extension of a semisimple R-module is a direct sum of
quasi-injective modules if and only if R is an artinian principal ideal ring. It may be recalled here
that Kurshan [14] proved that a ring R is right noetherian if and only if R is right q.f.d. and has the
property that every submodule of a cyclic R-module with simple essential socle is finitely generated
(Kurshan called such rings TC rings). Faith proved that a right R-module M is noetherian if and
only if M is q.f.d. and satisfies the acc on subdirectly irreducible (or colocal) submodules ([6], [7]).

In the present paper, we study the class of rings R which satisfy the condition:
(*) Every essential extension of a direct sum of simple R-modules is a direct sum of quasi-

injective R-modules.
Throughout this paper, this condition will be referred to as condition (*).
We show that if a ring R satisfies (*) then R is directly finite (Theorem 4). For a right

nonsingular ring R, we show that if R satisfies (*) then the maximal right ring of quotients Qr
max(R)

is the direct product of a finite number of matrix rings over abelian regular self-injective rings
(Theorem 6). In case of a von-Neumann regular ring R, we show that R is noetherian if and only
if R satisfies the condition that every essential extension of a direct sum of simple R-modules is a
quasi-injective module (Theorem 8).

2. DEFINITIONS AND NOTATIONS

All rings considered in this paper have unity and all modules are right unital. Let M be an
R-module. We denote by Soc(M) and E(M), respectively, the socle and the injective hull of M. We
shall write N ⊆e M whenever N is an essential submodule of M. A module M is called N -injective,
if every R-homomorphism from a submodule L of N to M can be lifted to a R-homomorphism from
N to M . A module M is said to be quasi-injective if it is M -injective. Readers may refer to [8],
[16] and [18] for basic properties of quasi-injective modules. A module M is called directly finite (or
“von-Neumann finite” or “Dedekind finite”) if M is not isomorphic to any proper direct summand
of itself. A ring R is called directly finite if R is directly finite as an R-module, equivalently, xy = 1
implies yx = 1, for all x, y ∈ R. A ring R is called von-Neumann regular if every principal right
(left) ideal of R is generated by an idempotent. A regular ring is called abelian if all its idempotents
are central. An idempotent e in a regular ring R is called abelian idempotent if the ring e R e
is abelian. An idempotent e in a regular right self-injective ring is called faithful idempotent if
0 is the only central idempotent orthogonal to e, that is, ef = 0 implies f = 0, where f is a
central idempotent. A regular right self-injective ring is said to be of Type I provided it contains a
faithful abelian idempotent. A regular right self-injective ring R is said to be of Type II provided
R contains a faithful directly finite idempotent but R contains no nonzero abelian idempotents. A
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regular right self-injective ring is of Type III if it contains no nonzero directly finite idempotents.
A regular right self-injective ring is of (i) Type If if R is of Type I and is directly finite, (ii) Type
I∞ if R is of Type I and is purely infinite, (iii) Type IIf if R is of Type II and is directly finite,
(iv) Type II∞ if R is of Type II and is purely infinite (see [10], pp. 111-115). If R is a regular right
self-injective ring of Type If then R ≃ ΠRn where each Rn is an n×n matrix ring over an abelian
regular self-injective ring (see [10], p.120). The index of a nilpotent element x in a ring R is the
least positive integer n such that xn = 0. The index of a two-sided ideal J in R is the supremum
of the indices of all nilpotent elements of J . If this supremum is finite, then J is said to have
bounded index. A ring R is said to be right q.f.d. if every cyclic right R-module has finite uniform
(Goldie) dimension, that is, every direct sum of submodules of a cyclic module has finite number
of terms. We shall say that Goldie dimension of N with respect to U , GdimU (N), is less than or
equal to n, if for any independent family {Vj : j ∈ J } of nonzero submodules of N such that each
Vj is isomorphic to a submodule of U, we have that |J | ≤ n. Next, GdimU (N) < ∞ means that
GdimU (N) ≤ n for some positive integer n. The module N is said to be q.f.d. relative to U if for

any factor module N of N , GdimU (N) < ∞. Note that if V ⊆e U, then GdimU (N) = GdimV (N)
for all N . If U is the direct sum of cyclic modules, then GdimU (N) = Gdim(N). Given two
R-modules M and N , we set TrM (N) =

∑
{f(M) : f ∈ Hom(MR, NR)}. A ring R is called a

q-ring if every right ideal of R is quasi-injective (see [13], [4]). The Jacobson radical of a ring R is
denoted by J(R). The maximal right ring of quotients of ring R is denoted by Qr

max(R).

