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Abstract. This paper studies the homological properties of generalized group

algebra L1(G, A) of a locally compact group G over a Banach algebra A with
an identity of norm 1. It is shown that if L1(G, A) is right continuous then

G is finite and A is right continuous. It is also shown that L1(G, A) is right
self-injective if and only if G is finite and A is right self-injective.

1. Preliminaries

A module MR is called N -injective if every R-homomorphism from a submodule
L of N to M can be extended to an R-homomorphism from N to M . A module MR

is called quasi-injective or self-injective if it is M -injective. If RR is quasi-injective
then R is called a right self-injective ring.

A lattice L is said to be upper continuous if L is complete and a∧(∨bi) = ∨(a∧bi)
for all a ∈ L and all linearly ordered subsets {bi} ⊆ L. A ring R is called von
Neuman regular if for each a ∈ R there exists an x ∈ R such that axa = a. Von-
Neumann called a regular ring R to be right continuous if the lattice L(RR) of
principal right ideals of R is upper continuous, equivalently, for any two right ideals
A and B with A∩B = 0, the projection mapping A⊕B −→ A can be lifted to an
endomorphism of R. It is straightforward that any continuous regular ring satisfies
(i) every right ideal is essential in a direct summand, and (ii) every right ideal
isomorphic to a summand is itself a summand. In general, a ring R is called right
continuous if it satisfies the conditions (i) and (ii). More generally, a module MR is
called continuous if it satisfies the following two conditions: (i) every submodule of
M is essential in a direct summand of M , (ii) If a submodule N of M is isomorphic
to a direct summand of M then N itself is a direct summand of M . Every right
self-injective ring is right continuous but not conversely.

Let R be any ring, not necessarily with identity. Let J(R) be its Jacobson
radical. The right singular ideal of R, denoted by Z(RR), is defined as: Z(RR) =
{r ∈ R : rE = 0 for some essential right ideal E of R}.

If A is a Banach algebra, then for x ∈ A, r(x) denotes the spectral radius of x.
A topological group is a group G together with a topology such that the maps

G× G −→ G where (α, β) 7→ αβ and G −→ G where α 7→ α−1 are continuous. A
topological group G is called a locally compact group if it is Hausdorff and locally
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compact as a topological space. It is well-known that every locally compact group
has a left Haar measure unique upto a scalar multiple.

Definition 1. Let G be a locally compact group with the left Haar measure m.
The group algebra L1(G) is defined as the Banach algebra consisting of all complex-
valued m-integrable functions on G, with the norm given as

||ϕ|| =
∫

G

|ϕ(t)| dm(t) (ϕ ∈ L1(G)),

and equipped with the convolution product ∗, where

(ϕ ∗ ψ)(t) =
∫

G

ϕ(s)ψ(s−1t) dm(s) (ϕ, ψ ∈ L1(G), t ∈ G).

We know that L1(G) has an approximate identity bounded by 1.

More generally, Hausner defined generalized group algebras of vector-valued in-
tegrable functions as below.

Definition 2. Let A be a Banach algebra with identity of norm 1 and let G be a
locally compact group with the left Haar measure m. The generalized group alge-
bra L1(G,A) is defined as the Banach algebra of all A-valued Bochner integrable
functions on G, with the norm given as

||ϕ||1 =
∫

G

||ϕ(t)|| dm(t) (ϕ ∈ L1(G,A)),

and equipped with the convolution product ∗, where

(ϕ ∗ ψ)(t) =
∫

G

ϕ(s)ψ(s−1t) dm(s) (ϕ, ψ ∈ L1(G,A), t ∈ G).

L1(G,A) can also be thought of as the projective tensor product L1(G)⊗̂A, the
completion of the algebraic tensor product L1(G)⊗A equipped with the projective
tensor-norm (see [8] for details). L1(G,A) is a Banach algebra with an approximate
identity bounded by 1.

2. Results

We start by stating some well-known results that play key role in proving our
main theorem.

Proposition 3. (Kaplansky [7]) A von Neumann regular Banach algebra must be
finite-dimensional.

Proposition 4. (Jacobson [4]) The radical J(R) of a normed ring R is a general-
ized nil ideal, i.e. if x ∈ J(R) then r(x) = limn→∞ ||xn||1/n = 0. Also, J(R) is a
closed ideal of R.

Proposition 5. [9] Let MR be a continuous module, and let S = HomR(M, M ).
Then S/J(S) is a von Neumann regular ring.

The proof of this proposition is given in the literature for rings with identity but
it can be adapted for rings without identity.
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Lemma 6. (Johnson [6]) Let R be a Banach algebra with an approximate identity
bounded by 1. Let T belong to S(R) = HomR(R,R). Then T is linear and con-
tinuous. Further, S(R) can be made into a Banach algebra with identity, the norm
being the usual operator norm.

Theorem 7. ([1], [11]) Let R be a ring with identity and G be a group. Then RG
is right self-injective if and only if R is right self-injective and G is finite.

The study of group algebrasRG of any group G over a ringR that are continuous,
quasi-continuous, or more generally CS has been limited to the cases when R is a
field. There are almost no results in the literature on the properties of the ring
R when RG is continuous or quasi-continuous. Before studying generalized group
algebras of locally compact groups, we first consider classical group algebras RG
and show that R is continuous (or quasi-continuous) when RG is continuous (or
quasi-continuous).

Lemma 8. Let R be a ring with identity and G be a group. If RG is quasi-
continuous (π-injective) then R is right quasi-continuous.