3. MAIN RESULTS

We begin with a key lemma whose proof is rather technical.

Lemma 3. Let R be a ring which satisfies the condition (*) and let N be a finitely generated
R-module. Then there exists a positive integer n such that for any simple R-module S, we have

GdimS(N) ≤ n.

Proof. If possible, let GdimS(N) = ∞ for some simple submodule S of N. Let D be a
complement of TrS(N) in N. Then TrS(N) ⊕ D ⊂e N. Factoring out by D we get that TrS(N) is
essentially embeddable in N/D. That means TrS(N) ∼= B/D for some B/D ⊂e N/D. This gives
that Tr

S
(N/D) = B/D ⊂e N/D. Because N/D is also finitely generated, and Gdim

S
(N/D) = ∞

we may assume, without any loss of generality, that TrS(N) ⊆e N. Therefore, Soc(N) = TrS(N)
and Soc(N) ⊂e N . Hence, by (*) we get N = ⊕∞

k=1Qk , where each Qk is quasi-injective. Since N
is finitely generated, we conclude that N = ⊕n

k=1Qk. Now, Soc(N) = ⊕n
k=1Soc(Qk). Thus, there

exists an index 1 ≤ k ≤ n such that GdimS(Soc(Qk)) = ∞. Since Qk is also finitely generated
and quasi-injective, we may now, without any loss of generality, further assume that N is quasi-
injective. Next, we choose an independent family {Ti | i ∈ I} of submodules of Soc(N) such that

⊕i∈ITi = Soc(N). Clearly each Ti is isomorphic to S. Let
Λ

Ti be an essential closure of Ti in N,

i ∈ I. Since {Ti|i ∈ I} is an independent family of submodules of N , so is {
Λ

Ti|i ∈ I}. Since |I|

is infinite, ⊕i∈I

Λ

Ti is not finitely generated and so ⊕i∈I

Λ

Ti 6= N. Let L be a maximal submodule of

N containing ⊕i∈I

Λ

Ti. Since Soc(N) ⊆e N and Soc(N) = ⊕i∈ITi ⊂ ⊕i∈I

Λ

Ti ⊂ L ⊂ N, we conclude
that Soc(N) is an essential submodule of L and so (*) implies that L = ⊕k∈KUk where each Uk is
quasi-injective. We claim that |K| < ∞.

Assume to the contrary that |K| = ∞. Choose two infinite disjoint subsets K1 and K2 of K such
that K = K1∪K2. Set Vj = ⊕k∈Kj

Uk, j = 1, 2. Then L = V1⊕V2. For j = 1, 2, let Wj be an essential
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closure of Vj in N. Then each Wj is a direct summand of N and is N -injective since N is quasi-
injective. So W1 ⊕ W2 is also a direct summand and N -injective. Now Soc(N) ⊆e W1 ⊕ W2 ⊂e N,
and therefore N = W1 ⊕W2. Hence, N/L = (W1 ⊕W2)/(V1 ⊕V2) = W1/V1 ×W2/V2. Since N/L is
a simple module, either W1 = V1 or W2 = V2. Since each Wi is a direct summand of N, it is finitely
generated. Thus, Wi 6= Vi for i = 1, 2, a contradiction. Therefore |K| < ∞.

Let Uk ⊂
Λ

Uk ⊂ N , where
Λ

Uk is an essential closure of Uk in N and k ∈ K = {1, 2, ..., m}.

Then U1 ⊕ ...⊕ Um ⊂
Λ

U1 ⊕ ... ⊕
Λ

Um ⊂e N. But, since N is quasi-injective,
Λ

U1 ⊕ ... ⊕
Λ

Um is a direct

summand of N . Therefore, N =
Λ

U1⊕ ...⊕
Λ

Um. Then N
L =

Λ

U1⊕...⊕
Λ

Um

U1⊕...⊕Um

∼=
Λ

U1

U1
× ...×

Λ

Um

Um
. Since N/L is

simple, there exists an index l ∈ K such that
Λ

Uk = Uk for all k 6= l. If
Λ

Ul = Ul, then clearly L = N ,

a contradiction. Therefore Ul ⊂
Λ

Ul. In particular, Ul is not N -injective.

Next, N/L = (⊕k∈K

Λ

Uk)/(⊕k∈KUk) =
Λ

Ul /Ul and so
Λ

Ul /Ul is a simple module. We claim that
GdimS(Soc(Ul)) = ∞. Else, let GdimS(Soc(Ul)) < ∞. We now proceed to show that this leads to a
contradiction. Let π be the canonical projection of L = ⊕k∈KUk onto Ul. Choose independent family
of simple submodules P1, P2, ..., Pt of Ul such that P = ⊕t

j=1Pj = Soc(Ul). From Soc(N) ⊂e L, it

follows by intersecting both sides with Ul that P = ⊕t
j=1Pj = Soc(Ul) ⊆e Ul. Then for every 1 ≤

j ≤ t, there exists a finite subset Ij ⊆ I such that Pj ⊆ ⊕s∈Ij
Ts. Let

Λ

Pj be an essential closure

of Pj in ⊕s∈Ij

Λ

Ts. Since ⊕s∈Ij

Λ

Ts is an N -injective submodule of L, so is
Λ

Pj . As Pj ⊆ Ul, π|Pj

is monomorphism and so π(
Λ

Pj) ∼=
Λ

Pj . Recalling that P = Soc(Ul) ⊆e Ul, we now conclude that

⊕t
j=1π(

Λ

Pj) ⊂e Ul and so Ul is N -injective, a contradiction. Therefore, GdimS(Soc(Ul)) = ∞.

Set Λ = End(
Λ

Ul), ∆ = End(
Λ

Ul/Ul) and Ω = End(Soc(
Λ

Ul)). Then ΛUl = Ul and so each

element λ ∈ Λ induces an endomorphism of the factor module
Λ

Ul/Ul. Therefore, there exists a
ring homomorphism f : Λ −→ ∆. Set I = ker(f) and note that I 6= Λ. Since ∆ is a division

ring, Λ/I is a domain. Next, λ(Soc(
Λ

Ul)) ⊆ Soc(
Λ

Ul) and so the map g : Λ −→ Ω, where g(λ) =

λ|
Soc(

Λ

Ul)
, is a homomorphism of rings. Since

Λ

Ul is quasi-injective, g is a surjective map. Now,

J(Λ) = {α ∈ Λ : ker(α) ⊂e

Λ

Ul} (see [8], p.44). It can be shown that ker (g) = J(Λ). Also,
it is known that idempotents modulo J(Λ) can be lifted to Λ (see [8], p.48). As shown above in

the previous paragraph, GdimS(Soc(
Λ

Ul)) = ∞. So, Soc(
Λ

Ul) is a direct sum of infinitely many
modules each isomorphic to S. Therefore, there exist two isomorphic submodules L1 and L2 such

that Soc(
Λ

Ul) = L1⊕L2. Let ei ∈ Ω be the canonical projection of Soc(
Λ

Ul) onto Li, i = 1, 2. Clearly,
e1e2 = 0 = e2e1, e1 + e2 = 1. Since Λ

J(Λ)
∼= Ω and g is surjective, there exist vi ∈ Λ such that

g(vi) = ei for i = 1, 2. This gives v2
i − vi ∈ J(Λ). This implies that there exist u2

i = ui ∈ Λ,
i = 1, 2 such that ui − vi ∈ J(Λ) = ker(g). This gives that g(ui) = g(vi) = ei. Since orthogonal
idempotents can be lifted to orthogonal idempotents, u1u2 = 0 = u2u1. Also, since e1 + e2 = 1, we
have u1 + u2 = 1. By (Proposition 21.21, [15]), there exist c ∈ u1Λu2 and d ∈ u2Λu1 with cd = u1,
dc = u2. Since Λ/I is a domain, either u1 ∈ I, or u2 ∈ I. In both cases c, d ∈ I and so u1 = cd ∈ I
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and u2 = dc ∈ I forcing 1 = u1 +u2 ∈ I, a contradiction. Therefore, GdimS(N) can not be infinite.
So, for any finitely generated module N and for any simple submodule S we have GdimS(N) < ∞.