Proof. Let ϕ : I1 ⊕ I2 −→ I1 be an idempotent R-homomorphism where I1 and I2
are right ideals of R with I1 ∩ I2 = 0. Define ϕ : (I1 ⊕ I2)G −→ I1G by ϕ(Σ(ag +
bg)g) = Σϕ(ag)g. Since RG is quasi-continuous, ϕ extends to an endomorphism
of RG. So, ϕ(x) = yx for some y ∈ RG. Now, if t ∈ I1 ⊕ I2, then we have
ϕ(t) = ϕ(t) = yt. Let y = y0g0 + y1g1 + ...+ yngn where g0 is identity of G. This
gives, ϕ(t) = y0t where y0 ∈ R. Therefore, R is right quasi-continuous. �

Lemma 9. If R is a quasi-continuous ring such that Z(R) ⊆ J(R), then R is right
continuous.

Proof. The proof given in the literature (e.g. see [9]) assumes Z(R) = J(R). How-
ever, simple examination shows that it is enough to assume Z(R) ⊆ J(R). �

Proposition 10. Let R be a ring with identity and G be a group. If RG is con-
tinuous then R is right continuous.

Proof. By Lemma 8, R is quasi-continuous. To prove that R is continuous, we
only need to show that Z(R) ⊆ J(R). Let a ∈ Z(R). Since RG is continuous,
Z(RG) = J(RG). We have Z(R) ⊂ Z(R)G ⊆ Z(RG) = J(RG). Therefore,
a ∈ J(RG). So, x = (1 − a) is invertible in RG. Hence there exists y ∈ RG such
that xy = 1 = yx. Let y = y0g0 + y1g1 + ...+ yngn where g0 is identity of G. Then,
we get xy0 = 1 and xyi = 0 for each i ≥ 1. Similarly, y0x = 1 and yix = 0 for each
i ≥ 1. Now, for each i ≥ 1, y0xyi = 0 which gives yi = 0 for each i ≥ 1. Hence
y ∈ R. Therefore, (1 − a) is invertible in R. So, a ∈ J(R). Thus, Z(R) ⊆ J(R).
This proves that R is right continuous. �

We are now ready to study continuous generalized group algebras.

Let G be a locally compact group with the left Haar measure m and let A be a
Banach algebra with identity of norm 1. Let M (G) denote the measure algebra of G
with adjoint operation ˜ given by

∼
µ(E) = µ(E−1) for µ ∈M (G) and E measurable

with E−1 measurable in G. For µ 6= 0, we have r(
∼
µ ∗ µ) 6= 0.
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Theorem 11. If L1(G,A) is right continuous then G is finite and A is right con-
tinuous.

Proof. Let R = L1(G,A) = L1(G)⊗̂A be right continuous. Set S(R) = HomR(R,R).
By Proposition 5, S(R)/J(S(R)) is von Neumann regular. By Lemma 6, every
member of S(R) is bounded. So S(R) can be considered as a Banach subalgebra of
the algebra of bounded operators on R. Hence, S(R)/J(S(R)) is a Banach algebra.
So by Kaplansky (Proposition 3), S(R)/J(S(R)) is finite-dimensional.

Now we claim that M (G) is embeddable in S(R)/J(S(R)) as an algebra.
For every ν ∈ M (G), consider the map Wν = Lν ⊗ idA ∈ S(R), where Lν(f) =

ν ∗ f , f ∈ L1(G). Then the map W : M (G) −→ S(R) given by ν 7−→ Wν

is a norm-preserving isomorphism onto the Banach subalgebra W (M (G)). Let
µ( 6= 0) ∈ M (G). Then, since Wµ(f ⊗ a) = (µ ∗ f) ⊗ a, ||Wµ|| = ||µ||. Also,
||Wn

µ || = ||µn||. As a consequence, r(Wµ) = r(µ). Thus, r(W∼
µ∗µ

) = r(
∼
µ ∗ µ) 6= 0.

We claim Wµ /∈ J(S(R)). If possible, let Wµ ∈ J(S(R)). Then W∼
µ
Wµ ∈

J(S(R)). This gives W∼
µ∗µ

∈ J(S(R)). Hence by Proposition 4, r(W∼
µ∗µ

) = 0,
a contradiction. Thus, Wµ /∈ J(S(R)) as claimed.

Let π be the canonical homomorphism from S(R) to S(R)/J(S(R)). Then the
composition πW : M (G) W−→ S(R) π−→ S(R)/J(S(R)) is a one-to-one homomor-
phism and so M (G) embeds in S(R)/J(S(R)) as an algebra.

Thus,M (G) is finite-dimensional. Hence, G is finite. Therefore, L1(G,A) = AG.
Then, by Proposition 10, A is right continuous. �

Note that since L1(G) is an algebra with involution, it has left-right symmetry.

Corollary 12. L1(G) is continuous if and only if G is finite. In this case CG =
L1(G).

Remark 13. It is known that for any field K if KG is continuous then G is locally
finite but the converse need not be true. For examples of infinite locally finite groups
G such that KG is continuous, we refer the reader to [5].

Theorem 14. L1(G,A) is right self-injective if and only if G is finite and A is
right self-injective.

Proof. Let R = L1(G,A) be right self-injective. Then by Theorem 11, G is finite.
As a consequence, R = A[G]. Therefore, A is right self-injective. Conversely, if G
is finite and A is right self-injective then L1(G,A) = AG is right self-injective. �

Corollary 15. L1(G) is self-injective if and only if G is finite.
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