Next, we proceed to show that there exists a positive integer n such that GdimS(N) ≤ n for
each simple module S.

Else, suppose for any integer n > 1, there exists a simple submodule Sn ⊆ N such that
GdimSn

(N) > n. Then there exists a family of pairwise non-isomorphic simple modules {Ti |
i = 1, 2, ...} such that GdimTi

(N) ≥ i. As explained in the beginning of the proof of this lemma we
will, without any loss of generality, assume that Soc(N) ⊆e N. By (*) we know that N = ⊕∞

k=1Qk

where each Qk is quasi-injective. Since N is finitely generated, we conclude that N = ⊕n
k=1Qk.

Clearly there exists an index 1 ≤ l ≤ n and an ascending sequence of indexes i1, i2, ..., ij , ... such
that GdimTij

(Ql) ≥ j. Therefore there exists an independent family of simple submodules {Spq|p =

1, 2, ..., q = 1, 2, ..., p} of Ql such that Sij
∼= Spq if and only if p = i. Let L be an essential closure

of ⊕i,jSij in Ql. Then L is both a quasi-injective module and a direct summand of Ql. Hence L is

a direct summand of N and so L is finitely generated. Let
Λ

Sij be an essential closure of Sij in L.

Since Sij
∼= Sik,

Λ

Sij
∼=

Λ

Sik for all 1 ≤ j, k ≤ i and i = 1, 2, .... We now set Uk = ⊕∞
i=k

Λ

Sik and denote
by Wk an essential closure of Uk in L. Note that Wk is finitely generated. Therefore, Wk 6= Uk for
all k = 1, 2, ....In particular, there exists a maximal submodule P1 of W1 containing U1. Let k > 1

and let W
′

k be an essential closure of ⊕∞
i=k

Λ

Si1 in W1. So, it follows that W
′

k
∼= Wk for all k = 2, 3, ....

Note that W1 = (⊕k−1
i=1

Λ

Si1)⊕W
′

k. Since U1 = ⊕∞
i=1

Λ

Si1 ⊂ P1, we have
Λ

Si1 ⊂ P1, and so we conclude

from modular law that P1 = (⊕k−1
i=1

Λ

Si1) ⊕ P
′

k where P
′

k = P1 ∩ W
′

k. Therefore, W1/P1
∼= W

′

k/P
′

k

which implies P
′

k is a maximal submodule of W
′

k for all k = 2, 3, ....Furthermore, as W
′

k
∼= Wk, there

exists a maximal submodule Pk of Wk such that Wk/Pk
∼= W

′

k/P
′

k
∼= W1/P1. Set P = ⊕∞

k=1Pk and

S = W1/P1. Now, L
P ⊃ ⊕Wk

⊕Pk

∼= W1

P1
× W2

P2
× ....This gives that GdimS(L/P ) = ∞, which is not true

because, as shown earlier, any finitely generated module has finite Goldie dimension with respect
to any simple module. This completes the proof. �

Theorem 4. Let R be a ring which satisfies the condition (*). Let K, L be R-modules with K
finitely generated and K ⊆e L. Let Λ = End(L). Then Λ is directly finite.

Proof. Assume that Λ is directly infinite. Then, there exist x, y ∈ Λ such that xy = 1 and
yx 6= 1. Set eij = yi−1xj−1−yixj for all i, j = 1, 2, ...It can be easily checked that {eij|i, j = 1, 2, ...}
is an infinite set of nonzero matrix units. Let n > 1. Since K ⊆e L, there exists a nonzero cyclic
submodule Un,1 of K such that Un,1 ⊆ en2,n2L∩K. Now we produce cyclic submodules Un,i ⊆ K,
where Un,i

∼= Un,j for all i, j = 2, 3, ..., n.
We now produce these cyclic submodules Un,i of K by induction. Consider the module Un,1

defined in the previous paragraph. Choose x2 ∈ en2+1,n2Un,1 ∩ K. Then x2 = en2+1,n2x1, where
x1 ∈ Un,1. Denote Un,2 = x2R and redefine Un,1 by setting Un,1 = x1R. Define the module
homomorphism ϕ : Un,1 −→ Un,2 by ϕ(x) = en2+1,n2x. Clearly, this is an epimorphism. Suppose
en2+1,n2x = 0. Then en2,n2+1(en2+1,n2x) = 0. which gives en2,n2x = 0 and hence x = 0. Therefore
ϕ is an isomorphism, and so Un,1

∼= Un,2. Suppose now that we have defined cyclic submodules
Un,1

∼= Un,2
∼= ... ∼= Un,j−1 in K, where Un,i = xiR, i = 1, 2, ..., j − 1. Next, we choose xj such

that xj ∈ en2+j−1,n2+j−2Un,j−1 ∩ K and write xj = en2+j−1,n2+j−2xj−1rj−1 where rj−1 ∈ R.

Let x
′

j−1 = xj−1rj−1, and set Un,j = xjR. Now redefine Un,j−1 = x
′

j−1R ( which is contained
in the previously constructed Un,j−1) . Then Un,j−1

∼= Un,j under the isomorphism that sends
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x ∈ Un,j−1 to en2+j−1,n2+j−2x. We redefine preceding Un,1, Un,2, ..., Un,j−2 accordingly so that
they all remain isomorphic to each other and to Un,j−1. Note that the family {Un,i|n = 2, 3, ...,
i = 1, 2, ..., n} is independent. By our construction, Un,i

∼= Un,j for all n = 2, 3, ... and 1 ≤ i, j ≤ n.
Therefore, there exist maximal submodules Vn,i of Un,i, n = 2, 3, ... and 1 ≤ i ≤ n, such that

Un,i/Vn,i
∼= Un,j/Vn,j for all n, i, j. Set V = ⊕n,iVn,i, K = K/V and Sn = Un,1/Vn,1. Clearly,

we have K
V ⊃

⊕Un,i

⊕Vn,i

∼=
U2,1

V2,1
×

U2,2

V2,2
×

U3,1

V3,1
× ....Thus, GdimSn

(K) ≥ n for all n = 2, 3, ..., which

contradicts Lemma 3. Therefore, Λ is directly finite. �

As a special case of the above result, we have the following lemma

Lemma 5. Let R be a ring which satisfies the condition (*). Then Qr
max(R) is directly finite

and hence R is directly finite.

Proof. It follows directly from the above theorem by taking K = R and L = Qr
max(R). �

Theorem 6. Let R be a ring which satisfies the condition (*). Let K be a finitely generated
R-module with L = E(K) and Λ = End(L). Then the factor ring Λ/J(Λ) is the direct product of
a finite number of matrix rings over abelian regular self-injective rings.

Proof. By ([10]), Λ = Λ/J(Λ) is a von-Neumann regular, right self-injective ring. By Theorem

4, the ring Λ is directly finite and hence so is the ring Λ. In view of (Theorem 10.22, [10]),

Λ = A1 × A2 where A1 is of Type If while A2 is of Type IIf . Assume that A2 6= 0. Then by

(Proposition 10.28, [10]) there exist idempotents e
′

2, e
′

3, ... ∈ A2 such that (A2)A2
∼= n(e

′

nA2). In

particular, for n = 3, (A2)A2
∼= 3(e

′

3A2), and so A2 = e1A2 ⊕ e2A2 ⊕ e3A2 where e1, e2, e3 ∈

A2 ⊆ Λ are nonzero orthogonal idempotents such that their sum is the identity of the ring A2 .

Clearly, eiΛ = eiA2, and ejA2 = ejΛ for all 1 ≤ i, j ≤ 3 and so eiΛ ∼= ejΛ Therefore, there exist
orthogonal idempotents u1, u2, u3 ∈ Λ such that ui + J(Λ) = ei for all i = 1, 2, 3 (see Corollary
3.9, [18]). In view of (Proposition 21.21, [15]), uiΛ ∼= ujΛ for all 1 ≤ i, j ≤ 3. Therefore, there
exist nonzero cyclic submodules U2i ⊆ uiL ∩ K, i = 1, 2, such that U21

∼= U22. By (Corollary
10.9, [10]), e3A2e3 = End(e3A2) is of Type IIf and so as above there exist nonzero orthogonal
idempotents f1, f2, f3, f4 ∈ e3A2e3 such that fi(e3A2e3) ∼= fj(e3A2e3) for all 1 ≤ i, j ≤ 4. As
before, we lift these orthogonal idempotents to orthogonal idempotents v1, v2, v3, v4 ∈ u3Λu3 such
that vi(u3Λu3) ∼= vj(u3Λu3) for all i, j. By (Proposition 21.20, [15]), there exist a ∈ vi(u3Λu3)vj and
b ∈ vj(u3Λu3)vi such that vi = ab and vj = ba. Then the mapping which sends vix to bvix, where
x ∈ Λ, gives isomorphism of viΛ onto vjΛ. So, viΛ ∼= vjΛ for all i, j. Furthermore, we see that there
exist nonzero cyclic submodule U3i ⊆ viL ∩ K, i = 1, 2, 3 such that U3i

∼= U3j for all 1 ≤ i, j ≤ 3.
Continuing in this fashion, we construct an independent family {Uij | i = 2, 3, ....; 1 ≤ j ≤ i} of
nonzero cyclic submodules of K such that Uij

∼= Uik for all 1 ≤ j, k ≤ i ; i = 2, 3, .... Therefore,
there exist maximal submodules Vij of Uij , 1 ≤ j ≤ i ; i = 2, 3, ... such that Uij/Vij

∼= Uik/Vik for

all i, j, k. Setting V = ⊕i,jVij , K = K/V and Si = Ui1/Vi1, we get that GdimSi
(K) ≥ i for all

i = 2, 3, ....which contradicts Lemma 3. Therefore, A2 = 0 and Λ is of Type If . Hence Λ = Π∞
i=1Ai

where each Ai is of Type Ii ,that is, each Ai is an i × i matrix ring over an abelian regular self-
injective ring (see Theorem 10.24, [10]). Now, we claim that this product must be a finite product.
Suppose not, then for any positive integer n there exists an index m ≥ n such that Am 6= 0. Now,
for any fixed k, we can easily write matrix units {ek

ij : 1 ≤ i, j ≤ k} which are k × k matrices. So

we have an infinite family of nonzero matrix units {{ek
ij|1 ≤ i, j ≤ k} | k = 2, 3, ...} ⊆ Λ. Now,

since K ⊆e L, there exists a nonzero cyclic submodule Uk,1 of K such that Uk,1 ⊆ ek
1,1L ∩ K and
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then starting with Uk,1, we construct an independent family {Uk,i|k = 2, 3, ..., 1 ≤ i ≤ k} of
cyclic submodules of K such that Uk,i

∼= Uk,j for all k, i, j (exactly as in the proof of Theorem
4). Therefore, there exist maximal submodules Vk,i of Uk,i, k = 2, 3, ... and 1 ≤ i ≤ k, such that

Uk,i/Vk,i
∼= Uk,j/Vk,j for all k, i, j. Setting V = ⊕k,iVk,i, K = K/V and Sk = Uk,1/Vk,1, we get that

GdimSk
(K) ≥ k for all k = 2, 3, ...which contradicts Lemma 3. Therefore, there exists a positive

integer n such that Λ = Πn
i=1Ai. Thus, Λ/J(Λ) is the direct product of a finite number of matrix

rings over abelian regular self-injective rings. �

As a consequence of the above theorem we have

Lemma 7. Let R be a right nonsingular ring which satisfies condition (*), then Qr
max(R) ( and

therefore R ) has a bounded index of nilpotence.

Proof. In the above theorem by taking K = R and L = Qr
max(R),we have that Qr

max(R) is a
finite direct product of matrix rings over abelian regular self-injective rings. Therefore, Qr

max(R) (
and hence R ) has a bounded index of nilpotence. �

Naturally, it is of interest to determine rings for which the condition (*) implies that the ring
is right noetherian. We know that it is true for commutative rings [3]. Under the assumption that
the ring R is right q.f.d., it was also shown in [3] that R is right noetherian if and only if R satisfies
the condition (*). We close by proving that a von-Neumann regular ring R is noetherian if and
only if R satisfies a somewhat stronger condition than the condition(*). We do not know whether
the result holds with the condition (*).

Theorem 8. A von-Neumann regular ring R is noetherian if and only if every essential exten-
sion of a direct sum of simple R-modules is quasi-injective.

Proof. Under our hypothesis it is clear that R satisfies (*). Since R is regular, its injective
hull as a right R-module is equal to its maximal right ring of quotients Q = Qr

max(R). Because
Q ≃ End(QR), it follows from Theorem 6 that Q is the direct product of a finite number of matrix
rings over abelian regular self-injective rings. Therefore, Q and hence R has a bounded index of
nilpotence.

Now because R is von-Neumann regular, R is semisimple artinian if and only if Q is semisim-
ple artinian. So, assume R is not semisimple artinian (equivalently not noetherian). Since Q =
Πk

i=1Mni
(Si), for some 1 ≤ j ≤ k, Mnj

(Sj), and hence Sj is not semisimple artinian. Thus Sj

will have infinitely many orthogonal idempotents which are central because Sj is abelian regu-

lar. Therefore, there exists an infinite family {A
′

i|i = 1, 2, ...} of two-sided ideals of Sj such that

A
′

iA
′

j = A
′

i ∩A
′

j = 0 for all i 6= j. This gives an infinite family {Ai|i = 1, 2, ...} of nonzero two-sided
ideals of R such that AiAj = Ai ∩ Aj = 0 for all i 6= j. Now, if Ai is contained in all prime ideals
then Ai is nil because the intersection of all prime ideals is the lower nil radical. But, since R is a
regular ring, it has no nonzero nil ideals. Thus Ai = 0, a contradiction. Therefore, for each index
i ≥ 1 there exists a prime ideal Pi of R such that Ai * Pi. Because each prime homomorphic image
of a von-Neumann regular ring with bounded index of nilpotence is simple artinian, each R/Pi

is a simple artinian ring. Since (Ai + Pi)/Pi is a nonzero ideal of the simple artinian ring R/Pi,
(Ai + Pi)/Pi = R/Pi. As Ai/Ai ∩ Pi

∼= (Ai + Pi)/Pi, we note that Ai/Ai ∩ Pi is a simple artinian
ring. Set P = ⊕∞

i=1(Ai ∩Pi). Then (Ai + P )/P ∼= Ai/Ai ∩P = Ai/Ai ∩Pi and so Bi = (Ai + P )/P
is a simple artinian ring and is an ideal of R/P. Clearly, {Bi|i = 1, 2, ...} is an independent family of
ideals of R/P. Let D/P be a complement of ⊕∞

i=1Bi in R/P. Then (⊕∞
i=1Bi)⊕D/P ⊂e R/P. Since

R/P is von-Neumann regular, (by Remark 3.6, [12]) we may consider D/P to be a two-sided ideal in
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R/P . Factoring out by D/P, we obtain that (⊕∞
i=1Bi) is essentially embeddable in R/D. Without

any loss of generality, we may assume that (⊕∞
i=1Bi) ⊂e R/P. Note that (R/P )R/P also satisfies

the property that every essential extension of a direct sum of simple modules is a quasi-injective
module. Now, every right ideal I/P of R/P is essential extension of Soc(R/P )∩ I/P. Therefore, by
assumption I/P is quasi-injective. Hence, every right ideal of R/P is quasi-injective. So R/P is a
q-ring [13]. Since R/P is semiprime, R/P = S⊕T, where S is semisimple and T has zero socle (see
[13]). But R/P has essential socle. So T = 0 and hence R/P is semisimple. Let the composition

length of R/P be m. Then A1

A1∩P1
× A2

A2∩P2
× ...× Am+1

Am+1∩Pm+1

∼=
A1⊕A2⊕...⊕Am+1

A1∩P1⊕A2∩P2⊕...⊕Am+1∩Pm+1
⊂ R

P , a

contradiction to the composition length of R/P . Therefore, R must be noetherian. This completes
the proof. �

Further study on class of rings satisfying the condition (*) to have some sort of finiteness
property remains open.

Acknowledgement. The authors would like to thank the referee for helpful suggestions.
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